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Abstract: The recognition algorithm of the lightning whistler wave, based on intelligent speech,
is the key technology to break the bottleneck of massive data and study the temporal and spatial
variation rules of the lightning whistler wave. However, its recognition effect depends on the
hyperparameters determined by manual experiments repeatedly, which takes a great deal of time
and cannot guarantee the best recognition effect of the model. Therefore, we proposed the lightning
whistler wave recognition algorithm based on grey wolf optimization (GWO). In this paper, the
GWO algorithm is used to automatically find the best value of hyperparameters of Long Short-Term
Memory (LSTM) in their limited searching space. Here we consider the number of hidden units (hu)
and learning rate (lr) as the hyperparameters to be optimized, and the spatial coordinate (hu, lr) as the
grey wolf position. By the end of the GWO process, we obtain the position of the wolf king α with the
optimal hu and lr searched by the GWO algorithm. Then we use the optimal hu and lr to configure
LSTM and perform supervised learning on the train set to obtain the final lightning whistler wave
speech recognition model. Through experimental verification, the recognition model based on the
GWO not only overcomes the uncertainty of the traditional model relying on manual finetuning of
parameters and realizes the mechanism of automatic search and acquisition of hyperparameters, but
also its recognition effect improves by about 2% in accuracy, F1score, and other metrics compared
with the model trained by manually setting hyperparameters.

Keywords: grey wolf optimization; lightning whistler wave speech recognition; long and short-term memory

1. Introduction

The lightning discharge process excites broadband electromagnetic waves in the fre-
quency range of 500 Hz to 10 kHz, which are called whistler because their audio resembles
a whistle [1]. Lightning whistler waves are able to reach the ionosphere and magnetosphere
and are an important medium for detecting the physical environment in space [1]. For
example, M.J. Rycroft investigated the positive feedback mechanisms operating between
the atmosphere and the magnetosphere due to lightning [2]; Bayupati et al. [3] found that
the dispersion trend of the lightning whistler wave is a powerful method to determine
the overall electron density distribution in the plasma layer; Oike et al. [4] demonstrated
that lightning whistler waves in the ionosphere are closely related to lightning activity
and electron density distribution around the Earth by analyzing the frequency of lightning
whistler wave. It can be seen that the analysis of physical parameters and properties of
the lightning whistler wave is an important technical tool to study the space environment
such as the Earth’s ionosphere and magnetosphere [5]. China successfully launched its first
geophysical field detection satellite, the Zhangheng-1 electromagnetic monitoring test satel-
lite (ZH-1) on 2 February 2018, and since then China has become capable of space-based
observation of lightning whistler waves. ZH-1 is mainly used to obtain global electro-
magnetic field, ionospheric plasma, and high-energy particle observation data, which is
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an important basis for extracting space environment information related to precursors of
earthquake occurrence. It also promotes the research of seismic electromagnetic informa-
tion, geophysics, and space physics phenomena, and has become a hot spot of interest for
world counterparts [6,7]. In addition, since the electronic components of airborne satellites
are susceptible to damage by the total dose effect and single-particle effect of high-energy
electrons, it is important to construct a statistical model of whistler wave parameters with
the help of whistler wave data and to carry out high-energy electron flux prediction based
on the whistler wave model for satellite design and protection. It is an important reference
value for satellite design and protection [8,9].

It is clear from the above that with the help of lightning whistler waves, in-depth
studies and explorations of the Earth’s atmosphere, ionosphere and magnetosphere can be
carried out. However, taking the ZH-1 as an example, the lightning whistler wave events
are submerged in the huge amount of electromagnetic field data due to the round-the-clock
operation mode of the electromagnetic satellite and the fact that lightning is one of the most
frequent natural phenomena occurring in the Earth’s space [10], thus generating about l0 G
of data per day [11]. Facing the challenges at the data level, automatic identification of
lightning whistler waves from it is a key aspect for a comprehensive and in-depth analysis
of the physical space environment. In recent years, with the development of artificial
intelligence technology, domestic and foreign scholars have gradually abandoned the
inefficient manual identification method and started research of automatic identification
of lightning whistler waves from electromagnetic satellite data. Lightning excitation of
broadband electromagnetic waves, its high-frequency and low-frequency components of
the velocity difference makes it present obvious L-shaped dispersion characteristics in
the spectrogram. So, we labeled the lightning whistler wave data based on this principle.
Recently, Yuan et al. [5] explored the automatic recognition framework of the lightning
whistler wave based on machine learning, created an L-shaped convolution kernel to
enhance the feature robustness according to the dispersion pattern of the lightning whistler
wave, and used the support vector machine to improve the generalization performance
of classification. In the field of computer vision, the goal of intelligent detection of the
lightning whistler wave is to identify and locate the L-shaped dispersion pattern from the
spectrogram, and the essence of this problem belongs to the object detection. All of the
above methods essentially utilize the identification and classification based on spectrogram,
but the drawback is that the requirements for storage devices and GPU computing power
are extremely demanding, resulting in the inability to be directly applied to the satellite
load processing process. In view of this, Yuan et al. [12] first proposed an automatic
recognition algorithm for lightning whistler waves based on intelligent speech technology,
using LSTM neural networks to introduce the characteristics of time series to process the
auditory features of whistler wave, modeling the Mel frequency cepstrum coefficients
(MFCCs) [13] to carry out experiments. The results can save 66% of time cost compared
with methods based on spectrogram for image recognition or object detection and 65% of
memory resources. This indicates that the speech-based lightning whistler wave recognition
algorithm is not only suitable for fast and accurate recognition of lightning whistler waves
from the huge amount of data observed by satellites, but also more suitable for application
to on-board recognition [12].

However, the recognition performance of the trained model depends on the setting of
the hyperparameters, such as the hidden layer units and the learning rate, which usually
rely on manual setting based on the results of multiple cross-validation experiments. As
more and more lightning whistler wave data are accumulated, the continuously increas-
ing data need to be input into the model again for supervised learning to continuously
improve the recognition performance of the model. The hyperparameters of the model
will inevitably need to be adjusted, and by relying on manual grid search to conduct
multiple cross-validation experiments finding the hyperparameters of the model will bring
a relatively large workload and high complexity. In order to overcome the problem of
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difficult manual hyperparameter tuning, this paper proposes a lightning whistler wave
speech recognition algorithm based on GWO.

Grey wolf optimization (GWO) algorithm is a kind of swarm intelligence optimiza-
tion method inspired by the hunting behavior of grey wolves. At present, a variety of
swarm intelligence optimization algorithms [14] have been proposed to mimic the swarm
intelligence behavior of biology in nature because of their important academic value and
practical significance on the methods for finding solutions on many complex problems.
This has become a hot spot of cross-discipline and research in recent years [15]. Exam-
ples are such as particle swarm optimization (PSO) algorithm [16], artificial bee colony
(ABC) algorithm [17], ant colony optimization (ACO) algorithm [18], shuffled frog leaping
algorithm (SFLA) [19], cuckoo search (CS) algorithm [20], and GWO algorithm. Except
for GWO, the common shortcoming of these algorithms is that each swarm intelligence
algorithm has problems to different degrees in that the convergence velocity is slow, the
optimization precision is low, and it is easy to fall into the local optimum. The key reason
for these shortcoming is whether an algorithm is able to achieve the proper compromise
between exploration and exploitation in each searching phase or not [21]. Exploration
reflects the ability of the algorithm to search for new space, while exploitation reflects the
refining ability of the algorithm. These two criteria are generally used to evaluate these
stochastic optimization algorithms [15], while GWO can perform better to achieve the
proper compromise between exploration and exploitation. For more literature reviews on
GWO, please see Section 2.2.

2. Experimental
2.1. Data Source and Methodology

The data source in this paper is mainly from the detailed survey of the search coil
magnetometer (SCM) payload very low frequency (VLF) band during August 2018 by
ZH-1 data (ZH-1 owns the detailed survey mode and inspection mode according to dif-
ferent regions [22]). Regarding the acquisition of this dataset, in the first step the original
waveform data is intercepted using a sliding time window of 0.16 s, each segment of the
intercepted data contains 8192 points, i.e., the time domain length of a single audio is
8192, then it is converted into an audio clip (i.e., mp3); in the second step the intercepted
audio segments were Fourier transformed to obtain their spectrograms; in the third step
the MFCC speech feature matrix is extracted from the audio data [23], for more concrete
details, please refer to this paper [12]. In short we get a 16 × 39 shaped matrix of each
audio, where 16 and 39 denote the number of frames and the number of MFCC features
of this audio, respectively. Finally, the audio segments were manually labeled according
to the presence or absence of L-shaped dispersion features in the spectrogram. So, we
got a total of a 10,200 audio data set (5100 segments of lightning whistler wave data and
5100 segments of non-lightning whistler wave data). Among them, the validation (val)
set of 4200 segments of audio data and train set of 4000 segments are used to implement
the automatic search for hyperparameters of the recognition model based on the GWO
algorithm. The train set is also used to obtain the final recognition model trained by the
optimized hyperparameters; 2000 segments are used as the test set to test the performance
of the recognition model.

The lightning whistler wave speech recognition scheme based on the GWO algorithm
in this paper consists of three main parts, as shown in Figure 1: the model hyperparameter
optimization flow, the model training flow, and the model application flow. They are
elaborated as follows:

• Model hyperparameter optimization flow: on the validation set and train set, MFCC
features of audio data are used as a basis to implement automatic hyperparameter
searching for the LSTM neural network by the GWO algorithm. This is the core part
of this article, so we will introduce it in detail step by step in Sections 2.2–2.4
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• Model training flow: The LSTM neural network is set up using the optimal hyper-
parameters searched by GWO, and the recognition model is obtained by supervised
learning on the train set, see the following paper for more details [12]

• Model application flow: The test set is fed into the recognition model to obtain results
and evaluate the performance of the model. We analyzed the effect of the recognition
model from different perspectives and compared our model with the recognition
model obtained by Yuan et al. [12] to prove that our model performed better than the
latter. Please see Section 3 for details.
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Figure 1. Architecture as well as the methodological steps of the lightning whistler wave recognition
scheme. Overall, the flow chart comprises three procedures: model hyperparameter optimization
flow, model training flow, and model application flow. The input of the model is the feature map
matrix extracted from wave audio, and the output (i.e., likelihood value from 0 to 1) denotes whether
the wave is lightning whistler wave or not.

It is worth mentioning that in the following content we regard the model proposed by
Yuan et al. as a benchmark model (i.e., baseline model) in this article, in order to take it as
a reference. The fundamental difference between the recognition model proposed in this
paper and the benchmark model lies in the process of model hyperparameter optimization
flow, the latter’s LSTM neural network hyperparameter setting is manually determined
through multiple cross validation [24] experiments.

In order to overcome the difficulty that the hyperparameters of the recognition model
rely on manual tuning, this paper achieves the mechanism of tuning model hyperparame-
ters automatically with the help of the GWO algorithm, as shown in the dashed rectangular
box in Figure 1. This part is the highlight and key point of this paper, which is described in
detail in the following.

2.2. Grey Wolf Optimization

Grey Wolf Optimization (GWO) [25] was proposed by Mirjalili et al. in 2014, which
mainly mimics the social leadership hierarchy and hunting mechanism of grey wolves
in nature. Mirjalili et al. demonstrated that the optimization performance of standard
GWO outperformed PSO, CS, and ABC algorithms, etc. Since GWO has the advantages
of simple principle, fast seeking speed, fast convergence, few adaptive parameters, high
search precision and easy implementation, it is easier to combine with practical engineering
problems. Now it is widely used in feature selection [26], unmanned combat vehicle
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path planning [27], economic scheduling assignment [28], and multi-objective scheduling
problems [29], etc.

The application where we use GWO for hyperparameter tuning is inspired by GWO
combined with neural network [30]. This is because the main idea behind hyperparameter
tuning is to find an optimum set of values for parameters in order to maximize the perfor-
mance of a given neural network model or algorithm. Correspondingly, in this study the
given model is LSTM. The inspiration for GWO is the behavior of the grey wolf, which is
led by a small number of grey wolves (general three wolves) who move toward the prey,
and the given model explores the search space in the hope of finding an optimal solution.
There are two pivotal aspects of this behavior: social hierarchy and hunting mechanism,
which are shown in Figure 2.
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decreases from top down) and (b) diagram of the hunting mechanism, as well as the grey wolf
position updating process. “Readapted with permission from Ref. [25]. 2022, Elsevier”.

Naturally, a grey wolf pack is divided into four ranks because of its population
hierarchy, which is shown in Figure 2a below. We consider the fittest solution as the wolf
α, the second and third best solutions are named wolf β and wolf δ respectively. The
rest of the candidate solutions are assumed to be wolves ω. The wolf α has absolute
dominance over wolf β, wolf δ, and wolves ω, while wolf β has absolute dominance over
wolf δ and wolves ω, and so on. In order to mathematically model the social hierarchy, we
generally regard α, β, and δ as the best three fitness performance(optimal solutions) after
each round of iteration; they guide the candidate wolves (ω) to update their positions to
move toward the prey, as Figure 2b shows. Note that fitness refers to the mapping value
obtained by substituting the value of the hyperparameters corresponding to the position
of the grey wolf into the customized objective function (cost function, which is described
in Section 2.4, Paragraph 1 and 2. Simply speaking, the process of grey wolves α, β, and
δ leading the grey wolf pack moving toward the prey is the process of searching for the
optimal hyperparameters.

Mentioned above, the hunting mechanism, i.e., the principle of the position updating
rules is shown in Figure 2b. Where Dα, Dβ, and Dδ denote the distances between wolves
α, β, and δ and the candidate wolf individual respectively; C1, C2, and C3 are the random
weights of the grey wolf position; a1, a2, and a3 represent the convergence factors, which
have the same values and can be denoted uniformly by a, decreasing linearly from 2 to 0 as
the number of iteration increases.

To mathematically model Figure 2b, we need to suppose the position vectors of wolves
α, β, and δ in the d-dimensional space are shown in Formula (1), where 1≤ k≤ d, indicating
the kth dimensional component in the d-dimensional space. d also denotes the number
of hyperparameters to be optimized, e.g., in this study, we need to realize the automatic
search of the number of hidden units (hu) and learning rate (lr) for optimization by GWO,
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so d is 2. Note that the following formulas or equations in this section that we proposed
are based on code, so from that viewpoint, these formulas are not the same as those in
other papers. 

Xα : (Xα,1, Xα,2, · · · , Xα,d)

Xβ :
(

Xβ,1, Xβ,2, · · · , Xβ,d

)
Xδ : (Xδ,1, Xδ,2, · · · , Xδ,d)

(1)

Meanwhile, suppose the current position vector of a candidate wolf i is Xi(Xi,1, Xi,2, · · · , Xi,d),

and its next position vector under the joint leadership of wolves α, β, and δ is X′i
(

X′i,1, X′i,2, · · · , X′i,d
)

.

The calculation procedures of each dimensional component X′i,k of X′i are presented in
Formulas (2)–(5): 

Xαi,k = Xα,k − A1·Dα,k
Dα,k =

∣∣C1·Xα,k − Xi,k
∣∣

C1 = 2r2
A1 = 2a·r1 − a

(2)


Xβi,k = Xβ,k − A2 · Dβ,k

Dβ,k =
∣∣∣C2 · Xβ,k − Xi,k

∣∣∣
C2 = 2r2

A2 = 2a · r1 − a

(3)


Xδi,k = Xδ,k − A3 · Dδ,k
Dδ,k =

∣∣C3 · Xδ,k − Xi,k
∣∣

C3 = 2r2
A3 = 2a · r1 − a

(4)

X′ i,k =
Xαi,k + Xβi,k + Xδi,k

3
(5)

First, Dα,1 and Xαi,1 were calculated as shown in Formula (2), the former denotes the
distance between the corresponding dimensional value of grey wolf α: Xα,1 multiplied by
the influence weight C1. and the corresponding dimensional value of candidate wolf i: Xi,1
at the 1st dimensional component and takes its absolute value as Dα,1; The latter likewise
represents the next position of candidate wolf i under the guidance of grey wolf α at the
1st dimensional component, which is Xαi,1. By analogy, the next positions of candidate
wolf i under the guidance of grey wolf β and δ at the 1st dimensional component, Xβi,1 and
Xδi,1, respectively, are calculated as shown in Formulas (3) and (4). Then Xαi,1, Xβi,1, and
Xδi,1 were averaged to obtain X′i,1, as shown in Formula (5), that is, the next position (new
position) of candidate wolf i at the 1st dimensional component under the joint leadership
of grey wolf α, β, and δ is obtained. By analogy, a total of d new positions, namely X′i,1, X′i,2,
and X′i,d are obtained, they form the latest position vector of candidate wolf i during that
round of iteration.

In Formulas (2)–(5), A1, A2, A3, C1, C2, C3, r1, r2 and a all represent one value,
where C1, C2, C3 are calculated from different r2 values, and the same for A1, A2, A3. Both
r1 and r2 are random numbers between 0 and 1. During each iteration of the algorithm,
the position space dimension of each grey wolf is traversed, and different r1 and r2 are
randomly generated for the computation of Xαi,k, Xβi,k and Xδi,k, while a decreases from 2
to 0 with the increasement of iterations. ‘|’ stands for taking absolute values and ‘, ·’ stands
for multiplication.

However, the shortcomings of GWO cannot be ignored. For example, Niu et al. found
that the farther the function’s optimal solution is from 0, the worse its performance [31];
Zhang et al. summarized that GWO has poor population initialization, unavoidable falling
into the local optimum, etc. [32]. Consequently, a lot of works have been conducted to
improve GWO, e.g., Yang et al. proposed Group GWO to realize a better global conver-
gence [33]; Gao et al. proposed VW-GWO to reduce the probability of being trapped in
local optima [34]; Mehrotra et al. put forward Chaos GWO to improve the ability to escape
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local optima by replacing the key parameters by chaotic variables [35]; Malik et al. [36]
proposes the Weighted Distance GWO to modify the grey wolf position updating strategy
and the weighted sum of best positions is used instead of just a simple average, turning
out to have a superior performance compared to standard GWO, etc.

2.3. LSTM

Long short term memory (LSTM) [37] network is a special kind of recurrent neural net-
work (RNN) capable of learning order dependencies in sequence prediction problems. This
is the pattern mechanism needed for complex problem areas such as machine translation
and speech recognition, etc. LSTM can efficiently deliver and express information in long
time sequences, and it may keep information for a long time by default. In short, LSTM
addresses the issue of RNN long-term dependency. At the same time, it overcomes the two
technical problems of vanishing gradients and exploding gradients when training [38,39].
This is why LSTM is used for time-series data processing, prediction, and classification [40].
So back to the present experiment, in Section 2.1, we briefly describe the processing of the
raw data to obtain a standard time-series type data format that can be fed into the LSTM
neural network model for training, i.e., each audio is processed as a matrix of frames ×
number. We got the idea that now that LSTM might be able to connect previous information
to the present task, the same as using previous audio frames might inform the understand-
ing of the present frame, we thought it would be reasonable to apply LSTM in this study.
Thus, we chose to use LSTM for modeling.

The key to the LSTM solution to the problems mentioned above is the specific internal
structure of the cells used in the network. Its architecture is shown in Figure 3 below. The
key to the LSTM is the cell state, the horizontal line that runs across the top of the chart,
from Ct−1 to Ct. For all LSTM cells (LSTM cell chain), the cell state is like a conveyor
belt, which travels straight along the entire LSTM cell chain, and information can easily
flow along it unchanged. We can see that each LSTM cell has three gates: the forget gate,
the input gate, and the output gate. Gates are a way to optionally allow information to
pass through, and they are composed of a sigmoid neural net layer (i.e., logistic activation
function) and a pointwise (i.e., element-wise) multiplication operation (i.e., Hadamard
Product). The sigmoid layer outputs numbers between 0 and 1 that describe the degree
to which each component should be allowed to be let through. A value of 0 means letting
nothing through, while a value of 1 means letting everything through. They are designed
to protect and control the cell state.
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For other Identifier characters in the figure, the Xt and ht−1 are the input vectors,
where the variable t is the timestamp (time step). We can think of ht as the short-term state
and c(t) as the long-term state, yt likewise represents the short-term state, which is equal
to the cell’s output for this time step, while ht serves as the input for the next timestamp,
which means current ht is the next cell’s ht−1. The computation of each cell can be defined
by the following Equations (6)–(11):

ft& = σ
(

W f · [ht−1, xt] + b f

)
(6)

gt& = tan h
(
Wg · [ht−1, xt] + bg

)
(7)

it& = σ(Wi · [ht−1, xt] + bi) (8)

ot& = σ(Wo · [ht−1, xt] + bo) (9)

ct& = ft ⊗ Ct−1 + gt ⊗ it (10)

yt& = tan h(ct) ⊗ ot (11)

where ‘·’ denotes the multiplication of matrix, please note the distinction between the
symbol ‘⊗’; ft, gt, it, ot are obtained by feeding the current input vector xt and the previous
short-term state ht−1 into four different fully connected layers (i.e., FC in the figure); W f ,
Wg, Wi, and Wo are the weight matrices; b f , bg, bi, and bo are the bias terms for each of the
four layers. In short, with the function of these three gates, the LSTM cells can capture
and learn the complex correlation features in the short or long term time series, audio
recordings, and more [42].

2.4. GWO + LSTM Algorithm

In this study, we simulate the LSTM 2 hyperparameter hidden units (hu) and learning
rate (lr) as the prey of the grey wolf pack. The algorithm flowchart of GWO combined
with the LSTM neural network is shown in Figure 4. It shows that before the condition
of iterations is satisfied, i.e., in the iterative searching process, GWO will keep delivering
hyperparameters to LSTM model for training, and the trained model will keep returning
the fitness value which is obtained by evaluation on the val set through a cost function
as follows:

fitness = 1− accuracy (12)

More specifically, accuracy is the ratio of the number of correct model predictions to
the number of samples in the validation set compared to the true labels in the validation
set, refer to the confusion matrix [43] for a comprehensive explanation. So, for the model,
the larger the accuracy is, the better. Correspondingly, the smaller the fitness is, the better.
The cost function is customized by users as long as the design of it is reasonable. It is the
criteria of the GWO + LSTM process.
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In each iteration, GWO will traverse every wolf of the pack and obtain the wolf’s
fitness, then we determine the top three wolves according to the best three fitness values as
α, β, and δ. The specific process is divided into the following steps.

1. Initialize the GWO parameters (e.g., a, A, C) and configure some parameters of the
LSTM. For GWO, we set the grey wolf pack size to 5, the number of LSTM hyperparam-
eters (hu and lr) to be optimized to 2, the upper and lower search (i.e., optimization)
spaces to hu and lr, which are self-defined in Table 1 below. Initialize the spatial
position of the wolf population, in this study this is a (5, 2) matrix, noting that the
dimension of the spatial location is the number of hyperparameters to be optimized.
Set the max iterations to 5, which is the termination condition of the algorithm. For
the LSTM neural network, set the epoch to 5 and batch size to 16

Table 1. The upper and lower search space corresponding to the hyperparameter to be optimized.

Hyperparameters to Be Optimized Searching Space

The number of hidden units (hu) (64, 256)
learning rate (lr) (0.01, 0.1)

2. In each iteration, hyperparameters represented by every grey wolf position are sub-
stituted into the LSTM model for training and evaluation. In this step the train set
is input into the LSTM model for training. Further, the trained model is utilized to
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evaluate the val data to obtain the accuracy metric. Next, according to Equation (6),
we get the fitness of every wolf in this iteration. The smaller the fitness we get, the
better the performance of the trained model we have. Finally, the three wolves with
the smallest fitness in this iteration are selected or regarded as wolves α, β, and δ

3. The top three wolves α, β, δ selected from step 2 lead the grey wolf pack to search
for prey, and the position of each grey wolf is updated and changed according to
Formulas (2)–(5)

4. Repeat the above steps 2–3 until the termination condition (i.e., the max iterations) is
met. The hyperparameter corresponding to the position of the final output wolf α is the
optimal hyperparameter of the LSTM model obtained by GWO searching. It is worth
noting that for the process of GWO, it can be considered that the grey wolf position
denotes the hyperparameter vector; after GWO completes all the iterations, wolf α’s
position denotes both the prey position and the optimal hyperparameter vector.

3. Results
3.1. Comparison of Quantitative Results of Model Performance

In this experiment, the default setting of the grey wolf pack size is 5, i.e., there are
5 wolves in the pack, and the max iterations of GWO is 5. With the increment of iteration,
the model’s fitness variation is illustrated as in Figure 5 below. It shows the change in the
best fitness value of the model with increasing number of iterations during each iteration.
We can see that fitness becomes smaller and smaller from the first iteration to the second,
and finally smooths out. Out of the randomness of GWO mechanics, the final optimal
solution found by the GWO algorithm will be different because of setting different grey
wolf pack sizes and iterations, which will be discussed centrally in Section 4. The curve in
Figure 5 will expectedly continue to decrease and level off as the iteration increases, but
relatively, more time and computational resource will be consumed.
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Finally, the best combination of hyperparameters (i.e., optimal solution or position
vector or hyperparameter vector) found by GWO + LSTM is shown in Table 2, hu is 185,
lr is 0.1. Apart from hu and lr, any other parameters remain unchanged compared to the
baseline LSTM model. In addition, we compiled the statistics of hyperparameter searching
time by GWO in the Tables of Section 4.
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Table 2. Comparison of (hu, lr) before and after GWO optimized LSTM.

Algorithm
Parameters

hu lr Batch Epoch Optimizer Loss Function

LSTM 128 0.01 16 10 Adagrad binary_cross entropy
GWO + LSTM 185 0.1 16 10 Adagrad binary_cross entropy

According to Table 2, we use the best hyperparameter combination (185, 0.1) to
configure LSTM neural network as “GWO + LSTM model”, and carry out 100 times 10-fold
cross-validation on the train set base on the GWO + LSTM model and baseline LSTM model,
respectively. Next, all evaluation metrics of both models on the train set and test set are
statistical averaged and then summarized as Table 3. We can see that GWO + LSTM metric
results are 2% higher than those of the baseline (benchmark) LSTM model, which is a very
good improvement. Note that the metric of training time does not make any sense, we
believe this is due to the small amount of data, the epoch of 10 (relatively small), and the
GPU computing power, so that we cannot see a significant difference in training time.

Table 3. Comparison of the average metrics before and after GWO optimized LSTM.

Data Algorithm (hu, lr) Training
Time (min) *

Evaluation Metrics

AUC Accuracy F1 Score Precision Recall

Train set
LSTM (128, 0.01) 0.27 0.9627 0.9637 0.9621 0.9465 0.9787

GWO + LSTM (185, 0.1) 0.22 0.9771 0.9775 0.9767 0.9635 0.9904

Test set
LSTM - - 0.9334 0.9354 0.9316 0.9078 0.9577

GWO + LSTM - - 0.954 0.9551 0.9529 0.9319 0.9752

* Single training time of model without cross-validation. Experimental GPU environment: NVIDIA GeForce RTX
2080 Ti.

3.2. Comparison of Visualization Results

The implicit state information output by the hidden layer of the LSTM model at the
last moment (in this study, i.e., the frame) is indicated by ht, which represents the abstract
features of the time series. ht contains key information such as the trend and history
of the time series, which have an important impact on the final classification results of
the model. In order to observe whether the abstract features output by baseline LSTM
and GWO + LSTM models are distinguishable, in this subsection, we randomly select
200 samples from the test set, including 100 lightning whistler wave samples and 100 non-
lightning whistler wave samples, and input these samples into the baseline LSTM model
and GWO + LSTM model to extract hidden layer information features ht, and visualize
them for comparison, as shown in Figure 6. Where the horizontal axis represents the
number of hidden units and the sequence length of ht as well, the vertical axis represents
the abstract feature values. It can be seen that the density of abstract feature sequences of the
lightning whistler wave and non-lightning whistler wave are different between the baseline
LSTM model and the GWO + LSTM model: The former model has a smaller inter-class
variance along with a larger intra-class variance, while the latter has a larger inter-class
variance and a smaller intra-class variance, indicating that the features learned by the GWO
+ LSTM model find it easier to achieve the classification of lightning whistler wave.
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Next, the hidden layer feature information ht is input to the final fully connected
layer to obtain the prediction scores between 0 and 1, as shown in Figure 7. Where the
horizontal axis represents the sample serial number, and the vertical axis represents the
probability value obtained from the ht hidden layer state information calculated by the
sigmoid function of the fully connected layer. It can be seen that the classification effect
of GWO + LSTM is significantly better than baseline LSTM, and the distribution points
of lightning and non-lightning whistler waves are more distinct. This verifies the fact we
elaborated on in Figure 6, which is powerful evidence for the model recognition results.
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4. Discussion

For the GWO algorithm itself, its automatic searching results, i.e., the optimized(optimal)
hyperparameters (hu and lr), their quality is affected by the size of the grey wolf pack
(number of grey wolves) and iterations of the algorithm. In this experiment, in order to
observe the model effect (fitness) by setting different pack size and iterations, on the basis
of the above experiment that sets the grey wolf pack size and iterations each to 5, we use the
control variate method to set pack size and the iterations increased from 5 to 12 respectively.
The results are illustrated in Figure 8. This shows that the fitness curve only decreases and
tends to be smooth as the pack size or iterations increase. It is worth noting that the initial
position of the fitness is not immobile, which is caused by the random initialization of the
parameters of the GWO algorithm itself. In addition, due to the searching mechanism of
GWO, a locally optimal solution might be generated, which leads to a special state where
part of the curves in the figure is a straight line from the beginning to the end of the max
iterations only.
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Then, the models are trained with the hyperparameter combinations optimized by
GWO under the circumstance of setting different parameters (pack size and iterations).
After performing 100 times of 10-fold cross-validation, the recognition effects (evaluation
metrics) on the test set were averaged and are summarized in Tables 4 and 5. By observing
Table 4, as the pack size increases, AUC (area under curve), accuracy and F1score are all
stable above 0.95, precision is above 0.93 and recall is above 0.97 compared with the metrics
corresponding to (pack size, iterations) of (5, 5). Among them, note that the hyperparameter
combinations with (hu, lr) of (182, 0.1), (177, 0.1), and (181, 0.1) were obtained under the
parameter configurations of (7, 5), (8, 5), and (9, 5) respectively, especially, their lr value
is the upper limit of the learning rate range that we customed in Table 1. So, we can see
that the algorithm still has room for improvement, which can be achieved by continuing
to expand the upper and lower searching space limits of the hyperparameters. Similarly,
by observing Table 5, it is found that the experimental results of all combinations of GWO
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parameters (pack size, iterations) on the test set are 2% higher than those of the baseline
LSTM model for each metric. As iterations increase, the improvement effect is basically
no different from that in Table 4 compared with the original (pack size, iterations) of (5, 5).
Analyzed from time perspective, for one aspect, the difference in hyperparameter searching
time between Tables 4 and 5 is not significant, but we can see that as the pack size or
iterations increase, the searching time for hu and lr also increases, which occurs as expected.
For another aspect, the training time in the two tables almost makes no difference under
the condition of same batch size, epoch, etc., and the corresponding (hu, lr).

Table 4. Hu and lr obtained under different pack size and the experimental results.

Pack
Size

Iterations (hu, lr)
Searching

Time (min) 1
Training

Time (min) 2
Evaluation Metrics

AUC Accuracy F1 Score Precision Recall

5 5 (185, 0.1) 2.88 0.22 0.954 0.9551 0.9529 0.9319 0.9752
6 5 (197, 0.048) 3.56 0.2 0.9532 0.9544 0.9522 0.9338 0.9721
7 5 (182, 0.1) 4.2 0.2 0.9543 0.9553 0.9534 0.9353 0.9726
8 5 (177, 0.1) 4.73 0.18 0.9547 0.9556 0.9537 0.9347 0.9738
9 5 (181, 0.1) 5.44 0.18 0.9545 0.9557 0.9535 0.9334 0.9749
10 5 (146, 0.08) 5.96 0.18 0.9537 0.9547 0.9528 0.9346 0.972
11 5 (201, 0.098) 6.56 0.19 0.954 0.9552 0.9531 0.9334 0.974
12 5 (187, 0.098) 7.15 0.19 0.9542 0.9554 0.9532 0.9334 0.9743

1 The searching time of optimal solution (hu, lr). 2 Single training time of model without cross-validation.

Table 5. Hu and lr obtained under different iterations and the experimental results.

Pack
Size

Iterations (hu, lr)
Searching
Time (min)

Training
Time (min)

Evaluation Metrics

AUC Accuracy F1 Score Precision Recall

5 5 (185, 0.1) 2.88 0.22 0.954 0.9551 0.9529 0.9319 0.9752
5 6 (191, 0.095) 3.49 0.19 0.955 0.956 0.954 0.935 0.9741
5 7 (87, 0.059) 3.94 0.18 0.9527 0.9539 0.9517 0.9321 0.9725
5 8 (131, 0.049) 4.73 0.18 0.9504 0.9519 0.9493 0.9288 0.9714
5 9 (167, 0.096) 4.8 0.18 0.9542 0.9553 0.9532 0.9339 0.9738
5 10 (117, 0.072 5.57 0.19 0.9535 0.9544 0.9527 0.9364 0.9699
5 11 (146, 0.064) 6.10 0.19 0.9525 0.9538 0.9514 0.9295 0.9747
5 12 (145, 0.080) 6.85 0.19 0.955 0.956 0.954 0.9348 0.9743

Therefore, it can be inferred that the model effect can be further improved by increasing
the number of pack size and iterations, which indicates that the GWO + LSTM model
can more reliably solve the problem in that the neural network model relies on manual
tuning hyperparameters and realizes the function of automatic tuning and then optimizes
the model. However, limitations exist. First, we have only reproduced the standard
GWO algorithm, and then used it for the hyperparametric optimization aspect of this
experiment. Although we have achieved the desired experimental results, we have not
made improvements to the algorithm itself. For example, one of the shortcomings of GWO
is the randomness problem at initialization, which can lead to the search results falling into
local optima, etc. Second, since this experiment is based on the baseline model proposed
by Yuan et al., the neural network architecture used is not complex, consisting of only one
LSTM hidden layer and one dense layer. If the model structure is more complex that is with
multiple layers, it will bring more complexity, including the choice of hyperparameters,
the need to optimize, and time complexity. Third, the comparisons in Section 3 could be
made with more candidate algorithms and not just limited to LSTM and GWO + LSTM.
We can add such as PSO + LSTM, (Cuckoo Algorithm) CA + LSTM, etc., to this experiment.
Although our main goal in this study is to highlight the superiority of GWO + LSTM
over LSTM, adding other algorithms appropriately would enrich the completeness of the
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experiment and strengthen this paper. To improve and address these three points, we need
to take them into consideration in future studies.

5. Conclusions

This paper addresses the problem that hyperparameters need to rely on manual
repetition of multiple experiments to determine them, and proposes the lightning whistler
wave recognition model based on GWO. The method simulates the process of searching for
the optimal hyperparameters as in the process of the grey wolves with absolute dominance
leading the wolf pack to move towards the prey and achieves the purpose of automatically
finding the optimal hyperparameters of the lightning whistler wave recognition model. The
experimental results prove that the recognition effect is better than that of manually setting
hyperparameters: Compared with the lightning whistler wave recognition model with
hyperparameters based on manual settings, the model with hyperparameters optimized by
GWO proposed in this study has a 2% improvement in AUC, accuracy, F1 score, precision,
and recall metrics.

Applying the algorithm scheme proposed in this study, deploying, and piggybacking
it in a satellite-based system will further improve the accuracy of the lightning whistler
wave recognition model for satellite-based applications, which will promote the subsequent
development of related research. Thus, we can collect more pure lightning whistler wave
data, which will provide crucial data support to research the relations between the spatial
and temporal patterns of the lightning whistler wave and atmospheric particles, climate
change, and earthquake occurrence. In addition, the core part of this study—automatic
hyperparameter searching based on the GWO algorithm, in addition to the optimization of
the number of hidden units and learning rate of the LSTM neural network that we selected
in this study—can also be used to search for the LSTM dropout for optimization. According
to different application requirements, it can also be applied to hyperparameter optimization
of neural networks such as CNN (convolutional neural networks) and GRU (gate recurrent
unit) to improve model performances

In the future, the algorithm can be optimized in the following two aspects. One is
the optimization based on the GWO algorithm itself, including the improvement of the
space position’s initialization of the grey wolf pack, the wolves’ hunting mechanism, etc.
In this study, we set the same number of lightning whistler waves and non-lightning
whistler waves in the validation set, train set, and test set. However, in the actual spatial
magnetic field environment, the collected audio samples are completely unbalanced, and
the non-lightning whistler wave data occupy most of them. Thus, the class weights can be
adjusted by modifying the cross-entropy loss function to solve the problem of unbalanced
samples in real scenarios.
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