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Abstract: Gradually increasing durations of high temperature caused by climate change harm the
health of individuals and then lead to death. This study aimed to investigate the relationship between
durations of different daily mean air-temperature categories and mortality in China and forecast
future mortality changes in China for 2020–2050 under Representative Concentration Pathways
(RCP)4.5 and RCP8.5 scenarios. The daily mean air temperature was divided into 10 categories,
and the days under each air-temperature category were counted during the period of 2000–2015.
Then, the connection between the days of each of the 10 air-temperature categories and mortality
was established using the semi parametric regression model. Results indicate that the days of the
>32 ◦C category have the largest impact on mortality in China, with the death rate increasing by
23‰ for one additional day. Predictions reveal that mortality in China will increase 25.48% and
26.26% under the RCP4.5 and RCP8.5 scenarios, respectively. Moreover, the mortality of 86 regions
in western China will increase 30.42%. Therefore, in the future, the increasing duration of days of
high temperatures will raise the mortality rate in China and aggravate the mortality gap between
developed and underdeveloped regions.

Keywords: temperature days; mortality; semiparametric regression; NEX-GDDP; climate change

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has stated that, “In the
future, global warming will further intensify, leading to an increase in extreme weather,
which will affect human life” [1]. Under climate change, the life and health of humans
are challenged by extreme temperatures [2]. The workers who are exposed to high heat
episodes have negative health effects [3]. Furthermore, patients with chronic diseases,
such as diabetes, hypertension and coronary heart disease, are more vulnerable to both
high and cold ambient temperature [4–6]. Based on Wu Y, et al. [7], 3.4% of all deaths
globally are associated with extreme temperatures per year, and most regions of Asia and
Oceania have a higher proportion of that mortality than the global mean. The extreme
temperatures at global scale are significantly associated with the mortality, but varies in
different countries [8,9]. Moreover, long-term extreme temperatures have larger effects
on mortality than short-term [10]. Therefore, it is vital to explore the association between
extreme temperatures and mortality and predict the future variation trend under climate
change in China.

Some researchers have studied the impact of temperature change on mortality based
on temperature indexes such as daily maximum temperature, daily minimum tempera-
ture and daily average temperature. Gasparrini et al., Kim et al. and Guo et al. [11–13]
used daily average temperature data to assess the relationship between temperature and
mortality. Scovronick et al. and Lee et al. [14,15] analyzed the impact of extreme high
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and low ambient temperature on mortality, based on a two-stage regression. Yang J. et al.
and Wu W. et al. [16,17] establish the temperature-mortality model associating daily mean
temperature with death rate, using a Poisson regression model and a distributed lag non-
linear model. These studies all concentrated on daily maximum, minimum and average
temperature. In addition, most studies about the impact of temperature change on mortality
have focused on extreme temperature events [18,19].

Furthermore, previous studies mostly pay attention to average temperature indexes,
but few have examined all temperature ranges. Greene at al. [20] used a synoptic climato-
logical procedure to value the present relationships between climate and mortality. They
found that extreme heat events will cause excessive death. For the years 2020–2029 in
scenario A1, there will be 2038 deaths caused by heat events per summertime. Ma et al. [21]
combined mortality and meteorological variables to assess the risk of heat wave-related
mortality in China. Wang et al. [22] estimated the annual heat-related mortality of densely
populated regions in China in the future under conditions of more frequent hot weather.
Yang et al. [23] used daily highest temperature data and mortality data to analyze the
impact of high temperature on mortality. Extreme temperatures do affect mortality, but
there is also a correlation between temperature and mortality in more commonly occurring
temperature ranges [24].

The previous papers studied the impact of extreme temperature on the mortality
of multiple cities and individual cities in China, such as Shanghai, Suzhou and Nanjing.
Jie et al. [25] obtained the relationship between high temperature and cause-specific mor-
tality by adopting a distributed lag non-linear model and meta-analysis for 43 counties
in China. Li et al. [26] used the same model to establish the association between ambient
temperature and multi-cause mortality in three Tibetan counties. Wang et al. [27] studied
the relationship between temperature and mortality in Suzhou, China, by using a Poisson
regression model and distribution lag nonlinear model. Their conclusions suggested that
exposure to high and low temperatures would lead to increased mortality in Suzhou. Using
a wide range of definitions for a heat wave, Chen et al. [28] explored the relationship
between heat waves and mortality in Nanjing, China. At present, research still lacks the
establishment of relation between different temperature durations and mortality in China.
Additionally, this paper has important implications for predicting the future impact of
temperature durations on mortality in China.

This study investigates the relationship between durations of different air temperature
categories and mortality all over China. The effect of diverse air temperature days on
mortality is estimated in spatial and temporal patterns. We aim to forecast and analyze
future mortality trend changes in China for 2020–2050 under climate change, namely the
Representative Concentration Pathway (RCP)4.5 and RCP8.5 scenarios.

2. Materials and Methods

In this paper, air temperature was divided into 10 temperature categories, based on a
semi parametric regression model and panel data. For the purpose of brief expression, we
use “temperature” as shorthand for “air temperature” later in this paper. The number of
days which fell into each temperature category were counted, and the relationship between
temperature and mortality in all regions of China was built using the temperature day (TD).
Using the derived relationship, the NEX-GDDP dataset (data from 21 GCMs under the
RCP4.5 and RCP8.5 scenarios) was used to project mortality in all regions of China from
2006 to 2050, and to analyze changes in mortality under future different climate change
scenarios. The purpose of this paper is to study the impact of TDs on mortality and predict
the impact of climate change in the future.

2.1. Methods

Parametric regression and nonparametric regression each have advantages and disad-
vantages. The method combining parametric regression and nonparametric regression is
called semi parametric regression.
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We established a semi parametric regression model and used the correlation analysis
method to study the relationship between TD and mortality. The semi parametric regression
model used in this paper is as follows:

Yij = fi
(
tij, θi

)
+ εij, i = 1, . . . , n, j = 1, . . . , n (1)

where fi ∈ C
(

R2
)

and f may depend on the known independent variable tij nonlinearly
εij is the random error term, with a mean of 0.

At present, in the analysis of small sample data from hospitals, there will be such a
conclusion that the impact on mortality is mainly concentrated on high temperatures and
low temperatures [27]. They found significant non-linear effects of temperature on total
and cardiovascular mortality. Heat effects were immediate and lasted for 1–2 days, whereas
cold effects persisted for 10 days. The relative risk of total mortality associated with extreme
cold temperature (1st percentile of temperature, −0.3 ◦C) over lags 0–14 days was 1.75 [95%
confidence interval (CI): 1.43, 2.14)], compared with the minimum mortality temperature
(26 ◦C). This paper is based on large sample data from China, and it is impossible to get
such a conclusion. Because natural environmental factors such as temperature are complex
and diverse, and the structure of a large sample population is also diverse, the relationship
between the two is bound to be complex. In terms of the impact of temperature on humans,
it is not only affected by the temperature but also by the duration time. For example,
when the days with an average daily temperature of more than 35 ◦C last for more than
three days, it is different from lasting for more than one day. Therefore, the definition of
a heat wave in many countries also takes the duration of high temperatures into account.
For instance, on the one hand, the threshold for a heat wave is different in every region
of China [29]. On the other hand, the thresholds for temperatures affecting the human
body will be different. However, there is almost no difference between the daily average
temperature of 25 ◦C and 26 ◦C.

The temperature days has been applied to these areas before, for example, to explore
trends in the frequency and intensity of extreme temperatures based on the extreme tem-
perature days during the period 1951 to 2000 in the arid and semiarid areas of northern
China [30], and to discuss the potential impact of more frequent high-temperature days on
the environment and energy demand [31]. Notably, Deschênes and Greenstone [32] defined
10 temperature categories and counted the number of days falling into each temperature
category, and then studied the relationship between temperature days and mortality in the
United States and found a V-shaped connection. As seen in the above studies, tempera-
ture days can factually reflect the temperature distribution, which allows us to establish a
relationship between diverse durations of temperature and mortality in China.

Therefore, this paper uses the ten temperature categories to analyze the relationship be-
tween temperature and mortality, but not daily maximum, minimum and average temperature.

2.2. Data
2.2.1. Historical Temperature Data

The temperature data in this paper were taken from the records of 2142 stations pub-
lished by the China Meteorological Administration (CMA), including the daily maximum
temperature and the daily minimum temperature (◦C), during the period 2000–2015. We
average the daily maximum and daily minimum temperature to get the daily average
temperature data at the station level. Then, we count the daily average temperature of
stations located in each region, and average these to get the daily average temperature
data at the regional level. We calculate the average temperature of several stations in every
region. There are 2412 meteorological observation stations in the 343 regions of China, with
an average number of 7 in each region. The region (they are called “dijishi” in China) is
the third level of administrative units in China, between provinces and counties. There
are 343 regions in China, most of which have an area below 10 thousand km2. Therefore,
the temperature differences in the same region are small, which helps avoid the situation
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where a region’s area is too large and the temperatures in one region have differences. The
mortality data in this paper is also based on all 343 regions. That is, each region has its own
mortality statistics.

Based on the daily average temperature data, the number of days falling into the
categories of <−12 ◦C, −12~−7 ◦C, −7~−1 ◦C, −1~4 ◦C, 4~10 ◦C, 10~16 ◦C, 16~21 ◦C,
21~27 ◦C, 27~32 ◦C, and >32 ◦C in each year are calculated. We define them as temperature
days (TD), which are expressed as TD1, TD2, . . . , TD10, respectively. Every region gets
such days of the 10 temperature categories for every year. Moreover, the division of the
10 temperature categories is based on several attempts. We tried different temperature cate-
gories, such as −10~5 ◦C, 5~10 ◦C, and so on, but when constructing the semi parametric
regression model, some temperature categories cannot pass the significance test of 5% level
(sig > 0.05). The 10 categories classification of temperature had the best results on various
statistical tests.

According to the climatic zoning of China [33], we selected representative stations:
Guangzhou station, Beijing station, Daxinganling station, and Lasa station. Then, the
annual highest temperature, annual lowest temperature, annual average temperature
and 10 TD per year for each station were calculated, as shown in Figure 1. Taking the
Guangzhou station in Figure 1a as an example, 2005 was the year with the lowest tempera-
ture measured during 2000–2015, but the number of TD1 was not the greatest for any year
in that category, and many high-temperature days (TD9, TD10) occurred in that year. The
highest temperature in the 16 years occurred during 2008, and many high-temperature days
(TD9, TD10) occurred in that year. However, low temperature days also occurred frequently.
From the perspective of annual average temperature, the gap between these two years and
other years is very small. Similar results were found at other stations, which shows that the
TD can more sensitively reflect the temperature information for each year than the annual
highest temperature, annual lowest temperature and annual average temperature.
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2.2.2. Mortality Data

The mortality (D) data at the regional level in this paper are taken from statistical
yearbooks. The definition of D is as follows:

D = M/P (2)

where M is the number of deaths in a year, and P is the total population during that year.
We collected the annual mortality data of 343 regions for 16 years (2000–2015). The average
mortality for the study period of 16 years in each region of China is shown in Figure 2.
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Figure 2. The average mortality for 343 regions in China (2000–2015).

Mortality varies significantly from region to region. The regions with high mortality
rates are mainly located in Tibet, Qinghai and Yunnan, most of which show mortalities
greater than 7‰. The regions with low mortality rates are mainly located in the southeastern
coastal areas and Xinjiang, most of which show mortality rates of less than 6‰.

2.2.3. Future Temperature Data

The future temperature data is taken from the NASA Earth Exchange Global Daily
Downscaled Projections (NEX-GDDP) dataset (dataset URL: http://ds.nccs.nasa.gov/
thredds/catalog/bypass/NEX-GDDP/catalog.html, accessed on 20 October 2022), which
compiles climate prediction data from 21 Global Circulation Models (GCM) under the
RCP4.5 and RCP8.5 scenarios for the period 2006–2100, and the historical tests of each GCM
for the period 1950–2005. The spatial resolution of the dataset is 0.25◦ (25 km × 25 km). The
model name, modeling center, simulation period and resolution of the 21 GCMs used in this
paper are shown in Table 1. RCP4.5 and RCP8.5 are two radiative forcing paths, reaching
4.5 w/m−2 (equivalent to 650 ppm CO2 concentration) and 8.5 w/m−2 (equivalent to
1370 ppm CO2 concentration), respectively, in 2100. These represent the most likely and the
most severe predicted scenarios that are widely used in the analysis of climate change [34].

Only 1◦ × 1◦ spatial resolution from CMIP6 had been shared when this research
was carried out. However, high-resolution climate model data were needed to match the
death rate data, for which the resolution of the data is nearly 0.15◦ × 0.15◦. Therefore,
the 0.25◦ × 0.25◦ resolution data of the CMIP5 model from NEX-GDDP were used for this
paper. In fact, the difference in interannual temperatures between CMIP5 and CMIP6
is indistinctive for China [35], so the conclusions of this research are reliable. In June
2022, the high-resolution data of the CMIP6 model were shared by NEX-GDDP [36]. The
research will be updated with the combination of SSP and the RCP scenarios from CMIP6
in the future.

http://ds.nccs.nasa.gov/thredds/catalog/bypass/NEX-GDDP/catalog.html
http://ds.nccs.nasa.gov/thredds/catalog/bypass/NEX-GDDP/catalog.html
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Table 1. Information on 21 GCMs from NEX-GDDP dataset.

Model Name Modeling Center Simulation Period Resolution

Australian Community Climate and Earth System Simulator version 1 (ACCESS1-0) Australia 2006–2050 0.25◦ × 0.25◦

Beijing Climate Center Climate System Model version 1 (BCC-CSM1-1) China 2006–2050 0.25◦ × 0.25◦

Beijing National University Earth System Model (BNU-ESM) China 2006–2050 0.25◦ × 0.25◦

Canadian Earth System Model version 2 (CanESM2) Canada 2006–2050 0.25◦ × 0.25◦

Community Climate System Model version 4 (CCSM4) USA 2006–2050 0.25◦ × 0.25◦

Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC) USA 2006–2050 0.25◦ × 0.25◦

Centre National de Recherches Météorologiques Climate Model version 5 (CNRM-CM5) France 2006–2050 0.25◦ × 0.25◦

Australian Commonwealth Scientific and Industrial Research Organization MK3 version 6
(CSIRO-MK3-6-0) Australia 2006–2050 0.25◦ × 0.25◦

Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL-CM3) USA 2006–2050 0.25◦ × 0.25◦

Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2G) USA 2006–2050 0.25◦ × 0.25◦

Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M) USA 2006–2050 0.25◦ × 0.25◦

Institute of Numerical Mathematics climate model version 4 (INMCM4) Russia 2006–2050 0.25◦ × 0.25◦

Institute Pierre-Simon Laplace Climate Model version 5A Low Resolution
(IPSL-CM5A-LR) France 2006–2050 0.25◦ × 0.25◦

Institute Pierre-Simon Laplace Climate Model version 5A Middle Resolution
(IPSL-CM5A-MR) France 2006–2050 0.25◦ × 0.25◦

Model for Interdisciplinary Research on Climate-Earth System version 5 (MIROC5) Japan 2006–2050 0.25◦ × 0.25◦

Model for Interdisciplinary Research on Climate-Earth System (MIROC-ESM) Japan 2006–2050 0.25◦ × 0.25◦

Atmospheric Chemistry Coupled Version of Model for Interdisciplinary Research on
Climate-Earth System (MIROC-ESM-CHEM) Japan 2006–2050 0.25◦ × 0.25◦

Max-Planck Institute Earth System Model-Low Resolution (MPI-ESM-LR) Germany 2006–2050 0.25◦ × 0.25◦

Max-Planck Institute Earth System Model-Middle Resolution (MPI-ESM-MR) Germany 2006–2050 0.25◦ × 0.25◦

Meteorological Research Institute Coupled General Circulation Model version 3
(MRI-CGCM3) Japan 2006–2050 0.25◦ × 0.25◦

Norwegian Earth System Model version 1 with Intermediate Resolution (NorESM1-M) Norway 2006–2050 0.25◦ × 0.25◦

In this study, we use the temperature data of 21 GCMs under the above two scenarios
as future climate data. Daily lowest temperature and highest temperature data can be
acquired for the corresponding grid points of 2142 stations in China, and the daily aver-
age temperature of these stations using different GCMs under different scenarios can be
calculated. The daily average temperature is the average value of the daily lowest and
highest temperatures. The daily average temperatures of stations are then averaged to
obtain the daily average temperature data for each region. Finally, we obtain daily average
temperature data for 343 regions from 2000 to 2050.

Based on the historical daily average temperature for the period 2000–2005, we calcu-
late the average temperature days in each temperature category in 2000–2005 and compare
this with the corresponding observed average temperature days in 2000–2005. The re-
sults show an error (E) between the historical value and the observed value, as shown in
Equation (3):

E =
6

∑
1

(
TD′ − TD

)
/6 (3)

where TD′ is the number of temperature days in a temperature category for each region in
a year according to modeled historical data, TD is the number of temperature days in a
temperature category for each region according to the observed dataset, and E is the annual
average error of a temperature category for each region.

We did not use the original NEX-GDDP dataset directly for our modeled future results,
but added the calculated error (E) to the future temperature days in order to correct them.

3. Results
3.1. Regression Results

A semi parametric regression model of 10 categories of temperature days and annual
mortality rates was established for all regions in China. The explanatory variables of all
temperature categories passed the significance test with a significance level of 5%. The
results are as follows:

D = 0.284TD1 + 0.286TD2 + 0.280TD3 + 0.291TD4 + 0.292TD5 + 0.293TD6 + 0.284TD7 + 0.294TD8 + 0.277TD9 + 0.300TD10− 99.489 (4)
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where D is the mortality rate of a region in a year, TD1,2,3 . . . 10 is the number of tempera-
ture days for the 10 temperature categories, and −99.489 is the random error term, which
acts as a fixed effect vector and represents the differences among regions that do not change
with time.

The coefficient of each TD presents the preferred estimates of the impact of temperature
days on annual mortality from the estimation of Equation (1). The coefficient value of each
TD has only relative significance and not absolute significance. The larger the coefficient of
a TD is, he stronger is the impact this temperature category has on mortality. In Equation
(1), there are 10 independent variables standing for days of 10 temperature categories.
Therefore, it is more accurate to understand the impact as a relative influence. Figure 3
shows 10 temperature days as the horizontal axis, and the coefficients of each TD as the
vertical axis.
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The coefficient of TD10 is the largest, with a value of 0.300, which suggests high-
temperature days have the largest influence on mortality. TD9 has the smallest coefficient,
with a value of 0.277, suggesting that the temperature days in the 27~32 ◦C range have the
smallest influence on mortality. This result implies that for each additional day occurring
in the TD10 category, the annual mortality rate will increase by 23%.

In addition, TD6 and TD8 also have a large impact on mortality, with coefficients of
0.293 and 0.294, respectively. The daily average temperature typically reaches 10~16 ◦C
or 21~27 ◦C mainly in May when summer begins and in September when autumn begins.
During this period, the temperature changes greatly from day to day, so the coefficients
of these two temperature categories are relatively large. However, the coefficients of TD3
and TD7 are small. Daily average temperature typically falls within these temperature
categories during January and October. January is the middle of winter, and October is
the middle of autumn. In these months, the temperature remains relatively stable, and
the change is very small. Therefore, such days are beneficial to human health and the
coefficients of these two temperature categories are the smallest.

In conclusion, the coefficient of TD in formula 4 shows that the increase of TD10
has the greatest impact on mortality. In China, the average daily temperatures between
10~16 ◦C and 21~27 ◦C are during the season alternations when the daily temperature
changes greatly and people can easily get sick. Therefore, the impact of TD6 and TD8 on
mortality is the second highest.

3.2. Model Validations

According to the above regression result, differing temperature days in the 10 cate-
gories have diverse influences on mortality. Therefore, two corollaries were investigated:
(1) in a region where the mortality rate changed greatly, the temperature days also changed
greatly; and (2) in a year when the temperature days were abnormal, the mortality rate was
also relatively abnormal.
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To verify corollary (1), we calculated the relative variability of mortality rate (RVD)
as follows:

RVD = ∑
∣∣D− D

∣∣
D

/m (5)

where D is the mortality rate in a year, D is the multiyear average mortality rate, and m is
the number of years (m = 16).

The equation to calculate the relative variability of temperature days (RVTn) is as follows:

RVTn = ∑
∣∣TDn − TDn

∣∣
TDn

/m, n = 1, 2, 3 . . . 10 (6)

where TDn is the number of temperature days in one temperature category for a year,
TDn is the multiyear average temperature days in one temperature category, and n is the
temperature category. For n, 1 represents the <−12 ◦C temperature category, 2 represents
the −12~−7 ◦C temperature category, and so on for the remaining categories. As before, m
is the number of years (m = 16).

In Equations (5) and (6), if D = 0, RVD = 0. If TDn = 0, RVTn = 0.
The RVD for the period 2000–2015 (Figure 4a) shows that northeastern China, north-

western China and some regions in southern China show high RVD values, with a maxi-
mum of 55.09%.

The RVT6, RVT8 and RVT10 are shown in Figure 4b–d. Regions with high RVT6
(Figure 4b) are located in Qinghai, southern Yunnan and southeastern coastal areas. Regions
with high RVT8 (Figure 4c) are located in Southeast Tibet, Qinghai, etc. Regions with high
RVT10 values (Figure 4d) are located in Xinjiang, Henan, Shandong and southeastern
coastal areas. These regions of higher relative variability are almost identical to the regions
with high RVD in Figure 4a, demonstrating that corollary (1) is correct.

If the TD in one category of a year fell between the upper quartile and the maximum
value of all years in that category, this year was considered to be an abnormal year. If the
TD in one category of a year fell between the lower quartile and the upper quartile of all
years in that category, this year was considered to be a normal year. Using the box-plot
method, we identified the year with the greatest number of temperature days in each region
(referred to as an abnormal year). ∆U was used to reflect the change of morality rate in an
abnormal year as follows:

∆U = Du − Dn (7)

where Du is the average mortality rate for the abnormal year and Dn is the average mortality
rate for the normal year. Positive ∆U indicates that the mortality rate is higher in the year
which has a higher number of temperature days. Negative ∆U indicates the opposite.

According to Equation (4), TD6, TD8 and TD10 had larger influences on mortality
than other temperature categories. Therefore, the abnormal and normal years of all regions
were identified in TD6, TD8 and TD10. ∆U values for the three temperature categories
were calculated, with results shown in Figure 5.
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In the TD6 abnormal year, mortality is higher than that of a normal year in 55.35% of
the studied regions. In the TD8 abnormal year, mortality is higher than that of a normal
year in 53.52% of the studied regions. In the TD10 abnormal year, mortality is higher than
that of a normal year in 66.36% of the studied regions. Therefore, more than half of the
regions showed higher mortality in TD6, TD8 and TD10 abnormal years than in normal
years. This result verifies that corollary (2) is correct and temperature days show a great
correlation with mortality.

3.3. Estimated Results

We counted the TDs falling within the 10 temperature categories for all regions in
each scenario of each GCM. In 2050, compared to 2015, under the RCP4.5 and RCP8.5
scenarios, TD10 will increase from 2.12 days to 4.30 days and to 7.42 days, respectively
(Figure 6). In addition, TD9 will increase from 47.62 days to 62.96 days and from 49.02 days
to 66.92 days, respectively. Then, according to Equation (4), the mortality of all regions was
predicted for 2020–2050. The mortality range for all regions is 3.518‰ to 7.356‰ under
the RCP4.5 scenario, and the mortality range for all regions is 3.524‰ to 7.417‰ under
the RCP8.5 scenario. A conformity assessment for all GCMs was performed. Compared
with the base period (2000–2005), more than 2/3 of the GCMs predicted an increase or
decrease in mortality. This indicated that the GCMs’ predictions were consistent, whereas,
if more than 1/3 of the GCMs’ change trends were inconsistent, this would be considered
uncertain. These results are shown in Figure 7.
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As seen in Figure 7, under the RCP4.5 scenario, 89.8% of regions show consistent
assessment, and 86 regions show increasing mortality. These regions of increasing mortality
(RIM) are mostly located in western China, to the west of the Hu Line, and in Heilongjiang
and Yunnan. The regions of decreasing mortality (RDM) are mainly located to the east of
the Hu Line and in most of Xinjiang. Regions of uncertain mortality (RUM) are located
in parts of western China. Under the RCP8.5 scenario, 91.5% of regions show consistent
assessment. The distribution pattern is consistent with that of RCP4.5, except that the
number of regions with increasing mortality decreases to 79.
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During 2000–2050, the maximum, minimum and average mortality for RDM and RIM
under the two scenarios for each year are shown in Figure 8. The black line represents
the maximum, average and minimum mortality for the period 2000–2005 and the red line
represents the average mortality for the period 2006–2050. The colored lines indicate the
maximum and minimum mortality for each model from 2006 to 2050.
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As shown in Figure 8a,c, under the RCP4.5 scenario, the mortality range of RIM is
5.116‰ to 7.356‰ and the mortality range of RDM is 3.518‰ to 7.267‰. Under the RCP8.5
scenario (Figure 8b,d), the mortality range of RIM is 5.037‰ to 7.417‰ and the mortality
range of RDM is 3.524‰ to 7.315‰. It can be seen that under the RCP8.5 scenario, the
future mortality of RIM and RDM will be greater. This high emissions scenario has a much
larger impact on mortality in China.

4. Discussion

In this paper, the relationship between temperature days and mortality was revealed
for China. Deschênes and Greenstone [32] explored the relationship between these variables
in the nine US census divisions (New England, Middle Atlantic, East North Central, West
North Central, South Atlantic, East South Central, West South Central, Mountain, Pacific)
from 1968 to 2002, dividing temperatures into 10 temperature categories, as we have done.
However, using the mortality rates of four age groups, they gave the different groups
varying weights to determine comprehensive mortality.

Comparing their relationship (Table 2), the temperature days have more influence
on mortality in the United States, showing a V-shaped relationship between the two.
For conditions of extreme low and high temperatures, the mortality is more affected by
temperature days, while the temperature days in the middle category have almost no
impact on mortality; in this temperature category, whether temperature days increase or
decrease, mortality is unaffected. In the extreme high temperature category, one additional
temperature day will increase the comprehensive mortality rate by 9.4 per 100,000. In
the extreme low temperature category, one additional temperature day will increase the
comprehensive mortality rate by 7 per 100,000.

Table 2. The coefficients of ten temperature categories.

Category TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 TD9 TD10

China 0.284 0.286 0.280 0.291 0.292 0.293 0.284 0.294 0.277 0.300
United States 0.690 0.590 0.640 0.360 0.270 0.000 0.120 0.230 0.330 0.940

In China, the extreme high temperature days have a large influence on mortality and
one additional day in this category will increase the mortality rate by 31 per 100,000. In
addition, one more day in the extreme low temperature category will increase the mortality
rate by 29 per 100,000.

Overall, an increase in the number of temperature days in the extreme high tempera-
ture category has a large influence both in China and in the United States. This is because
within a particular temperature category, the human body can balance the influence of tem-
perature change through normal temperature regulation. Nevertheless, when people are
exposed to extreme high temperatures, the ability to regulate temperature and sensitivity to
temperature worsen, leading to a reduction in the ability to maintain a normal temperature
and an increase in mortality. Moreover, people with cardiovascular and cerebrovascular
diseases, circulatory system disorders and other diseases are more likely to experience an
overload state in the thermoregulatory system, increasing the risk of death. Thus, high
temperature often causes excessive mortality [37,38].

In China, during seasonal transitions (10~16 ◦C and 21~27 ◦C), the human body
may adapt poorly to the alternation of warm and cold temperatures, causing increased
susceptibility to illness and possibly death. However, in the United States, temperature
increases mortality rates in the extreme low temperature and −7~−1 ◦C category while
mortality is nearly unaffected by temperature in the middle temperature category. Due
to the lack of mortality data for different age groups, we could not calculate population
structure mortality for the moment. The above differences between China and United States
are probably related to this fact and call for more detailed data and study in the future.
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Elderly people are the group most threatened by high temperatures [39–41]. Based
on Equation (4), the mortality in all regions was predicted for China from 2006 to 2050.
Without considering future changes in the age structure, we may underestimate the impact
of high temperature on mortality in the future. China has been considered an aging country
since 1999. Although the population from 2000 to 2015 was still dominated by young and
middle-aged people (18–50 years old), the aging population in China has reached 18.54%
of the total population in 2020, and it is expected to exceed 35% in 2035 [42]. However,
it is undeniable that improvements in medical care in the future will greatly increase life
expectancy and reduce the mortality rate. Therefore, if the positive and negative aspects
offset each other, the future mortality rate of all regions predicted by this paper in 2006–2050
may be appropriate. In addition, a decreasing mortality trend in China can also be found in
the study of Zhang et al. [43].

Compared with Deschênes and Greenston [32], although we used the same method,
the results from the two countries were different (the temperature days have more influence
on mortality in the United States). From this, it seems that the influence of temperature on
mortality is also restricted by many factors such as the demographic and economic.

Regarding the impact of economic factors on mortality, many people have carried
out this type of research before. Benos et al. [44] investigated the determinants of gender-
specific life expectancy across US states over the period 1995–2007. They found that the
growing economy had positive effects on life expectancy. However, whether for male
or female, the economic impact on mortality is small and the coefficients are 0.047 and
0.089, respectively. Benmarhnia et al. [45] used interrupted time series analyses and the
“difference in differences” method to study the relationship between the economic crisis
starting in 2008 and the health status of older adults in Spain. They found that the effect
of the economic crisis on the mortality of older adults is 0.040. Ariizumi and Schirle [46]
investigated the relationship between business cycle fluctuations and health in Canada
and they found that a one percentage point increase in the unemployment rate lowered
the predicted mortality rate of individuals in their 30s by nearly 2 percent. These studies
all showed that positive economic growth helped reduce mortality. However, their study
results showed a small impact of the economy on mortality compared to the temperature
factor. Hence, the impact of the economy on mortality was little and the economic factor is
not considered in the prediction. Compared with the United States and other countries,
China’s population statistics are relatively scarce. The data such as the age structure of
the population used in the above research can only be obtained through the census every
10 years in China. Therefore, it is difficult for us to carry out the research on human
adaptations covering the whole country.

The innovation of this paper lies in finding that there is a relationship between tem-
perature days and mortality in China. More importantly, the impact of extreme high
temperature days on mortality was found for China, and it was totally different from the
impact in the United States.

Since the study of Deschênes and Greenstone [32], there has been no similar study in
other countries in the past 10 years. This study is a beneficial supplement to the study of
Deschênes and Greenstone [32]. It shows that no matter in which country, the temperature
days have an impact on the mortality of the population, and the specific impact can be
calculated by semi parametric regression model. According to the research results, the
influence of temperature on mortality can also be considered in other countries, so as to
improve the prediction accuracy for future populations. Different temperature classification
methods will also affect the establishment of a semi parametric regression model, which
shows from another point of view that the impact of temperature on mortality is complex,
and more population data, more national data and more statistical models are needed to
study it, so as to discover the impact of temperature on mortality from the mechanism.

From Table 3 it can be seen that, in regions of decreasing mortality (RDM), the average
of the difference in TD8 is decreasing and the average of the difference in TD9 is increasing
under the two scenarios. In regions of increasing mortality (RIM), the average difference in
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TD8 is largely increasing under the two scenarios. With one additional temperature day in
the >32 ◦C category, the death toll will increase by 23‰. Therefore, under the RCP4.5 and
RCP8.5 scenarios, future global warming has little impact on the mortality rate in densely
populated eastern China, but will cause mortality rates to rise mainly in the western China.

Table 3. Average of the difference in TD between 2000–2005 and 2020–2050 under two scenarios.

Category TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 TD9 TD10

RCP4.5
RDM −0.5 −0.4 −1.6 −5.1 −2.4 −1.7 −2.8 −4.8 17.2 2.0
RUM −5.3 −2.4 −0.2 −0.2 −1.6 −2.6 −1.9 7.5 6.5 0.2
RIM −4.4 −3.6 −1.0 −0.5 −3.7 0.3 −4.4 14.7 2.4 0.2

RCP8.5
RDM −0.7 −0.5 −2.1 −6.1 −3.1 −1.7 −3.0 −6.8 20.4 3.6
RUM −6.8 −3.3 −0.2 0.1 −1.7 −3.3 −2.7 7.8 9.5 0.5
RIM −5.8 −4.5 −1.2 −0.1 −4.0 0.2 −5.3 16.8 3.7 0.2

5. Conclusions

This paper investigated the relationship between temperature days and mortality
in China during the period 2000–2015. The impact index values for TD categories 1 to
10 on mortality are 0.284, 0.286, 0.280, 0.291, 0.292, 0.293, 0.284, 0.294, 0.277 and 0.300,
respectively. This reveals that high-temperature days (>32 ◦C) will cause the mortality
rate to increase. Seasonal temperature alternations (10~16 ◦C and 21~27 ◦C) will also
increase mortality rates. However, low temperature days (<−12 ◦C) have little influence on
mortality. Compared with the days of TD9, with one additional temperature day at TD10,
the death toll will increase by 23‰.

Based on the NEX-GDDP dataset and the relationship between temperature days and
mortality, the temperature days and mortality rate of China were predicted for the period of
2020–2050. It was found that changes in TDs and mortality are obvious in the future. Com-
pared with 2015, under the RCP4.5 scenario and the RCP8.5 scenario, TD10 will increase
from 2.12 days to 4.30 days and from 2.18 days to 7.42 days, respectively. Similarly, TD9
will increase from 47.62 days to 62.96 days and from 49.02 days to 66.92 days, respectively.

The results suggest that under the RCP4.5 scenario the range of mortality will be
3.518‰ to 7.356‰ during 2020–2050, and the mortality rate will increase in 86 regions.
Under the RCP8.5 scenario, the range of mortality will be 3.524‰ to 7.417‰ during
2020–2050 and the distribution pattern is almost identical to that of the RCP4.5 scenario.

Generally, the increase in greenhouse gas emissions will make the TD10 multiply and
cause an increase in mortality. However, the imbalance of economic development among
regions will aggravate the mortality difference. In the future, the mortality difference
between the economically developed regions of eastern China and the less developed
regions of western China will become more and more obvious.
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