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Abstract: We examine the effects of urban rail transit on on-road carbon emissions in 90 Chinese cities,
taking a structural equation modeling approach. Urban rail transit theoretically helps mitigate overall
transport-sector emissions by absorbing part of the vehicular traffic demand or by generating traffic-
diversion effects. However, its net contribution is obscure, given potential traffic-creation effects,
since improved rail access can also incentivize new developments and thus induce additional on-road
traffic. In contrast to many existing studies that neglect rail transit’s traffic-creation effects, we analyze
these opposing effects within a single framework, where primary rail-associated emission channels
are explicitly modeled. Our central results show that urban rail density is negatively associated with
on-road carbon emissions with a net elasticity of −0.0175, speaking for the dominance of the traffic-
diversion effects in China’s context. However, mixed evidence exists on the effects of increased urban
rail density on vehicle-kilometers traveled and vehicle ownership, with the two opposing effects
being relatively balanced. These findings suggest that transport-sector mitigation needs coordination
between urban rail development and planning regulations.
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1. Introduction

The on-road transportation sector has become a primary source of carbon emissions
in China, with rapid urbanization and soaring vehicle ownership. In 2019, for example,
the transportation sector produced 901 million tonnes of carbon dioxide (CO2), or 9.1% of
China’s total carbon emissions, and over 80% (728 million tonnes) of the transport-sector
emissions were from on-road traffic [1]. In this context, urban rail transit has received
increased attention within China’s policy circle as a low-carbon transportation alternative
to motorized vehicles [2,3]. In fact, massive urban rail developments are under way
throughout China. As of 2021, 50 mainland Chinese cities were operating urban rail
systems, with a total service rail length of 9207 km [4].

Although the climate-mitigation potential of urban rail transit is often highlighted,
this claim has rarely been tested in an empirical setting due to the limited availability of
detailed sectoral carbon emissions data. Recent studies of the rail impacts on on-road
traffic, however, seem to provide indirect empirical evidence in support of the claim. For
example, urban rail transit is found to significantly reduce traffic congestion, traffic volume,
traffic-related air pollution, and automobile energy consumption in the United States [5],
Europe [6], and China [7,8]. It may not be far-fetched to associate such evidence with urban
rail’s carbon-mitigation potential. However, a critical limitation of these studies lies in their
sole focus on the rail-to-road mode shift. The framework that treats urban rail as a pure
carbon abator is incomplete, since it can also play a catalytic role in attracting jobs and
population and thus create a new demand for on-road traffic. Neglecting the latter can lead
to substantial overestimation of the mitigation potential.
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Against this background, we assess rail-induced net mitigation potential in China’s
context, considering two opposing forces—traffic-diversion and traffic-creation
effects—within a single framework. Our main research questions include: (1) How large
is the total effect of urban rail transit on road traffic carbon emissions? (2) What are
the main channels through which urban rail transit affects road traffic carbon emissions?
(3) How are the total effects distributed by channel? For the analysis, we take a structural
equation modeling (SEM) approach, using a 2015 cross-sectional dataset constructed for
90 Chinese cities. SEM has strength in representing multiple causal paths within a single
modeling framework—with key mediators incorporated along the paths—and allows a
thorough decomposition analysis by path and link. Accordingly, SEM serves our research
purpose well, and in particular, is superior to typical regression analyses, assuming only
direct paths from a set of regressors to a given response variable.

Our study is distinguished from others in two respects. First, we directly estimate the
rail-induced impacts on on-road carbon emissions, using a city-level sectoral emissions
dataset. Directly measuring the impacts in terms of emissions has rarely been undertaken
due to limited data. Second, we explicitly model multiple causal paths under an SEM
framework, incorporating both traffic-diversion and creation dynamics in a parallel manner.
This approach helps avoid potential overestimation and thus improves the robustness of
estimation results.

The rest of this paper is organized as follows. In Section 2, we review the literature
on the road traffic effects of urban rail transit. Detailed explanations of the dataset and
methodology are presented in Section 3. Then, we discuss our main results in Section 4 and
conclude our study in Section 5.

2. Literature Review

Theoretically, urban rail developments promote a road-to-rail mode shift and aggregate
vehicle emissions [9]. However, urban rail’s opposing effect may also be argued, since
rail-induced economic activities and land developments can serve as an indirect emission
intensifier and offset part of the mitigation potential [10]. In fact, urban rail in China
has played a catalytic role in initiating land development and reshaping urban forms as
anchor projects for land value capture and transit-oriented development (TOD) [11,12]. In
other words, urban rail may have both traffic-diversion and traffic-creation effects, and
their relative strength would determine urban rail’s net impacts on on-road emissions.
Accordingly, rail impact studies need to consider these two opposing forces in a parallel
manner, and examine multiple rail-road interaction paths, incorporating key mediators,
such as socio-demographic conditions and urban form.

Of the two opposing effects, recent quasi-experimental studies focus on the traffic-
diversion effects, positing a substitutive rail-road relationship (Table 1). For example,
urban rail transit strikes in the United States and Germany significantly increased traffic
congestion and nitrogen dioxide (NO2) concentrations [5,6]. The opening of new metro
stations in China is also found to significantly reduce automobile energy consumption [7]
and carbon monoxide (CO) concentrations [8]. All these results speak for a rail-to-road
mode shift, but their neglect of the traffic-creation effect resulting from the research design
may substantially overestimate the rail-induced emission-abatement potential.
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Table 1. Literature on vehicle use effects of urban rail transit.

Studies Region Study Period Independent Variables Dependent Variable Sign

Substitution effects: urban rail transit & vehicle use
[5] US 2003 Urban rail Traffic congestion −
[6] Germany 2002–2011 Urban rail, bus Traffic volume, NO2 −
[7] China 2003–2013 Urban rail Automobile energy use −
[8] China 2013–2015 Urban rail CO concentration −
Mediating effects: urban rail transit & urban form
[13] US 1973–1993 Urban rail Polycentricity +
[14] US 2000–2014 Urban rail Population density +
[15] China 2000–2010 Urban rail Polycentricity, density +
[16] China 2008–2014 Urban rail Density +
Mediating effects: urban form & vehicle use
[17] US 1990–1991 Density, diversity, design Vehicle trips −
[18] US 2003 Density VMT −
[19] US 2000–2001 Polycentricity, density VMT, transportation CO2 +/−
[20] China 2000 Density Vehicle trips −
[21] China 2005–2015 Polycentricity, compactness Residential CO2 +/−
Mediating effects: urban rail transit & socio-demographics
[22] Spain 2000–2010 Urban rail Population +
[23] France 1970–2000 Urban rail Employment +
[24] Denmark 1992–2012 Urban rail Employment +

[25] China 2010–2019 Urban rail Population, GDP,
employment +

Mediating effects: socio-demographics & vehicle use
[26] Italy 1980–1995 GDP Transportation CO2 +
[27] US 2000–2010 Population, income VMT +
[28] China 1995–2012 GDP, population Transportation CO2 +
[29] China 2005–2015 GDP per capita, population Transportation CO2 +

Although few studies directly tap into the traffic-creation effects, empirical evidence
hints at a set of key mediators bridging such a complementary rail-road relationship.
One of the key mediators is urban form, which affects demand for rail services and is at
the same time affected by rail-transit accessibility. For example, urban rail has shaped a
polycentric urban form in the San Francisco Bay Area and compact, high-density urban
environments in the Dallas-Fort Worth metropolitan area [13,14]. Similarly, urban rail
transit in China tends to enhance polycentricity and increase population density [15,16].
The connections between urban form and vehicle use are also well documented. So-called
“3Ds” [17]—high density, land use diversity, and enhanced street design—are negatively
associated with automobile-based trips and vehicle emissions in the United States [18,19]
and China [20]. Polycentric and compact urban forms also significantly affect road traffic
and carbon emissions [21].

In addition to urban form, various socio-demographic conditions also mediate the rail
effects on vehicular traffic. For example, evidence shows that urban rail transit contributes
to population and employment growth in Europe [22–24] and gross domestic product
(GDP) growth in China [25]. Such population and economic growth necessarily drive-up
demand for vehicle use and thus on-road CO2 emissions [26–29].

Despite the empirical evidence, the vast majority of rail impact studies focus on only
one piece of the puzzle—direct traffic-diversion effects—while neglecting those mediator
variables and associated “indirect” traffic-creation effects (Figure 1). Such a sole focus on the
former can lead to substantial overestimation of urban rail’s mitigation potential. Instead, a
balanced consideration of the two opposing forces would require an explicit representation
of multiple rail-to-road causal paths with key mediator variables incorporated. This study
is motivated to fill this gap.
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Figure 1. Literature on direct and indirect effects of urban rail transit on vehicle use. Source: Created
by the authors [5–8,13–29].

3. Method
3.1. Structural Equation Modeling

We take an SEM approach to assessing the climate-mitigation potential of urban rail
transit, and explicitly represent multiple causal paths within a single modeling framework.
Our path-analysis design under the SEM framework incorporates key mediators along
multiple paths, allowing us to decompose total effects by path and link. In this respect, our
approach is superior to typical regression analyses, assuming only direct paths from a set
of regressors to a given outcome variable.

Our path diagram consists of nine variables and six rail-to-carbon paths in total
(Figure 2). Two variables measuring vehicle use and vehicle stock—vehicle kilometers
traveled per vehicle (VKT_PV) and vehicle ownership (VO)—are directly linked to a
response variable on-road carbon emissions (R_CO2).We limit our research scope to carbon
dioxide, although black carbon—the second largest contributor to climate change—is also
partly emitted from diesel-powered vehicles [30,31]. Black carbon, however, has little
relevance to this study focusing on on-road passenger trips in China’s context, which
are dominated by gasoline vehicles. In 2017, for example, diesel vehicles accounted for
around 9% of China’s total active vehicle stock, and most of them were commercial freight
trucks [32]. Urban rail density (MTR_DEN), at the bottom of all six paths, indirectly
affects R_CO2 through mediators, such as travel mode choice (MPK_SHR), urban form
(POLYCENT, POP_DEN), urban population (POP), and GDP per capita (GDP_PC). Here,
POLYCENT and POP_DEN are proxy variables to measure the degree of polycentricity (vs.
monocentricity) and compactness (vs. sprawl) at a city level.

Given that rail-network expansions often take a few years, our cross-sectional study
reasonably assumes that urban rail services in operation affect mediator variables, but not
vice versa. In this respect, we estimate recursive, one-way causal relationships, which are
plain to interpret. We also model correlated errors within the recursive feedback structure
to control for potential endogeneity arising from omitted variables [33].
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3.2. Data

Our 2015 cross-sectional dataset for 90 Chinese prefecture-level cities is constructed
from multiple sources, and the descriptive statistics of all variables tested are listed in
Table 2 (see Figure 3 for the sample’s spatial distribution). Response variable R_CO2 is
built on the China City Greenhouse Gases Emissions Dataset (2015) [34]. VKT_PV for
each city is computed from traffic volume, road length, and road width data provided in
China’s Environmental and Urban Construction Statistical Yearbooks [35,36]. The 60”× 60”
LandScan population grids [37] are used to identify urban centers and measure POLYCENT,
and the two urban rail variables (MTR_DEN and MPK_SHR) are extracted from the China
Association of Metros [38]. Other built environment and socioeconomic variables, such as
POP_DEN, POP, GDP_PC, and VO, are collected and created from two primary sources,
China Urban Construction Statistical Yearbook [36] and the CEIC Database [32].

Table 2. Variable list and descriptive statistics.

Variable Name Variable Description Obs Mean Std. Dev

R_CO2 Carbon emissions from on-road vehicles (104 tonnes) 90 3.04 × 102 3.69 × 102

VKT_PV Vehicle kilometer traveled per vehicle 90 5.23 × 10 5.03 × 10
VO Vehicle ownership (thousand vehicles) 90 9.62 × 105 9.94 × 105

GDP_PC GDP per capita (RMB) 90 6.18 × 104 2.85 × 104

MTR_DEN Urban rail line density (km/km2) 90 4.80 × 10 1.16 × 102

MPK_SHR Urban rail passenger kilometers share 90 1.99 × 10−2 7.65 × 10−2

POLYCENT Number of urban centers 90 2.78 2.13
POP_DEN Urban population density (person/km2) 90 8.05 2.58
POP Urban population (thousand persons) 90 2.36 × 102 3.63 × 102
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The following three mediating variables (VKT_PV, POLYCENT, and MPK_SHR) are
worth mentioning in further detail. First, VKT_PV is estimated using available data, since
China does not report official vehicle kilometers traveled (VKT) statistics. For the estimation
of VKT, most existing studies directly use incomplete surveyed data [39], but we take a
different approach, with reference to Chen and Klaiber [40]. As given in Equation (1), we
estimate VKT for Chinese cities (VKTi) using traffic volume and road lengths for monitored
road segments—which offer more accurate and comprehensive sample data—and applying
the sample-population ratio.

VKTi =
wi

wim
·ATVim·RLi (1)

Here, wi and RLi are mean road width and total road length in city i, respectively, and
wim and ATVim are mean road width and mean traffic volume per kilometer for monitored
district m within city i, respectively. In particular, ATVim is equivalent to VKT computed
for a unit kilometer road section in monitored district m. If district m in city i includes total
N number of road sections, and C refers to the number of cars traveled along road section
k, ATVim is drawn from Equation (2).

ATVim =
∑N

k∈m RLimkCimk

∑N
k∈m RLimk

(2)

Once VKTi is estimated, VKT_PV can be acquired by dividing it by VO.
Second, POLYCENT is measured in terms of the number of urban centers, as widely

practiced within the urban studies field [19,41]. The identification of urban centers is based
on the method developed by Liu and Wang [42]. We first set a 95-percentile population
density threshold for each city (90-percentile for Beijing, Shanghai, Guangzhou, Shenzhen,
and Tianjin) and keep only the population grid above the threshold. Then, we aggregate
neighboring population grids under the Rook contiguity criterion and define urban clusters.
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These clusters are treated as urban if they consist of≥3 grids with a cluster-level population
of >100,000.

Finally, MPK_SHR is used as a proxy of travel-mode choice, given the limited availabil-
ity of reliable alternative mode-choice measurements. In particular, MPK_SHR is defined as
the ratio of urban-rail passenger-kilometers (MPK) to the sum of MPK and VKT as shown
in Equation (3).

MPK_SHR =
MPK

MPK + VKT
(3)

4. Results

The effects of each variable on R_CO2 and the model fit are summarized in Table 3.
Overall, our model satisfies all goodness-of-fit criteria recommended in the literature [43,44],
including a p-value with a threshold of >0.05, a comparative fit index (CFI) with a threshold
of >0.90, a normed fit index (NFI) with a threshold of >0.95, a Tucker-Lewis Index (TLI)
with a threshold of >0.90, and a root mean square error of approximation (RMSEA) with a
reference value of ~0.05.

Table 3. Direct, indirect, and total effects on road traffic carbon emissions, measured in elasticity.

Independent Variable Total Effects

Direct Indirect

VKT_PV 0.1502
VO 0.6764
GDP_PC 0.2257
MTR_DEN −0.0175
MPK_SHR −0.0644
POLYCENT 0.0820
POP_DEN −0.1814
POP 0.6415
Summary statistics
N 90
Chi-square 12.993
Degrees of freedom 10
p-value (>0.05) * 0.224
Comparative fit index (>0.900) 0.995
Normed fit index (>0.950) 0.980
Tucker-Lewis Index (>0.900) 0.982
RMSEA (≈0.05) 0.058

Note: * p-value of >0.05 means that the null hypothesis of a perfect fit cannot be rejected.

Both VKT_PV and VO, which directly affect on-road carbon emissions, show positive
effects on R_CO2, with elasticities of 0.150 and 0.676, respectively (Table 4). These positive
coefficients significant at the 5% level suggest that both travel behavior and vehicle stock are
key “direct” contributors to on-road carbon emissions. The other six explanatory variables
indirectly affect on-road carbon emissions. Among them, GDP_PC, POLYCENT, and POP
beget positive total effects, implying that increased productivity, polycentric urban form,
and city size are significant “indirect” emission intensifiers. On the other hand, MTR_DEN,
MPK_SHR, and POP_DEN led to negative total effects (net emission abatement). This
suggests that urban rail developments, increased share of urban rail ridership, and compact
urban form indirectly contribute to abating on-road carbon emissions.
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Table 4. Detailed path-specific elasticity estimates.

To From Coefficient SE.

R_CO2 < VKT_PV 0.1502 * 0.0598
R_CO2 < VO 0.6764 ** 0.0691
VKT_PV < MPK_SHR −0.4289 * 0.2043
VKT_PV < POLYCENT −0.3531 * 0.1572
VKT_PV < POP_DEN −1.2083 ** 0.3204
VKT_PV < POP 1.1706 ** 0.3048
VO < POP 0.6885 ** 0.0698
VO < POLYCENT 0.1997 * 0.0987
MPK_SHR < MTR_DEN 0.7237 ** 0.0238
POLYCENT < MTR_DEN 0.1595 ** 0.0292
POP_DEN < MTR_DEN 0.0329 * 0.0131
GDP_PC < MTR_DEN 0.0975 ** 0.0192
POP < GDP_PC 0.3518 * 0.1536

Note: * p < 0.05; ** p < 0.01.

4.1. Emission-Abatement Effects

The emission-abatement effects of MTR_DEN on R_CO2 are closely associated with a
substitutive relationship between road and rail (Figure 4). In particular, rail-induced carbon
abatement takes three main channels. First, higher MTR_DEN drives up MPK_SHR, and
increased MPK_SHR leads to lower R_CO2 through its positive association with VKT_PV
with an elasticity of −0.0466 (0.7237 × −0.4289 × 0.1502 = −0.0466) (Figure 4A). This
finding supports a key hypothesis underlying the traffic-diversion effect, where improved
urban rail services in terms of accessibility and costs encourage a road-to-rail mode shift [9].
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Second, higher MTR_DEN promotes POLYCENT and reduces VKT_PV and R_CO2,
with a cumulative effect of −0.0085 (0.1595 × −0.3531 × 0.1502 = −0.0085) (Figure 4B).
This finding coincides with the negative effects of polycentric urban forms on vehicle use
and carbon emissions reported in many Chinese studies [21,45,46]. Polycentric urban form
reduces commuting distance by decentralizing employment opportunities and improving
the job-housing balance [41] and eventually leads to less use of vehicles and on-road
emissions reduction.

Third, increased urban rail density reduces VKT_PV and R_CO2 through its upward
pressure on POP_DEN, presenting a cumulative effect of −0.0060 (0.0329 × −1.2083 ×
0.1502 =−0.0060) (Figure 4C). The coefficient of 0.0329 means that a unit percentage increase
in urban rail density tends to increase population density by 0.03% as an outcome of rail-
induced development. The coefficient of −1.2083 means that a unit percentage increase in
population density leads to a 1.2% decline in VKT_PV, suggesting a large carbon-abatement
potential of high-density urban development. This result is consistent with the findings
of previous studies, where shorter travel distance and mixed land use promoted under a
compact-city development strategy tend to foster non-motorized travel modes [18,47].

4.2. Emission-Intensification Effects

The climate-mitigation potential of MTR_DEN is partly offset through two emission-
intensification channels, representing the traffic-creation effects of urban rail (Figure 5).
One channel is that higher MTR_DEN indirectly pushes VO and R_CO2 upward by di-
rectly affecting POLYCENT (Figure 5A). This path, including urban form as a mediator,
presents an elasticity of 0.0216 (0.1595 × 0.1997 × 0.6764 = 0.0216), where a unit percentage
increase in urban rail density leads to a 0.02% increase in on-road emissions. A positive
association between POLYCENT and VO can be partly explained by a potential trade-off
between polycentricity and transit accessibility. In a polycentric city, decentralized urban
functions may increase travel demand or distance while weakening transit accessibility,
and incentivize private-vehicle ownership [19].
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The other channel is that increased MTR_DEN leads to growth in GDP_PC and POP,
and the latter result in higher VKT_PV and VO and thus higher R_CO2 (Figure 5B). The
composite elasticity along this channel is 0.0220 (0.0975 × 0.3518 × 1.1706 × 0.1502 +
0.0975 × 0.3518 × 0.6885 × 0.6764 = 0.0220), suggesting that a unit percentage increase
in urban rail density increases vehicle emissions by 0.02%. The indirect paths connecting
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MTR_DEN to GDP_PC (0.0975) and POP (0.3518) imply that urban rail developments
support economic growth and economic growth attracts population to the city. Then,
increased city size eventually elevates demand for on-road trips (1.1706) and overall vehicle
stock in operation (0.6884).

4.3. Varied Emission Effects by Mediator

The total effect of MTR_DEN on R_CO2 is −0.0175 in net terms, meaning that R_CO2
drops by 1.75% when MTR_DEN is doubled. This net mitigation potential suggests that,
in China’s context, the rail-induced traffic-diversion effects dominate the traffic-creation
effects. However, this estimate is substantially smaller than existing estimates—e.g., an
elasticity of−0.055 in automobile fuel consumption estimated by Lin and Du [7]—although
a parallel comparison is hard due to dissimilar measurements. This is partly due to our
consideration of offsetting effects (i.e., traffic-creation effects) associated with urban form
and socio-demographic factors, which are often neglected in other studies. In fact, we find
that three abatement paths involving MPK_SHR, POLYCENT, and POP_DEN as mediators
jointly lead to a 6.1% decline in R_CO2 for a 100% increase in MTR_DEN if other offsetting
channels are ignored (Table 5). This result is very close to existing estimates, such as the
5.5% decrease in vehicle energy consumption mentioned above [7].

Table 5. Emission effects of urban rail transit through different intermediate factors.

Mediator Mechanism Emission Abatement Emission
Intensification Net Emission Effects

MPK_SHR Substitution −0.0466 −0.0466
POP_DEN Urban form −0.0060 −0.0060
POLYCENT Urban form −0.0085 0.0216 0.0131
GDP_PC & POP Socio-demographics 0.0220 0.0220

Total −0.0611 0.0436 −0.0175

Note: Dominant effects are highlighted in bold.

Along multiple paths, POP_DEN functions as an indirect emission abator by shorten-
ing mean travel distance and promoting nonmotorized trips [17]. In contrast, POLYCENT
has mixed effects on R_CO2, as hinted at in previous studies—polycentric urban form
can reduce driving distance by enhancing the job-housing balance and at the same time
encourage vehicle use by reducing transit accessibility [19,45,46]. Of the two opposing
effects, the emission-intensification effects (0.0216) dominate the emission-abatement effects
(−0.0085) in China’s context, leading to a net effect of 0.0131. Finally, POP and GDP_PC
are found to be net emission intensifiers with an elasticity of 0.0220, partly offsetting the
emission-abatement effects.

5. Conclusions

In this study, we examine the urban-rail impacts on vehicle emissions, using a cross-
sectional dataset of 90 Chinese cities. Our results demonstrate that urban rail transit in
China’s context functions as a net climate mitigator by indirectly contributing to reduced
on-road carbon emissions. Overall, a 100% increase in urban rail density is estimated to
cause a 1.75% decline in on-road carbon emissions.

Although urban rail transit in China’s context is a net abator, it interacts with on-road
emissions along both emission-abating and intensifying paths. On the one hand, increased
urban rail density indirectly reduces on-road carbon emissions by promoting road-to-rail
mode shift (−0.0466), population density (−0.0060), and polycentricity (−0.0085). These
three abatement channels altogether beget urban rail’s gross mitigation potential of−0.0611
measured in elasticity. On the other hand, these abated emissions tend to be largely
offset by the emission-intensification effects involving increased polycentricity (0.0216) and
population (0.0220). Neglecting this induced demand can lead to substantial overestimation
of the transit-associated abatement effects.
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The main contribution of this study is twofold. One is to enrich the empirical literature
on the climate-mitigation potential of urban rail transit, which is sparse, particularly in
China’s context. The other is an SEM-based path analysis presenting advanced method-
ological features for robust estimation results. Our model clearly describes each causal path
and offers ability to decompose total effects by link. This enhances our understanding of
the transit-emission nexus, where two opposite effects interact along multiple causal paths.
Our approach is potentially applicable to other impact studies subject to similar problems.
See Supplementary Materials.
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