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Abstract: Dimensionality reduction (DR) is an essential pre-processing step for hyperspectral image
processing and analysis. However, the complex relationship among several sample clusters, which
reveals more intrinsic information about samples but cannot be reflected through a simple graph or
Euclidean distance, is worth paying attention to. For this purpose, we propose a novel similarity
distance-based hypergraph embedding method (SDHE) for hyperspectral images DR. Unlike conven-
tional graph embedding-based methods that only consider the affinity between two samples, SDHE
takes advantage of hypergraph embedding to describe the complex sample relationships in high
order. Besides, we propose a novel similarity distance instead of Euclidean distance to measure the
affinity between samples for the reason that the similarity distance not only discovers the complicated
geometrical structure information but also makes use of the local distribution information. Finally,
based on the similarity distance, SDHE aims to find the optimal projection that can preserve the local
distribution information of sample sets in a low-dimensional subspace. The experimental results in
three hyperspectral image data sets demonstrate that our SDHE acquires more efficient performance
than other state-of-the-art DR methods, which improve by at least 2% on average.

Keywords: dimensionality reduction; hypergraph embedding; unsupervised; hyperspectral remote
sensing

1. Introduction

Hyperspectral remote sensing images have been taking a significant role in earth obser-
vation and climate models. Every collected pixel point indicates a high-dimensional sample
that consists of a broad range of electromagnetic spectral band information [1,2]. Neverthe-
less, the high correspondence of adjacent bands not only leads to information redundancy
but also requires tremendous time and space complexity, and the high-dimensional data
also make hyperspectral image analysis a challenging task as a consequence of the Hughes
phenomenon [3]. As Chang et al. proposed in [4], there can exist at most 94% redundant
electromagnetic spectral band information, on the prem that adequate valuable information
can be extracted for machine learning. In view of the aforementioned issues, hyperspectral
data dimensionality reduction (DR) turns out to be a crucial part of data processing [5,6],
usually via projecting original high-dimensional data into a low-dimensional space on the
condition of maintaining as much valuable information as possible.

Supervised DR methods manage to increase the between-class separability and de-
crease the within-class divergency, such as linear discriminant analysis (LDA) [7], non-
parametric weighted feature extraction (NWFE) [8], and local Fisher discriminant analysis
(LFDA) [9]. LDA intends to maintain global discriminant information according to avail-
able labels, which is proven to work well in the case that samples from the same class
follow Gaussian distribution. As an extension to LDA, LFDA is proposed to eliminate the
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limitation of LDA that requests the reduced dimensionality to be less than the total number
of sample classes and ignores the local structural information.

However, in various practical applications, labeling samples exactly is labor intensive,
computationally expensive, and time-consuming due to the limitations of experimental
conditions, especially in hyperspectral remote sensing images [10]. So many research
studies focus on unsupervised cases. Locality preserving projection (LPP) [11] and princi-
pal component analysis (PCA) are the representatives of unsupervised DR methods [12].
Different from LPP, on the purpose of preserving the local manifold structure of data, PCA
aims at maintaining the global structure of data by maximizing sample variance.

A great deal of research demonstrates that high-dimensional data can be described
by or similar to a smooth manifold in a low-dimensional space [13–15] and propose some
DR methods based on manifold learning. Laplacian eigenmaps (LE) [14] try to maintain
local manifold structure by constructing an undirected graph that indicates the pairwise
relationship of samples. Locally linear embedding (LLE) [15] tries to reconstruct samples in
a low-dimensional space while maintaining their local linear representation coefficients
under the assumption that local samples follow a certain linear representation in a mani-
fold patch. Yan et al. summarize relevant DR approaches and proposed a general graph
embedding framework [16], which contains a series of variant graph embedding models,
including neighborhood preserving embedding (NPE) [17], LPP, and several expanded ver-
sions to LPP [11,18,19]. For these graph embedding-based DR models, researchers usually
utilize Euclidean distance to construct adjacent graphs [20], where vertices indicate samples
and the weighted edges reflect pairwise affinities between two samples. Consequently,
there exist two basic problems to be addressed.

1. The conventional graph embedding-based DR methods, for example, LPP, aims to
preserve the local adjacent relationship of samples by constructing a weight matrix
which only takes the affinity between pairwise samples into account. However, the
weight matrix fails to reflect the complex relationship of samples in high order [21],
leading to the loss of information.

2. When employed to calculate the similarity between two samples, the usual Euclidean
distance is merely related to the two samples themselves but hardly considers the influ-
ence caused by their ambient samples [22,23] and ignores the distribution information
of samples, which usually plays an important role for further data processing.

Accordingly, we propose a novel similarity distance-based hypergraph embedding
method (SDHE) for unsupervised DR to solve the two above issues. Unlike conventional
graph embedding-based models that only describe the affinity between two samples, SDHE
is based on hypergraph embedding, which can take advantage of the complicated sample
relationships in high order [24–26]. Besides, a novel similarity distance is defined instead of
Euclidean distance to measure the affinity between samples because the similarity distance
can not only discover complex geometrical structure information but also make use of the
local distribution information of samples.

The remainder of our work is organized as follows. In Section 2, some related work is
introduced, including the classic graph embedding model (LPP) and hypergraph embed-
ding learning. Section 3 proposes our similarity distance-based hypergraph embedding
method (SDHE) for dimensionality reduction in detail. In Section 4, we adopt three real
hyperspectral images to evaluate the performance of SDHE in comparison with other
related DR methods. Finally, Section 5 provides the conclusions.

2. Related Work
2.1. Notations of Unsupervised Dimensionality Reduction Problem

We focus on the unsupervised dimensionality reduction problem. The dataset is
denoted as V = [v1, v2, . . . , vn] ∈ Rd×n, where vi ∈ Rd represents the ith sample with d
feature values, n denotes the number of total samples. In order to obtain a discriminative
low-dimensional representation yi ∈ Rm (m < d) for each vi, an optimal projection matrix
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P ∈ Rd×m is to be learned. We denote yi = PTvi or Y = PTV, where Y = [y1, y2, . . . , yn] ∈
Rm×n as the data in the transformed space.

2.2. Locality Preserving Projection (LPP)

As is shown in [27], numerous high-dimensional observation data contain low-
dimensional manifold structures, which motivates us to solve DR problems by extracting
local metric information hidden in the low-dimensional manifold. Graph embedding has
been proposed to present certain statistical or geometric characteristics of samples via
constructing a graph embedding model [16]. In particular, LPP utilizes K nearest neighbors
(KNN) algorithm to construct an adjacent graph so that local neighborhood structure is
considered in feature space [17]. The basic derivation idea of the Formulas (1)–(4) comes
from [17].

LPP is formulated to find a projection matrix P ∈ Rd×m by minimizing.

1
2

n
∑

i,j=1
Wi,j‖yi − yj‖2

2

= 1
2

n
∑

i,j=1
Wi,j‖PTvi − PTvj‖2

2

= trace
(
PTV(D−W)VTP

)
= trace

(
PTVLVTP

) (1)

where D is a diagonal matrix with diagonal entries Di,i = ∑n
j=1 Wi,j, and L = D−W is

Laplacian matrix. The symmetric weighted matrix W is defined on an adjacent graph, in
which each entry Wi,j corresponds to a weighted edge denoting the similarity between two
samples. The most popular approach to define Wi,j is as below:

Wi,j =

{
exp

(
−‖vi − vj‖2

2/t
)

vi and vj are neighbors
0 otherwise

(2)

where t denotes the heat kernel parameter, and Wi,j increases monotonously with the
decrease of distance between vi and vj.

Therefore, if samples vi and vj are the K nearest neighbors of each other, the mapped
samples yi and yj are close to each other in the transformed space as well, due to the
heavy penalty incurred by Wi,j. Usually a constraint PTVDVTP = I is imposed to ensure
a meaningful solution, where I denotes the identity matrix. Then the final optimization
problem can be written as follows:

min
P

trace
(
PTVLVTP

)
s.t. PTVDVTP = I

(3)

The solution to the optimal projection matrix can be translated into the following
generalized eigenvalues problem.

VLVTP = VDVTPΛ (4)

where P denotes the eigenvector matrix of
(
VDVT)−1VLVT and Λ denotes the eigenvalue

matrix whose diagonal entries are eigenvalues corresponding with P.

2.3. Hypergraph Embedding

Since hypergraph theory is proposed, hypergraph learning has made promising progress
in many applications in recent years, and the basic derivation idea of the Formulas (5)–(8)
comes from [26,28,29]. As an extension to the classic graph, a hypergraph facilitates the
representation of a data structure by capturing adjacent sample relationships in high order,
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which overcomes the limitation of a classic graph in that each edge only considers the
affinity between pairwise samples. Unlike a classic graph, where a weighted edge links up
two vertices, the hyperedge consists of several nodes in a certain neighborhood. Figure 1 is
taken as an example of a classic graph and hypergraph.
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nearest neighbors.

The hypergraph G = (V, E, w) is constructed as the following. Here, V = [v1, v2, . . . , vn]
∈ Rd×n denotes the vertex set corresponding to samples, and E = [E1, E2, . . . , En] denotes
the hyperedge set, in which each hyperedge is assigned a positive weight w(Ei). For a
certain vertex, its K nearest neighbors (let K = 2 in Figure 1b) are found out to make up a
hyperedge, and an incidence matrix H ∈ Rn×n is defined to express the affiliation between
vertices and hyperedges as follows:

Hi,j = h
(
vi, Ej

)
=

{
1 ifvi ∈ Ej

0 otherwise
(5)

Then each hyperedge is assigned with a weight computed by:

wi = w(Ei) = ∑
vj∈Ei

exp
(
−‖vj − vi‖2

2/h
)

(6)

where h is the Gaussian kernel parameter. According to incidence matrix H and hyperedge
weight w(E), the vertex degree for each vertex vi ∈ V is defined as:

di = d(vi) =
n

∑
j=1

wjHi,j (7)

and the hyperedge degree δi for each hyperedge Ei ∈ E is defined as:

δi = δ(Ei) =
n

∑
j=1

Hj,i (8)

Namely, δi denotes the number of vertices that belong to the same hyperedge Ei.

3. Proposed Method

In this section, we propose a novel unsupervised DR method called similarity distance-
based hypergraph embedding (SDHE). Below we first give a kind of hypergraph embedding-
based similarity, then construct a novel similarity distance, and finally, propose a similarity
distance-based hypergraph embedding model for DR.
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3.1. Hypergraph Embedding-Based Similarity

It is a reasonable choice to describe a high-order similarity relationship with a hy-
pergraph rather than a simple graph. Because the hypergraph has the characteristic that
each hyperedge connects more than two vertices and these vertices share one weighted
hyperedge, i.e., the samples in the same hyperedge are regarded as a whole. A hyperedge
Ei consists of the sample vi together with its K nearest neighbors, thus an incidence matrix
H ∈ Rn×n is defined by Equation (5) to represent the affiliation between vertices and hy-
peredges. Then a positive weight wi is assigned to the hyperedge Ei according to Equation
(6), and the weight of hyperedge Ei is calculated by summing up the certain relationships
between sample vi with its K nearest neighbors.

However, the weight of hyperedge excessively relies on parameter K. If K is too small,
the hypergraph will approach a simple graph inducing that the hypergraph cannot depict
high order sample relationship sufficiently. Otherwise, if K is too large, one hyperedge
would connect too much number of vertices sharing the common weight of the hyperedge,
which fails to reflect vertices’ own unique similarity characteristics. It is worth noting
that outliers also share hyperedge weight with other vertices, and stated thus, hypergraph
embedding is sensitive to outliers (usually noise), so we manage to modify the disadvantage
by constructing a robust similarity to alleviate the sensitiveness of outliers. The similarity
si,j between arbitrary two samples vi and vj is defined as follows:

si,j= ∑
Ek∈E

∑
vi ,vj∈V

w(Ek)h(vi, Ek)h
(
vj, Ek

)
=

n

∑
k,i,j=1

wk Hi,k Hj,k

(9)

where the notations H and w have been defined in Equations (5) and (6), respectively.
According to Equation (9), the similarity between samples vi and vj is calculated by

summing up all the weight of these common hyperedges they both belong to. The weight
of common hyperedge is associated with local sample distribution; next, we explains how
it works. On the one hand, each hyperedge connects K + 1 vertices so that the weight wi
of hyperedge Ei becomes larger if these K + 1 vertices are distributed compactly, and vice
versa. If an outlier and its K nearest neighbors make up a hyperedge, then the hyperedge
has a smaller weight because the distribution of these vertices is more scattered. In other
words, outlier has little contribution to the weight of hyperedge, making the measure of
similarity more robust. On the other hand, each vertex can belong to several different
hyperedges. When two vertices are very close to each other, they can participate in more of
the same hyperedges and have a higher similarity as we expect. Considering the sample
distribution means we can mine more valuable information from the training samples of the
same size according to their local structure and distribution relationship in the hypergraph,
especially small-size samples. Our experiments conducted on different data sets have
confirmed the conclusion, as shown in Section 4.

3.2. Similarity Distance Construction

Euclidean distance is the most popular tool to measure the similarity between samples
in graph embedding-based DR methods [30]. However, it is not very accurate for analyzing
hyperspectral images problem. For example, as depicted in Figure 2a, three samples v1, v2
and v3 are from three different classes respectively, and v1 is closer to v2 but far away from
v3 in Euclidean Distance. Accordingly, v1 and v2 are more likely to be misclassified into the
same class when we ignore some complex structure and distribution information, which
probably leads to the increase of classification error. For another example, as depicted in
Figure 2b, Euclidean distance from v1 to v2 is equivalent to that from v1 to v3. But v1 and v2
are more likely to belong to the same class according to the distribution of samples, which
cannot be reflected intuitively by Euclidean distance. So we are motivated to propose a
novel similarity distance to replace Euclidean distance.
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It is natural that if two samples have high similarity, they are likely to come from
the same class, even though we know nothing about their exact labels in unsupervised
DR problem. That is to say, when two similar samples are mapped to low-dimensional
space, they ought to be close to each other according to their similarity in original feature
space. Directly using the similarity to represent the distance relationship encounters the
problem of non-uniform measurement, so we normalize the similarity by defining the
relative similarity ri,j, as below:

ri,j =
Si,j − Smin

Smax − Smin
(10)

where si,j has been defined in Equation (9), smin and smax denote the minimum and maxi-
mum elements in similarity matrix S, respectively. Thus si,j = smax corresponds to ri,j = 1
and si,j = smin = 0 corresponds to ri,j = 0. As a normalized metric of si,j, ri,j reflects the
probability that samples i and j belong to the same class. Besides, the relative similarity
matrix consisting of entries ri,j is sparse because the majority of entries ri,j = si,j = 0, i.e.,
there exists no hyperedge that contains samples i and j simultaneously.

Based on the relative similarity ri,j, a novel similarity distance EDi,j is defined for
measuring the location relationship of samples as below:

EDi,j = 1− log
(
ri,j
)

(11)

where 0 < rij ≤ 1 and EDi,j ≥ 1. Specially, if rij = 0, we define EDi,j = +∞. And the
similarity distance is symmetric, i.e., EDi,j = EDj,i.

In order to get an intuitive recognition of similarity distance, Figure 2b gives a directed
diagram to explain how it works. Despite the equivalent Euclidean distance from v1 to
v2 or v3, the sample distribution around v1 and v2 is denser than that around v1 and v3.
According to Equation (6), denser distribution leads to the larger weight of hyperedge
and corresponds to larger similarity. A larger similarity means smaller similarity distance,
which demonstrates that the similarity distance between v1 and v2 is smaller than that
between v1 and v3. Obviously, the result accords with our intuitive judgment.

One advantage of Euclidean distance is simple and easy to acquire, but also limits
the amount of information it can take along with. Whereas the geometrical structure
of hyperspectral data in high-dimensional feature space is complex and hard to learn,
Euclidean distance cannot effectively reflect the interaction between samples. However, via
using similarity distance, we can discover crucial information that is not directly exhibited
through geometrical distance and make great progress in analyzing hyperspectral images
DR problem.
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3.3. Similarity Distance-Based Hypergraph Embedding Model

As portrayed in the above two sections, we extract similarity from hypergraph em-
bedding, then utilize the similarity to construct similarity distance. Now we propose
our similarity distance-based hypergraph embedding (SDHE) model for DR, whose basic
idea is to find out a projection matrix P that projects original high-dimensional data to
low-dimensional manifold space while preserving the similarity distance among samples.

Similar to LPP, a penalty factor EWi,j is defined to balance the similarity distance
between samples i and j in transformed space as follows:

EWi,j = exp (−ED2
i,j/t ) (12)

where EDi,j is formulated in Equation (11) and t is a positive heat kernel parameter. Thus,
the optimization problem of SDHE is formulated to minimize.

1
2

n
∑

i,j=1
EWi,j‖PTvi − PTvj‖2

2

= 1
2

n
∑

i,j=1
(PTvi)

TEWi,jPTvi +
1
2

n
∑

i,j=1
(PTvj)

TEWi,jPTvj −
n
∑

i,j=1
(PTvi)

TEWi,jPTvj

=
n
∑

i=1
(PTvi)

TDi,iPTvi −
n
∑

i,j=1
(PTvi)

TEWi,jPTvj

= trace
(
PTVDVTP

)
− trace

(
PTV(EW)VTP

)
= trace

(
PTV(D− EW)VTP

)
= trace

(
PTVLVTP

)
(13)

where D is a diagonal matrix with diagonal entries Di,i = ∑n
j=1 EWi,j, and L = D− EW is

the Laplacian matrix.
Therefore, if samples vi and vj have a small similarity distance in the original feature

space, the mapped samples yi and yj would be close to each other in the transformed
feature space as well due to the heavy penalty incurred by EWi,j. In order to avoid a
degeneracy solution, the final optimization problem is formulated as follows by adding a
regularization term.

max
P

trace
(
PTVDVTP

)
trace

(
PTVLVTP

) (14)

which is a trace-ratio problem, can be reduced to solve the following generalized eigenval-
ues problem.

VDVTP = λVLVTP (15)

where λ represents generalized eigenvalue. The optimal projection matrix P = [P1, P2, . . . , Pm]
is acquired by choosing eigenvectors corresponding with the first m maximum eigenvalues.

An outline of SDHE Algorithm 1 is summarized as follows:
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Algorithm 1: SDHE

Require:
Training samples V = [v1, v2, . . . , vn] ∈ Rd×n,
dimensionality of transformed space m,
the number of nearest neighbors K,
the Gaussian kernel parameters h and t

Ensure:
The optimal projection matrix P∗ ∈ Rd×m.

Step 1: Embed hypergraph by using K nearest neighbors algorithm and get affiliation relationship
Hi,j according to Equation (5);
Step 2: Calculate the weight of each hyperedge wi according to Equation (6);
Step 3: Calculate the similarity si,j by

si,j =
n
∑

k,i,j=1
Wk Hi,k Hj,k;

Step 4: Translate the similarity si,j into relative similarity rij:
smin = min (si,j ) ;
smax = max (si,j ) ;

ri,j =
si,j−smin

smax−smin
;

Step 5: Construct the similarity distance by EDi,j = 1− log (ri,j ) ;
Step 6: Construct penalty factor by EWi,j = exp (−ED2

i,j/t ) ;
Step 7: Calculate D and L;
Step 8: Solve generalized eigenvalues problem VDVTP = λVLVTP ;
Step 9: P∗ = [P1, P2, . . . , Pm] is the eigenvectors corresponded with m maximum eigenvalues.

4. Result and Discussion

In this section, the validity of our proposed SDHE method was tested on three hy-
perspectral data sets compared with some related DR methods. The DR effectiveness was
evaluated according to classification accuracy, which was calculated by the nearest neighbor
(NN) classifier after different DR methods were conducted on the data set, respectively.

4.1. Hyperspectral Images Data Set

Our experiments were conducted by employing three standard hyperspectral image
data sets as follows; more details are shown in Section 4.3.

4.1.1. Pavia University

The Pavia University scene was gathered by the reflective optics system imaging
spectrometer (ROSIS) optical sensor over Pavia, northern Italy. It is a 610 × 610 pixels
image that was divided into 9 classes grounds truth with 103 spectral bands after some
invalid samples had to be removed.

4.1.2. Salinas

The Salinas scene was acquired by the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor over Salinas Valley, Southern California, in 1998. This area consists of 512
× 217 pixels with 224 spectral bands. Discarded 20 water absorption bands, it contains 16
classes of observations with 204 spectral bands.

4.1.3. Kennedy Space Center

The Kennedy Space Center (KSC) data was acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) instrument over the KSC, Florida, in 1996. It consists of 13
classes of observations with 176 spectral bands after we discarded uncalibrated and noisy
bands that cover the region of water absorption features.
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4.2. Experimental Setup
4.2.1. Training Set and Testing Set

Considering the distinct scale and distribution of the data sets above, we randomly
choose 15, 20 or 25 samples from per class in Pavia University, Salinas and KSC scenes to
make up the training sets, respectively. Naturally, the rest of the samples were regarded
as testing sets. In addition, a random 10-fold validation method was adopted, that is,
the partition process was repeated 10 times independently to weaken the influence of
random bias.

4.2.2. Data Pre-Processing

As Camps-Valls G et al. proposed in [31], we utilized spatial mean filtering to enhance
hyperspectral data classification. For example, assuming a pixel xi with coordinate (pi, qi),
we denote its local pixel neighborhood N(xi), as below:

N(xi) = {x(p, q) | p ∈ [pi − a, pi + a], q ∈ [qi − a, qi + a]}, a = 0, 1, 2, . . . (16)

For pixels at the edge of image, the samples were mirrored before using spatial mean
filtering. Then all the pixels had their spatial neighborhood N(x) including (2a + 1)2

pixels, where 2a + 1 indicates the width of spatial filtering window. Finally, each pixel x is
represented by:

x̂ =
1

(2a + 1)2

(2a+1)2

∑
s=1

xs (17)

In our experiments, we set a = 2 for all the hyperspectral images, that is, the width of
spatial neighborhood is 5, as depicted in Figure 3. Besides, the filtered data is normalized
by min-max scaling as a popular routine.
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4.2.3. Comparison and Evaluation

In order to evaluate the effectiveness of different DR methods, the testing set is
transformed into low-dimensional data utilizing the optimal projection matrix, which
is learned from the training set. As a contract, two classical unsupervised DR methods
PCA [12] and LPP [11], two state-of-the-art unsupervised DR methods BH and SH [32], as
well as two supervised DR methods LFDA [9] and NWFE [8], were compared with our
proposed SDHE method. As a baseline to illustrate others, the raw data (RAW) is also
directly classified without DR. In our experiments, the nearest neighbor (NN) classifier
is adopted for classification, and we can acquire overall accuracy (OA), average accuracy
(AA), and kappa coefficient (KC) together with their standard deviations (STD) to evaluate
these DR methods.
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4.2.4. Parameter Selection

It is essential to select the appropriate parameters for different DR methods in our ex-
periments. The number of nearest neighbors K is selected from the given set of {3, 5, 7, 9, 11},
the Gaussian kernel parameters h and t are selected from the given set of

{
2−8, 2−7, · · · , 27, 28},

respectively. In order to decrease the influence of random bias, we repeat each single exper-
iment 10 times, with every combination of parameters and randomly divided training and
testing sets. The optimal combination of parameters is acquired associated with the highest
mean overall accuracy (OA).

4.3. Experimental Results

To have a further knowledge of our data sets, Tables 1–3 present the detailed ground
truth classes and the number of their individual samples for Pavia University, Salinas, and
KSC respectively.

Table 1. Ground truth classes and their individual samples number for Pavia University.

Number Class Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Total 42,776

Table 2. Ground truth classes and their individual samples number for Salinas.

Number Class Samples

1 Brocoil-green-weeds-1 2009
2 Brocoil-green-weeds-2 3726
3 Fallow 1976
4 Fallow-rough-plow 1394
5 Fallow-smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes-untrained 11,271
9 Soil-vinyard-develop 6203
10 Corn-senesced-green-weeds 3278
11 Lettuce-romaine-4wk 1068
12 Lettuce-romaine-5wk 1927
13 Lettuce-romaine-6wk 916
14 Lettuce-romaine-7wk 1070
15 Vinyard-untrained 7268
16 Vinyard-vertical-trellis 1807

Total 54,129

Table 3. Ground truth classes and their individual samples number for KSC.

Number Class Samples

1 Scrub 761
2 Willow swamp 243
3 CP hammock 256
4 CP/Oak hammock 252
5 Slash pine 161
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Table 3. Cont.

Number Class Samples

6 Oak/Broadleaf hammock 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211

First, we randomly choose 20 samples per class to comprise the training set, and the
rest samples are regarded as a testing set. Then we can learn a projection matrix with
the training set and conduct DR on the testing set by making use of the projection matrix
learned before. The reduced dimensionality is fixed at 30, which turns out to be a relatively
stable state for all the related DR methods in our experiments. Finally, the nearest neighbor
(NN) classifier is adopted for classification, and these processes are repeated 10 times to
get the mean classification accuracy with the corresponding standard deviation. Below
we display our experimental results in the form of a Table and Figure together with some
relevant discussion.

The experimental results for the three hyperspectral data sets are displayed in Tables 4–6,
and the bolded experimental values indicate the best performance among all the compet-
itive DR methods. In addition, the optimal parameters for our SDHE are K = 5, h = 32,
t = 0.0313 for Pavia University, K = 5, h = 16, t = 0.0313 for Salinas, K = 3, h = 0.0156,
t = 0.1250 for KSC.

Table 4. Classification accuracy (%) at 30-dimensionality for Pavia University with the training set of
20 samples per class.

Class RAW BH LFDA LPP NWFE PCA SH SDHE

1 67.82 ± 5.17 61.51 ± 5.88 70.34 ± 6.08 56.46 ± 6.69 67.99 ± 5.15 67.84 ± 5.16 57.88 ± 5.01 73.68 ± 8.17
2 63.54 ± 5.55 60.97 ± 5.78 75.98 ± 4.01 69.00 ± 8.34 63.56 ± 5.52 63.54 ± 5.55 69.40 ± 8.23 79.54 ± 5.75
3 62.37 ± 5.10 53.46 ± 6.34 65.97 ± 6.19 50.26 ± 5.25 62.46 ± 5.17 62.34 ± 5.13 48.84 ± 5.79 69.74 ± 6.78
4 86.70 ± 3.13 84.76 ± 4.87 89.01 ± 4.86 89.14 ± 3.28 86.76 ± 3.11 86.70 ± 3.13 89.08 ± 3.94 87.53 ± 6.02
5 99.52 ± 0.36 100.00 ± 0 99.92 ± 0.11 100.00 ± 0 99.52 ± 0.36 99.52 ± 0.36 100.00 ± 0 99.77 ± 0.40
6 75.52 ± 6.47 72.68 ± 4.49 74.53 ± 8.99 74.13 ± 4.98 75.58 ± 6.47 75.52 ± 6.47 73.33 ± 5.36 86.70 ± 3.70
7 80.05 ± 3.58 81.23 ± 5.15 84.25 ± 7.46 66.92 ± 9.20 79.98 ± 3.66 80.02 ± 3.57 67.10 ± 4.81 88.93 ± 5.30
8 74.10 ± 5.79 61.16 ± 5.08 59.92 ± 6.00 52.92 ± 5.70 74.22 ± 5.84 74.09 ± 5.79 54.36 ± 5.37 74.18 ± 8.81
9 99.08 ± 0.46 99.15 ± 0.44 98.79 ± 0.71 98.91 ± 0.70 99.09 ± 0.47 99.08 ± 0.46 98.88 ± 0.80 99.26 ± 0.35

OA 70.52 ± 2.77 66.45 ± 2.48 75.49 ± 2.21 68.35 ± 3.53 70.58 ± 2.77 70.52 ± 2.77 68.71 ± 3.07 80.45 ± 3.68
AA 78.74 ± 1.40 74.99 ± 1.22 79.86 ± 1.28 73.08 ± 1.85 78.80 ± 1.42 78.74 ± 1.40 73.21 ± 1.61 84.37 ± 2.96
KC 60.88 ± 3.68 55.48 ± 3.29 67.48 ± 2.94 58.00 ± 4.69 60.96 ± 3.68 60.87 ± 3.68 58.47 ± 4.08 74.06 ± 4.88

Table 5. Classification accuracy (%) at 30-dimensionality for Salinas with the training set of 20 samples
per class.

Class RAW BH LFDA LPP NWFE PCA SH SDHE

1 98.49 ± 0.59 99.79 ± 0.43 98.93 ± 1.51 99.43 ± 0.60 98.49 ± 0.59 98.49 ± 0.59 99.61 ± 0.38 99.50 ± 0.76
2 99.61 ± 0.46 99.88 ± 0.24 99.78 ± 0.50 99.09 ± 1.61 99.62 ± 0.46 99.61 ± 0.46 99.59 ± 0.63 99.90 ± 0.16
3 97.07 ± 1.70 98.56 ± 1.41 98.30 ± 1.28 99.36 ± 0.99 97.11 ± 1.67 97.06 ± 1.70 99.18 ± 0.81 99.16 ± 1.55
4 97.90 ± 1.60 98.53 ± 1.43 98.15 ± 0.64 99.02 ± 0.58 97.93 ± 1.57 97.89 ± 1.62 98.96 ± 0.61 98.52 ± 0.91
5 93.92 ± 1.26 96.58 ± 0.87 93.67 ± 2.02 96.86 ± 0.92 93.91 ± 1.28 93.92 ± 1.27 96.90 ± 0.85 95.64 ± 1.79
6 99.55 ± 0.55 99.84 ± 0.43 99.74 ± 0.54 99.97 ± 0.07 99.55 ± 0.55 99.55 ± 0.55 99.96 ± 0.07 99.77 ± 0.43
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Table 5. Cont.

Class RAW BH LFDA LPP NWFE PCA SH SDHE

7 98.76 ± 0.54 99.47 ± 0.55 99.64 ± 0.37 99.70 ± 0.20 98.76 ± 0.55 98.76 ± 0.54 99.68 ± 0.21 99.54 ± 0.30
8 68.68 ± 3.58 62.60 ± 5.21 67.41 ± 5.72 65.74 ± 5.01 68.64 ± 3.54 68.64 ± 3.59 65.45 ± 5.33 75.46 ± 4.40
9 98.70 ± 0.55 99.87 ± 0.20 98.80 ± 2.19 99.54 ± 1.30 98.71 ± 0.54 98.70 ± 0.55 99.78 ± 0.56 99.80 ± 0.22

10 86.22 ± 4.13 94.67 ± 1.89 92.28 ± 2.52 95.28 ± 1.88 86.27 ± 4.14 86.22 ± 4.13 95.43 ± 1.69 92.38 ± 1.77
11 95.29 ± 2.19 98.46 ± 1.17 98.44 ± 1.26 98.94 ± 0.83 95.33 ± 2.20 95.29 ± 2.19 98.89 ± 0.72 98.38 ± 1.41
12 99.94 ± 0.08 99.51 ± 0.51 98.22 ± 1.83 99.63 ± 0.44 99.95 ± 0.08 99.94 ± 0.08 99.27 ± 1.48 99.44 ± 1.51
13 98.67 ± 1.78 99.01 ± 1.33 98.95 ± 0.87 99.23 ± 0.91 98.65 ± 1.77 98.67 ± 1.78 99.11 ± 1.13 99.74 ± 0.44
14 95.70 ± 2.87 97.00 ± 1.77 97.15 ± 2.28 96.86 ± 2.38 95.71 ± 2.85 95.70 ± 2.87 96.84 ± 2.44 97.88 ± 1.88
15 73.89 ± 4.75 72.64 ± 5.66 65.79 ± 6.05 69.82 ± 5.47 73.80 ± 4.83 73.87 ± 4.75 70.47 ± 6.15 78.80 ± 3.70
16 96.56 ± 1.82 98.82 ± 0.58 98.63 ± 0.44 99.13 ± 0.37 96.56 ± 1.82 96.55 ± 1.82 99.17 ± 0.33 98.04 ± 0.73

OA 87.98 ± 0.76 87.67 ± 0.74 87.24 ± 1.53 87.99 ± 0.79 87.97 ± 0.75 87.97 ± 0.76 88.07 ± 0.78 91.01 ± 1.37
AA 93.68 ± 0.35 94.70 ± 0.22 93.99 ± 0.85 94.85 ± 0.32 93.69 ± 0.35 93.68 ± 0.35 94.89 ± 0.33 95.75 ± 0.59
KC 86.61 ± 0.85 86.27 ± 0.83 85.79 ± 1.71 86.62 ± 0.88 86.59 ± 0.84 86.59 ± 0.85 86.71 ± 0.87 89.98 ± 1.53

Table 6. Classification accuracy (%) at 30-dimensionality for KSC with the training set of 20 samples
per class.

Class RAW BH LFDA LPP NWFE PCA SH SDHE

1 94.55 ± 3.90 90.20 ± 6.86 86.13 ± 7.04 92.47 ± 3.33 94.55 ± 3.90 94.55 ± 3.90 92.46 ± 4.31 95.03 ± 2.75
2 90.45 ± 4.25 89.78 ± 4.99 89.06 ± 5.86 91.75 ± 4.59 90.49 ± 4.25 90.45 ± 4.25 91.84 ± 5.23 94.39 ± 3.84
3 92.63 ± 1.60 88.18 ± 7.74 86.86 ± 6.80 86.44 ± 5.88 92.63 ± 1.62 92.58 ± 1.61 86.10 ± 9.55 95.89 ± 3.22
4 61.51 ± 5.50 54.05 ± 6.12 72.76 ± 8.26 43.97 ± 7.92 61.72 ± 5.64 61.42 ± 5.53 51.98 ± 6.95 81.64 ± 4.18
5 72.84 ± 4.93 74.47 ± 7.36 90.00 ± 6.43 68.01 ± 7.00 72.70 ± 4.98 72.70 ± 5.04 71.28 ± 11.8 94.04 ± 3.89
6 80.86 ± 2.85 84.74 ± 6.36 90.38 ± 7.89 83.11 ± 6.25 80.86 ± 2.85 80.81 ± 2.87 82.49 ± 5.68 94.59 ± 3.30
7 99.18 ± 1.83 97.29 ± 4.50 96.82 ± 5.98 97.65 ± 3.11 99.18 ± 1.83 99.18 ± 1.83 97.65 ± 2.68 99.53 ± 0.94
8 88.44 ± 3.88 85.23 ± 8.67 90.24 ± 3.39 91.05 ± 6.76 88.44 ± 3.88 88.44 ± 3.88 89.81 ± 6.01 96.45 ± 3.02
9 96.20 ± 2.13 95.14 ± 3.29 93.60 ± 4.68 96.82 ± 2.86 96.20 ± 2.13 96.18 ± 2.16 96.66 ± 3.34 99.92 ± 0.13

10 93.54 ± 4.47 94.48 ± 2.39 92.60 ± 2.17 95.10 ± 2.66 93.72 ± 4.51 93.52 ± 4.44 95.78 ± 2.07 99.14 ± 1.22
11 98.97 ± 1.29 99.22 ± 0.77 97.72 ± 2.85 99.25 ± 0.68 98.97 ± 1.29 98.97 ± 1.29 99.10 ± 1.08 99.17 ± 1.43
12 92.88 ± 4.37 80.70 ± 6.26 79.36 ± 5.98 84.16 ± 7.35 93.21 ± 4.36 92.88 ± 4.37 83.35 ± 6.64 94.95 ± 2.92
13 100.00 ± 0 98.64 ± 0.82 98.69 ± 0.85 97.76 ± 2.48 100.00 ± 0 100.00 ± 0 98.24 ± 0.77 99.99 ± 0.03

OA 92.38 ± 1.18 89.60 ± 2.43 90.32 ± 2.07 90.11 ± 1.76 92.44 ± 1.14 92.37 ± 1.17 90.46 ± 1.83 96.61 ± 0.78
AA 89.39 ± 1.08 87.09 ± 2.34 89.56 ± 1.79 86.73 ± 1.66 89.44 ± 1.05 89.36 ± 1.07 87.44 ± 1.92 95.75 ± 0.74
KC 91.49 ± 1.32 88.39 ± 2.72 89.19 ± 2.31 88.95 ± 1.96 91.55 ± 1.28 91.47 ± 1.31 89.35 ± 2.05 96.22 ± 0.87

As listed in Tables 4–6, our proposed SDHE acquires prominently higher classification
accuracy than other competitive DR methods in AA, OA, and KC. Note that both BH and
SH belong to hypergraph embedding DR methods, as well as our SDHE, but they have a
comparatively poor performance in that they ignore the sample distribution information
and Euclidean distance cannot reveal intrinsic similarity. What is more, the results of RAW,
NWFE, and PCA are very similar to each other, which demonstrates that the transformed
feature spaces founded by NWFE or PCA cannot promote classification effectiveness but
reduce the redundancy of high-dimensional data to make data processing more efficient,
but they still outperform other DR methods for KSC. All the competitive DR methods
except for SDHE reach a very near classification accuracy for Salinas.

For each individual class, the SDHE also prevailed over the other related DR methods
in the total 6 of 9 classes for Pavia University, 5 of 16 classes for Salinas and 11 of 13 classes
for KSC. Remarkably, the SDHE was notably superior to others, especially in the classes that
had a comparatively lower classification accuracy, especially the 1st, 2nd and 3rd classes in
Pavia University, the 8th and 15th classes in Salinas and the 4th, 5th and 6th classes in KSC.
Although the SDHE was inferior to the others in several classes, the classification accuracy
gaps between these classes of different DR methods were narrow.
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In order to present the classification effectiveness of different DR methods intuitively,
the samples of testing set were given different pseudo labels, which were simulated by NN
classifier after we conducted corresponding DR methods. Then, the results are portrayed via
classification maps in Figures 4–6. For each Figure, the subfigure (a) indicates the ground
truth of original hyperspectral data set, the subfigure (b–h) indicates the performance
of BH, LFDA, LPP, NWFE, PCA, SH and our proposed SDHE, respectively. The higher
classification accuracy means the less miscellaneous samples in the corresponding subfigure,
and the key points were highlighted by a white circle in subfigure (h) of Figures 4 and 5.
Obviously, there are less miscellaneous samples in our proposed SDHE in contrast to
the others.
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To research the DR effectiveness on the different sizes of training sets, we randomly
selected 15, 20, or 25 samples per class as the training set, and the rest samples were
regarded as the testing set, respectively. Then the related experimental results, including
OA (%) and STD for the three hyperspectral data sets are listed in Tables 7–9.

Table 7. Classification accuracy (%) at 30-dimensionality for the different sizes of training sets in
Pavia University.

Method
The Size of Training Set

15 20 25

RAW 70.43 ± 1.75 70.52 ± 2.77 73.47 ± 1.18
BH 56.14 ± 1.72 66.45 ± 2.48 71.65 ± 3.09

LFDA 57.16 ± 8.41 75.49 ± 2.21 80.76 ± 1.25
LPP 57.92 ± 2.57 68.35 ± 3.54 74.68 ± 2.51

NWFE 70.46 ± 1.75 70.58 ± 2.77 73.56 ± 1.18
PCA 70.42 ± 1.75 70.52 ± 2.77 73.47 ± 1.18
SH 57.43 ± 1.94 68.71 ± 3.08 74.60 ± 2.94

SDHE 78.41 ± 5.13 80.45 ± 3.67 82.56 ± 2.87

Table 8. Classification accuracy (%) at 30-dimensionality for the different sizes of training sets
in Salinas>.

Method
The Size of Training Set

15 20 25

RAW 86.77 ± 1.83 87.98 ± 0.76 88.00 ± 0.92
BH 81.32 ± 1.29 87.67 ± 0.74 89.40 ± 0.76

LFDA 75.27 ± 3.32 87.24 ± 1.53 88.99 ± 0.98
LPP 81.87 ± 1.05 87.99 ± 0.79 89.97 ± 1.11

NWFE 86.78 ± 1.85 87.97 ± 0.75 88.00 ± 0.92
PCA 86.76 ± 1.83 87.97 ± 0.76 87.98 ± 0.92
SH 81.86 ± 1.57 88.07 ± 0.78 89.90 ± 1.24

SDHE 89.43 ± 1.07 91.01 ± 1.37 90.78 ± 0.87

Besides considering the influence of reduced dimensionality on classification accuracy,
Figures 7–9 draw relevant curve figures according to the same training sets with their
OAs of different DR methods listed in Tables 7–9. By adding the x-axis to denote the
change of reduced dimensionality, the performances of different DR methods are depicted
in Figures 7–9. For each Figure, the subfigure (a–c) indicates the training set of 15, 20, or 25
samples per class, respectively.
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Table 9. Classification accuracy (%) at 30-dimensionality for the different sizes of training sets
in KSC>.

Method
The Size of Training Set

15 20 25

RAW 91.16 ± 0.58 92.38 ± 1.18 93.39 ± 0.57
BH 73.23 ± 2.35 89.60 ± 2.43 93.99 ± 0.61

LFDA 60.05 ± 11.54 90.32 ± 2.07 94.56 ± 1.03
LPP 74.05 ± 2.88 90.11 ± 1.76 93.91 ± 0.92

NWFE 91.11 ± 0.58 92.44 ± 1.14 93.38 ± 0.56
PCA 91.15 ± 0.58 92.37 ± 1.17 93.38 ± 0.58
SH 73.73 ± 1.80 90.46 ± 1.83 94.53 ± 0.70

SDHE 95.88 ± 1.04 96.61 ± 0.92 97.49 ± 0.44
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According to Tables 7–9, despite the size of training sets ranging from 15 to 25 samples
per class, the SDHE always performs best among all the related DR methods. We found
that the smaller size of the training set, the greater superiority our SDHE had than other
DR methods. Note that when the training set consisted of 15 samples per class, the LFDA
not only performed poorly in OA but also had a much higher STD, which means the
performance of LFDA was sensitive to the small size training set because the local within-
class scatter matrix was likely to be singular or ill-conditioned. But the LFDA had a rapid
increase in classification accuracy with the increasing size of the training set. However, as
listed in Table 8, the mean OA decreases with the size of the training set became larger,
from 20 to 25 samples per class for Salinas, because of the parameter values were discrete,
which limits the optimal accuracy the model can achieve. Thus, it is a normal phenomenon.

According to Figures 7–9, the SDHE still outperforms other DR methods in the dif-
ferent sizes of training sets. With the increase of reduced dimensionality, the classification
accuracy increases rapidly in the beginning but then reaches a steady level, which proves
the reasonability of analyzing the results at 30-dimensionality previously. It is worth men-
tioning that the smaller size of the training set the more outstanding advantage our SDHE
possesses, for the reason that the use of hypergraph and similarity distance help to mine
more hidden information. Empirically, when the reduced dimensionality is more than 15,
our SDHE shows a remarkable advantage.

5. Conclusions

Three main contributions of our work are listed as follows:

1. A novel similarity distance is proposed via hypergraph construction. Compared with
Euclidean distance; it can make better use of the sample structure and distribution
information; for the reason that it considers not only the adjacent relationship between
samples but also the mutual affinity of samples in high order.

2. The proposed similarity distance is employed to optimize DR problem, i.e., our
proposed SDHE aims to maintain the similarity distance in a low-dimensional space.
In this way, the similarity in capturing the structure and distribution information
between samples is inherited in the transformed space.

3. When applied for the classification task of three different hyperspectral images, our
SDHE is proved to perform more effectively, especially the size of the training set is
comparatively small. As shown in Tables 7–9, our method improves OA, AA, and KC
by at least 2% on average on different data sets.
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Furthermore, our work is to use a graph to mine the intrinsic geometric information of
the data. Graph data itself is a kind of structured data that is different from our work. For
graph learning, there are many ways to perform dimensionality reduction in graphs, such
as weight pruning, vertex pruning, and joint weight and vertex pruning [33]. In addition,
compared with graphs, where each sample is a structure, the input of our data is a vector. If
the input is tensor, tensor decompositions will be suitable [34]. Compared with the neural
network [35], which often requires large-scale computation, our method is more like a
single-layer neural network with a special objective function, which has the advantage of
effectively utilizing lightweight computing resources.

We propose a similarity distance-based hypergraph embedding method (SDHE) for
unsupervised dimensionality reduction. First, the hypergraph embedding technique is
employed to discover the complicated affinity of samples in high order. Then we take
advantage of the complicated affiliation between vertices and hyperedges to construct a
similarity matrix, which includes the local distribution information of samples. Finally,
based on hypergraph embedding and the similarity matrix, a novel similarity distance is
proposed to be an alternative substitute for Euclidean distance, which can better reflect
complicated geometry structure information of data well. The experimental results in three
hyperspectral image data sets demonstrate that our proposed SDHE obtains more efficient
performance than other popular DR methods. For further study, we prepare to derive the
similarity distance to semi-supervised model learning, which can combine discriminative
analysis with structure and distribution information, and wish to make good progress in
the remote sensing field of a climate model.
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