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Abstract: With the continuous growth of international maritime trade, black carbon (BC) emissions 
from ships have caused great harm to the natural environment and human health. Controlling the 
BC emissions from ships is of positive significance for Earth’s environmental governance. In order 
to accelerate the development process of ship BC emission control technologies, this paper proposes 
a BC emission prediction model based on stacked generalization (SG). The meta learner of the pre-
diction model is Ridge Regression (RR), and the base learner combines four models: Extreme Gra-
dient Boosting (XGB), Light Gradient Boosting Machine (LGB), Random Forest (RF), and Support 
Vector Regression (SVR). We used mutual information (MI) to measure the correlation between 
combustion characteristic parameters (CCPs) and BC emission concentration, and selected them as 
the features of the prediction model. The results show that the CCPs have a strong correlation with 
the BC emission concentration of the diesel engine under different working conditions, which can 
be used to describe the influence of the changes to the combustion process in the cylinder on the BC 
generation. The introduction of the stacked generalization method reconciles the inherent bias of 
various models. Compared with traditional models, the fusion model has achieved higher predic-
tion accuracy on the same datasets. The research results of this paper can provide a reference for 
the research and development of ship black carbon emission control technologies and the formula-
tion of relevant regulations. 

Keywords: marine engine; black carbon; combustion characteristic parameter; mutual information; 
stacked generalization 
 

1. Introduction 
Black carbon (BC) is one of the by-products of the incomplete combustion of fossil 

fuels and biomass [1], and it is also a global climate forcing factor with special properties. 
In recent years, many independent studies have shown that BC emissions from different 
sources have caused serious harm to the earth’s ecology [2–4]. BC will absorb solar radi-
ation and diffuse energy to the surrounding atmosphere, which will significantly increase 
the temperature [5]. Bond et al. believe that its greenhouse effect ability is only inferior to 
CO2 [6]. BC also has strong light absorption, which can reduce the albedo of light. It settles 
and attaches to the ice surface, intensifying the melting of the Arctic and Himalayan glac-
iers [7,8]. The aerosols formed in the atmosphere by BC absorbs substances that are toxic 
to the human body, such as sulfate and organic carbon, and spread to all parts of the world 
with the atmospheric cycle. A large number of BC particles are suspended in the atmos-
phere, which can easily enter the human body through the respiratory tract, causing seri-
ous respiratory, cardiovascular and pulmonary diseases, and even inducing cancer [9]. 
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Today, more than 95% of all ships in the world use diesel engines as power sources, 
however, diesel engines have caused serious pollution to the global environment while 
providing a stable power output [10]. BC is one of the main pollutants in marine diesel 
engine exhausts [11]. Although the BC emissions from ships account for less than 2% of 
the total global BC emissions, in areas with fragile ecosystems, such as the Arctic, the BC 
emissions from ships have caused irreversible damage to the local environment. Com-
pared with the mid latitude region, the impact of BC emissions in the Arctic and its adja-
cent sea areas on the climate is more than five times higher [12]. In addition to the Arctic, 
in many busy port cities and coastal areas, BC emissions from ships have also become one 
of the most important environmental issues [13]. In 2018, global ships contributed approx-
imately one-hundred-thousand tons of BC, an increase of 12% over 89-thousand tons in 
2012 [12]. According to statistics, if effective control measures are not taken, it is estimated 
that the BC generated by international shipping will be more than five times that of 2010 
by 2050 [14]. 

In recent years, although the BC issue has been a significant concern in most coun-
tries, there is still a lack of BC emission limitation regulations and effective BC emission 
reduction technologies for ships. Timonmen et al. carried out a BC measurement cam-
paign on a real ship, and the measurement results showed that the effect of exhaust gas 
cleaning (EGC) as a catalyst for reducing BC emissions was not obvious [15]. A research 
report by Germany and Finland [16] stated that the sulfur content in the fuel was closely 
related to the generation of BC, and the authors believed that the increase in sulfur content 
would lead to the increase in BC emissions. At present, The International Maritime Or-
ganization (IMO) is committing to controlling the BC emissions of ships, including com-
prehensively prohibiting the use of heavy fuel oil in the Arctic region and formulating BC 
emission regulations [17]. LNG is widely considered to be a clean fuel that can effectively 
reduce BC emissions. However, the use of this fuel will increase methane emissions [18]. 
The widely recognized BC control technologies include the use of distillate fuel, exhaust 
gas cleaner and diesel particulate filter (DPF), however, the emission reduction effect and 
cost economy of these remains to be verified [15,17]. 

The research and development of BC emission control technologies requires a large 
number of tests on engines to determine the BC emission concentration under different 
working conditions. However, the current physical test still has some shortcomings that 
cannot be ignored, such as high cost, long cycle and easy to produce measurement errors. 
Therefore, it is of great practical significance to develop a model that is easy to realize, has 
high accuracy and a fast response to predict the BC emission concentration of marine die-
sel engines. 

With the rapid development of data science and artificial intelligence, machine learn-
ing, as the core of the field of artificial intelligence, has gradually become one of the most 
important frontier technologies in biomolecular recognition [19], weather prediction [20], 
mineral exploration [21], information security [22,23], automatic driving [24] and other 
fields. Data-driven machine learning models have the advantages of having a fast re-
sponse, high accuracy and strong generalization ability. Due to its outstanding induction 
and decision-making capabilities, machine learning has been gradually applied to diesel 
engine fault diagnosis and performance optimization [25,26]. Among them, the research 
on the prediction of diesel engine pollutants using machine learning can be traced back to 
the end of the last century [27,28]. In recent years, the leapfrog development of science 
and technology and the growth of public awareness of environmental protection have led 
to more diversified research results in this field. Achievements in this field can be divided 
into three categories: 1. prediction of NOx emission concentration [29,30]; 2. prediction of 
soot emission concentration [31,32]; 3. prediction of emission concentrations of compres-
sion ignition engines using new fuels [33–35]. After analyzing the above studies, we found 
that: (1) No research has taken BC as the prediction object; (2) The size and quality of the 
data set will affect the prediction accuracy of the model; (3) The types of existing research 
selection models are too single; (4) Feature selection is one of the keys to train an efficient 
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model. Finding features that have strong correlation with the prediction object is the 
premise to improve the prediction performance of the model. 

We have compared the prediction performance of various machine learning algo-
rithms, and the results show that ensemble learning is more suitable for predicting the BC 
emission concentration of diesel engines under steady-state working conditions [36]. 
However, in this study, we took the performance parameters of the diesel engine as the 
features of the models. These parameters can describe the performance of diesel engines 
from a macro perspective, but the correlation between them and BC is weak, and it seems 
that it is not enough to characterize the BC emission level under the condition of limited 
training samples. In addition, because there are many kinds of ensemble learning algo-
rithms, choosing the best ensemble algorithm or integrating these algorithms has become 
a very challenging task. Therefore, in this paper, we propose a new BC emission predic-
tion model for diesel engines, based on a stacked generalization, for the first time, which 
integrates XGB, LGB, RF, SVR and RR. Stacked generalization is a method to minimize 
the generalization error of multiple estimators, which can integrate different types of es-
timators in order to eliminate the bias and non-uniformity of the different algorithms 
[37,38]. At present, many studies have shown that the model after fusion using stacked 
generalization has stronger prediction ability than a single model [39,40]. Wu et al. believe 
that the generation of BC is related to the combustion process, and BC emissions can be 
reduced by improving the combustion process in the cylinders [41], while the combustion 
process can usually be described and controlled by combustion characteristic parameters 
(CCPs) [42,43]. Therefore, in this paper, we have carried out a detailed analysis of the 
correlation between CCPs and BC emissions, and select them as the features of the pre-
diction models. 

The contributions of this paper can be summarized as follows: 
1. Pmax (Maximum Cylinder Pressure), MPRR (Maximum Pressure Rise Rate), 

MHRRP (Maximum Heat Release Rate Phase), MHRR (Maximum Heat Release Rate) 
and CA50 (Exothermic Center Phase) are extracted from the cylinder pressure data 
which acquired under different steady-state working conditions of the diesel engine, 
and then the influences of the changes of these CCPs on the BC emission concentra-
tion are theoretically analyzed and explained; 

2. Mutual information is used to measure the correlation between the CCPs and BC 
emission concentration. It is found that there is a strong correlation between the CCPs 
and BC emission concentration. This result fully proves that suitable CCPs can be 
used as the features of BC emission prediction model; 

3. A new prediction model of diesel engine BC emissions based on SG is proposed. The 
stability and prediction accuracy of the SG model are higher than those of its sub 
models, and it can achieve higher prediction performance when the number of train-
ing samples of the model is very limited. 
The remainder of the paper is organized as follows: In Section 2, we first describe the 

test instruments and test methods, then briefly introduce the definition of CCPs and the 
theory of the machine learning algorithms; Section 3 analyzes the influences of the 
changes in CCPs on BC concentration, and calculates the correlation between them using 
mutual information ,and then compares and evaluates the prediction performance of each 
sub model and SG model; In Section 4, we draw conclusions of this paper and some fol-
low-up research plans. 

2. Materials and Methods 
2.1. Test and Data Acquisition 

The test object of this study is a marine high-speed diesel engine. The engine specifi-
cations are summarized in Table 1.  
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Table 1. Specifications of the test engine. 

Description Specification 
Rated power 142 kW 
Rated speed 2200 rpm 

NO. Cylinder 4 
NO. Stroke 4 

Displacement 5.1 L 
Bore 110 mm 

Stroke 135 mm 
Compression ratio 19.05 

Cylinder arrangement In-line 

The schematic diagram of the engine test bench is presented in Figure 1. 

 
Figure 1. Schematic diagram of the engine test bench. 

In the steady-state tests of the diesel engine, it is necessary to control the environ-
mental variables. The intake air temperature was maintained at ~(25 ± 2) °C by the air 
conditioner, the air humidity was maintained at about 50%, and the air intake pressure 
was ~(101 ± 1) kPa. The exhaust pressure of the engine was maintained at ~(10 ± 0.5) kPa. 
The cooling mode of the engine was water cooling, and the cooling water temperature 
was maintained at ~(85 ± 5) °C. The fuel used in the tested engine was China VI 0# diesel. 

Kistler 6125c cylinder pressure sensor was used for cylinder pressure measurement. 
The measuring range of Kistler 6125c is 0~300 bar and the deviation is ±1%. 

The installation position of the cylinder pressure sensor was located in the cylinder 
head of the first cylinder and connected with the charge amplifier. The pressure signal 
was amplified by the charge amplifier and transmitted to the combustion analyzer. In the 
test, we collected cylinder pressure data within the whole cycle (−360° CA to 360° CA) in 
the step of 0.5° CA, so 1441 data samples can be collected in each single cycle. 

The Electronic Control Unit (ECU) of the engine is used to independently control the 
operation parameters of the engine, such as rail pressure, injection timing and number of 
injections. During the tests, only the rail pressure or the main injection timing shall be 
adjusted under the same working conditions. Table 2 lists the variation range of engine 
test conditions and operating parameters. 
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Table 2. Variation range of engine test conditions and operating parameters. 

 
Working Conditions Operation Parameters 

Speed Load Rail Pressure Injection Timing 
Unit rpm % MPa CA ATDC 

Variation range [700, 2200] [10, 100] [40, 160] [−12, 4] 
Interval 100 10 20 2 

We use the filter-type smoke meter (AVL 415S) to measure the BC concentration of 
the engine. According to the international standard ISO 8178-3 [44], the mass concentra-
tion of BC is converted by Equation (1): 

𝑒𝑒𝑒𝑒𝑒𝑒 =
1

0.405
× 𝐹𝐹𝐹𝐹𝐹𝐹 × 5.32 × 𝑒𝑒0.3062×𝐹𝐹𝐹𝐹𝐹𝐹 (1) 

where 𝑒𝑒𝑒𝑒𝑒𝑒 is the mass concentration of BC, in mg/m3, and FSN is the smoke value meas-
ured by AVL 415S. 

The specifications of the instruments used on the test bench are summarized in Table 
3. 

Table 3. Instruments on the test bench. 

Instruments Type Deviation 
Dynamometer AVL INDY S22-4 ±0.3% 
Air flowmeter ABB-0(40) …1200 kg ±0.1% 

Cylinder pressure sensor Kistler 6125C ±1% 
Combustion analyzer Kistler Kibox - 

Fuel consumption meter AVL 735S ±0.5% 
Smoke meter AVL 415S 0.1% FSN 
Gas analyzer AMA 4000 ±0.5% 

2.2. Definition and Calculation Method of CCPs 
The cylinder pressure contains rich combustion information. Through the test, we 

collected 161 groups of effective cylinder pressure data and BC emission concentration 
under corresponding working conditions; Figure 2 shows a group of in-cylinder pressure 
data measured when the engine speed is 1600 rpm. 

 
Figure 2. In-cylinder pressure. 
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In order to obtain the CCPs, it is necessary to calculate the instantaneous heat release 
rate according to the cylinder pressure. The heat release rate is calculated according to 
Equation (2): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝛾𝛾

𝛾𝛾 − 1
𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
1

𝛾𝛾 − 1
𝑑𝑑
𝑑𝑑𝑃𝑃
𝑑𝑑𝑑𝑑

 −  𝑄𝑄𝑤𝑤 (2) 

where 𝛾𝛾 is the adiabatic index of the mixture in the cylinder, 𝑃𝑃 represents the cylinder 
pressure, φ is the crank angle. 𝑑𝑑 is the working volume of the cylinder which calculated 
according to the structural parameters of the engine (bore D, stroke S, connecting rod 
length L and compression ratio ε). 𝑄𝑄𝑤𝑤 represents the heat transfer loss of the cylinder, 
which can be ignored in order to simplify the analysis process. 

Then the simplified Equation (2) is discretized. The calculation method of the heat 
release rate after discretization is shown in Equation (3): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 = [
𝛾𝛾

𝛾𝛾 − 1
𝑃𝑃𝑖𝑖(𝑑𝑑𝑖𝑖  −  𝑑𝑑𝑖𝑖−1  +  

1
𝛾𝛾 − 1

𝑑𝑑𝑖𝑖(𝑃𝑃𝑖𝑖  −  𝑃𝑃𝑖𝑖−1)]/(𝑑𝑑𝑖𝑖  −  𝑑𝑑𝑖𝑖−1) (3) 

Accumulated heat release refers to the total heat released at a certain time during the 
combustion process, which is derived from the accumulation of heat release rate. The cal-
culation method is shown in Equation (4): 

𝐴𝐴𝑅𝑅𝑅𝑅𝑖𝑖 = 𝐴𝐴𝑅𝑅𝑅𝑅𝑖𝑖−1  +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖−1(𝑑𝑑𝑖𝑖  −  𝑑𝑑𝑖𝑖−1) (4) 

Figure 3 shows the calculated heat release rate and cumulative heat release. 

 
Figure 3. Heat Release Rate and Accumulated Heat Release. 

The Maximum Pressure Rise Rate (MPRR) reflects the change rate of pressure in the 
cylinder, which has an important impact on the fuel economy, power, vibration and noise 
of the engine. MPRR is one of the most important CCPs, the calculation method of pres-
sure rise rate is shown in Equation (5): 

(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)𝑘𝑘 =
𝑑𝑑𝑘𝑘+1 − 𝑑𝑑𝑘𝑘−1
𝑑𝑑𝑘𝑘+1  −  𝑑𝑑𝑘𝑘−1

, 𝑘𝑘 = 1, 2, 3 …𝐾𝐾 (5) 

where 𝑑𝑑 is the cylinder pressure, 𝑑𝑑 is the crankshaft angle, and 𝐾𝐾 is the serial number 
of the collected in-cylinder pressure. The MPRR is the maximum value in the rate of 
change. 

As shown in Figure 4, the Pressure Rise Rate changes with the crank angle. 
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Figure 4. Pressure Rise Rate. 

CA50 is also one of the CCPs commonly used to control the combustion process of 
the engine. It represents the crank angle phase when the heat release in a single working 
cycle of the diesel engine reaches 50% of the total heat release, and is therefore also called 
the heat release center phase. The definition of CA50 is shown in Figure 5. CA10, CA50 
and CA90 are the corresponding crankshaft angles when the combustion mass fraction 
reaches 10%, 50% and 90%, respectively. The combustion mass fraction is the proportion 
of the current accumulated heat release to the total heat release. CA10 and CA90 are, re-
spectively, defined as the starting point and end point of combustion. 

 
Figure 5. Important phases in combustion process. 

2.3. Theory of Algorithms 
2.3.1. Extreme Gradient Boosting (XGB) 

Boosting aims to promote weak learners to strong learners. The algorithm trains a 
base learner from the initial training set, and then adjusts the distribution of training sam-
ples according to the performance of the base learner. Consequently, samples that were 
wrongly judged before will receive more attention in the subsequent training, and then 
uses the adjusted sample distribution to train the next base learner until the number of 
base learners reaches the set value T, and finally all the base learners are combined by 
weighting. XGB expands the loss function by second-order Taylor series and introduces 
the regular term to the loss function to control the complexity of the model [45]. 
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2.3.2. Light Gradient Boosting Machine (LGB) 
Similar to XGB, LGB essentially belongs to the boosting algorithm, which can effec-

tively reduce computing costs and improve scalability when solving problems with high 
feature dimensions and large data size [46]. For each feature, the Gradient Boosted Deci-
sion Tree (GBDT) needs to scan all of the training samples in order to estimate the infor-
mation gain of all possible segmentation points. To solve this problem, LGB introduces 
two new technologies: GOSS (Gradient based One Side Sampling) and EFB (Exclusive 
Feature Binding). The advantages of LGB are as follows: 1. It reduces the use of memory 
by data and ensures that a single machine can use as much data as possible without sac-
rificing computing speed; 2. It reduces the cost of communication, improves the efficiency 
when multiple computers are parallel, and achieves linear acceleration in computing. 

2.3.3. Random Forest (RF) 
RF has the advantages of simplicity, easy implementation, low computational over-

head, etc. It is a variant of the parallel ensemble learning method bagging, which is based 
on bootstrap sampling [47]. That is, given a data set containing m samples, the samples 
are randomly extracted and put back into the initial data set. After m times of random 
sampling, the sampling set containing m samples can be obtained. Some samples in the 
initial data set are sampled multiple times, while others never appear. According to such 
rules, we can obtain T sampling sets containing m training samples, train a base learner 
based on each sampling set, and then combine the base learners. The weak learner of RF 
is CART (Classification and Regression Trees). Based on bagging, it further introduces 
random attribute selection in the training process of decision tree. Figure 6 is the schematic 
diagram of boosting and bagging. 

  
(a) boosting (b) bagging 

Figure 6. Differences between boosting and bagging. 

2.3.4. Support Vector Regression (SVR) 
SVR is one of the most important algorithms in machine learning, and has been 

widely used because of its high flexibility and generalization ability. The traditional re-
gression algorithm usually calculates the loss directly based on the difference between the 
output 𝑓𝑓(𝑥𝑥) of the model and the real value. In contrast, the key of SVR is to build the 
interval. Only when the absolute value of the difference between the estimated value and 
the expected value is greater than the tolerance deviation, the loss is calculated. When the 
sample falls into the interval band of twice the deviation range, the prediction is judged 
to be correct [48]. 

The basic type of SVR is: 

� 𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤,𝑏𝑏
1
2
‖𝑤𝑤‖2

𝑠𝑠. 𝑡𝑡.  𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇  +  𝑏𝑏) ≥ 1, 𝑚𝑚 = 1,2, … ,𝑚𝑚.
 (6) 
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The linear regression function of training samples is: 

𝐿𝐿(𝑓𝑓(𝑥𝑥),𝑦𝑦, 𝜖𝜖) = �                   0,                   𝑚𝑚𝑓𝑓 |𝑦𝑦 −  𝑓𝑓(𝑥𝑥)| ≤ 𝜖𝜖
|𝑦𝑦 −  𝑓𝑓(𝑥𝑥)  −  𝜖𝜖|, 𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑡𝑡𝑤𝑤𝑚𝑚𝑠𝑠𝑒𝑒  (7) 

By introducing relaxation variables 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖, the problem of finding hyperplane can 
be expressed as: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖,𝜉𝜉�𝑖𝑖

‖𝑤𝑤‖2

2
 +  𝑒𝑒�(𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 +  𝜉𝜉𝑖𝑖)

𝑠𝑠. 𝑡𝑡.  �
𝑓𝑓(𝑥𝑥𝑖𝑖)  −  𝑦𝑦𝑖𝑖 ≤ 𝜖𝜖 +  𝜉𝜉𝑖𝑖
𝑦𝑦𝑖𝑖  −  𝑓𝑓(𝑥𝑥𝑖𝑖) ≤ 𝜖𝜖 +  𝜉𝜉𝑖𝑖

𝜉𝜉𝑖𝑖 ≥ 0, 𝜉𝜉𝑖𝑖 ≥ 0, 𝑚𝑚 = 1,2, … ,𝑚𝑚.

 (8) 

where 𝑤𝑤 is the normal vector of the hyperplane, 𝑏𝑏 defines the distance between the hy-
perplane and the origin, and 𝑒𝑒 is the penalty factor, 𝜖𝜖 is the error of regression function. 

2.3.5. Ridge Regression (RR) 
RR is a multiple regression analysis method commonly used in statistics. Compared 

with the ordinary least squares method, the difference is that the L2 regular term (penalty 
factor) is introduced into the loss function. In ordinary multiple regression, multiple col-
linearity problems will occur between features, and the coefficient estimation using the 
least squares method will be unstable, lacking stability and reliability. The introduction of 
regular term can effectively alleviate the problem of multiple collinearities, and reduce 
the complexity of the model to avoid the occurrence of over fitting. The loss function of 
RR is as Equation (9): 

𝐿𝐿(𝜃𝜃) = �(𝑦𝑦𝑖𝑖  −  𝑥𝑥𝑖𝑖𝛽𝛽)2
𝑝𝑝

𝑖𝑖=1

 +  𝜆𝜆�𝛽𝛽𝑗𝑗
2

𝑛𝑛

𝑗𝑗=0

 (9) 

where 𝛽𝛽𝑝𝑝 represents the coefficient of the 𝑗𝑗-th feature in the total 𝑑𝑑 features. ∑ 𝛽𝛽𝑗𝑗
2𝑛𝑛

𝑗𝑗=0  is 
the penalty term and 𝜆𝜆 is the penalty coefficient, which is used to control the penalty 
intensity for 𝛽𝛽𝑗𝑗. The larger the value of 𝜆𝜆 is, the simpler the generated model will be. 

2.3.6. Stacked Generalization (SG) 
SG is an efficient ensemble algorithm, and was first proposed by Wolpert [49]. The 

greatest difference between SG and homologous ensemble algorithms, such as bagging or 
boosting, is that it is composed of heterogeneous estimators. Since each machine learning 
algorithm uses different methods to represent the knowledge and bias learned from the 
data, they will explore the hypothesis space from different perspectives to determine the 
optimal model. In order to combine the prediction results of various algorithms and elim-
inate the inherent bias of the algorithm, SG adopts a stacking strategy. As shown in Figure 
7, the basic learners of SG model in this paper are LGB, RF, XGB and SVR. In order to 
avoid serious over fitting, the simpler linear regression model RR is used as the meta 
learner, and the stacked model is ensembled by taking the output of the basic learner as 
the input of the meta learner. 
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Figure 7. Schematic diagram of SG. 

The following Algorithm 1 is the flow of SG algorithm: 

Algorithm 1: Stacked Generalization [49] 
Input: Training data 𝓓𝓓 = {𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊}𝒊𝒊=𝟏𝟏𝒎𝒎 (𝒙𝒙𝒊𝒊𝝐𝝐ℝ𝒏𝒏,𝒚𝒚𝒊𝒊𝝐𝝐𝝐𝝐) 
Output: An ensemble regressor H 
Step1: Learn base regressors 
1: 𝒇𝒇𝒇𝒇𝒇𝒇 𝑡𝑡 = 1,2, … ,𝑇𝑇 𝒅𝒅𝒇𝒇 
2:         Learn a base regressor ℎ𝑡𝑡 based on 𝒟𝒟 
3: 𝒆𝒆𝒏𝒏𝒅𝒅 𝒇𝒇𝒇𝒇𝒇𝒇 
Step 2: Construct new datasets from 𝒟𝒟 
4: 𝒇𝒇𝒇𝒇𝒇𝒇 𝑚𝑚 = 1,2, … ,𝑚𝑚 𝒅𝒅𝒇𝒇 
5:         Construct a new dataset that contains {𝑥𝑥𝑖𝑖′,𝑦𝑦𝑖𝑖}, where 𝑥𝑥𝑖𝑖′ =
{ℎ1(𝑥𝑥𝑖𝑖),ℎ2(𝑥𝑥𝑖𝑖), … ,ℎ𝑇𝑇(𝑥𝑥𝑖𝑖)} 
6: 𝒆𝒆𝒏𝒏𝒅𝒅 𝒇𝒇𝒇𝒇𝒇𝒇 
Step 3: Learn meta regressor 
7: Learn a new regressor ℎ′ based on the newly constructed dataset 
8: 𝒇𝒇𝒆𝒆𝒓𝒓𝒓𝒓𝒇𝒇𝒏𝒏 𝑅𝑅(𝑥𝑥) = ℎ′�ℎ1(𝑥𝑥),ℎ2(𝑥𝑥), … ,ℎ𝑇𝑇(𝑥𝑥)� 

2.3.7. Mutual Information (MI) 
MI, derived from information theory, is an effective information measurement 

method, which can be used to measure the correlation between nonlinear parameters to 
achieve the effect of feature recognition or clustering. This method is widely used in the 
field of data science [50]. Figure 8 is a schematic diagram of MI. 



Atmosphere 2022, 13, 1855 11 of 24 
 

 
Figure 8. Mutual Information. 

Suppose that there are sets 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑅𝑅}, 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝐶𝐶}, and the proportion 
of class 𝑘𝑘 samples in 𝑋𝑋 is 𝑑𝑑𝑘𝑘(𝑘𝑘 = 1,2, … ,𝑅𝑅), then the information entropy of 𝑋𝑋 is: 

𝐸𝐸𝑚𝑚𝑡𝑡(𝑋𝑋) =  −  �𝑑𝑑𝑘𝑘

𝑅𝑅

𝑘𝑘=1

𝑙𝑙𝑜𝑜𝑙𝑙2𝑑𝑑𝑘𝑘 (6) 

Let the joint distribution of discrete random variables 𝑋𝑋 and 𝑌𝑌 be 𝑑𝑑(𝑥𝑥,𝑦𝑦), then the 
marginal distributions of 𝑋𝑋 and 𝑌𝑌 are 𝑑𝑑(𝑥𝑥) and 𝑑𝑑(𝑦𝑦), and the mutual information is the 
relative entropy of the joint distribution 𝑑𝑑(𝑥𝑥,𝑦𝑦) and the marginal distributions 𝑑𝑑(𝑥𝑥) and 
𝑑𝑑(𝑦𝑦): 

𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) = �𝑑𝑑(𝑥𝑥,𝑦𝑦)𝑙𝑙𝑜𝑜𝑙𝑙
𝑃𝑃(𝑥𝑥,𝑦𝑦)
𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑦𝑦)

𝑥𝑥,𝑦𝑦

 (7) 

In order to scale the mutual information between [0, 1], it is necessary to normalize 
the mutual information according to Equation (8): 

𝐹𝐹𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)

𝐹𝐹�𝑅𝑅(𝑋𝑋),𝑅𝑅(𝑌𝑌)�
 (8) 

However, for discrete variables, if the values of 𝑋𝑋 and 𝑌𝑌 are more, the mutual in-
formation 𝐹𝐹𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) tends to become grater, but this is not caused by the strong correla-
tion between 𝑋𝑋 and 𝑌𝑌. Adjusted Mutual Information (AMI) eliminates the above effects. 
The calculation of AMI is as Equation (9): 

𝐴𝐴𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)  −  𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)}

𝐹𝐹�𝑅𝑅(𝑋𝑋),𝑅𝑅(𝑌𝑌)�  −  𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)}
 (9) 

where 𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)} is the expectation of MI of variables 𝑋𝑋, 𝑌𝑌. 

𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)} = 

�� �
𝑘𝑘
𝐹𝐹

log�
𝐹𝐹 × 𝑘𝑘
𝑎𝑎𝑖𝑖 × 𝑏𝑏𝑗𝑗

�
𝑎𝑎𝑖𝑖! 𝑏𝑏𝑗𝑗! (𝐹𝐹 −  𝑎𝑎𝑖𝑖)! �𝐹𝐹 −  𝑏𝑏𝑗𝑗�!

𝐹𝐹!𝑘𝑘! (𝑎𝑎𝑖𝑖  −  𝑘𝑘)! �𝑏𝑏𝑗𝑗  −  𝑘𝑘�! �𝐹𝐹 −  𝑎𝑎𝑖𝑖  −  𝑏𝑏𝑗𝑗  +  𝑘𝑘�!

min�𝑎𝑎𝑖𝑖,𝑏𝑏𝑗𝑗�

𝑘𝑘=�𝑎𝑎𝑖𝑖+𝑏𝑏𝑗𝑗−𝐹𝐹�
+

𝑦𝑦

𝑗𝑗=1

𝑥𝑥

𝑖𝑖=1

 (10) 

where 𝐹𝐹 is the number of all variables in set 𝑋𝑋 and set 𝑌𝑌. �𝑎𝑎𝑖𝑖  +  𝑏𝑏𝑗𝑗  −  𝐹𝐹�+  denotes 
𝑚𝑚𝑎𝑎𝑥𝑥�𝑎𝑎𝑖𝑖  +  𝑏𝑏𝑗𝑗  −  𝐹𝐹�+.The variables 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 are partial sums of the contingency table. 

In this paper, 𝐹𝐹�𝑅𝑅(𝑋𝑋),𝑅𝑅(𝑌𝑌)� is selected as the arithmetic average, so 𝐹𝐹𝑀𝑀𝑀𝑀 and 𝐴𝐴𝑀𝑀𝑀𝑀 
are shown in Equations (11) and (12): 

𝐹𝐹𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)

1
2 �𝑅𝑅(𝑋𝑋)  +  𝑅𝑅(𝑌𝑌)�

 (11) 
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𝐴𝐴𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌) =
𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)  −  𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)}

1
2 �𝑅𝑅(𝑋𝑋)  +  𝑅𝑅(𝑌𝑌)�  −  𝐸𝐸{𝑀𝑀𝑀𝑀(𝑋𝑋,𝑌𝑌)}

 (12) 

3. Results and Discussion 
3.1. Influence of Combustion Process Change on BC Emission Concentration 

The key to improving the power and emissions performance of diesel engines is to 
optimize and control the combustion process in the cylinder. Therefore, the research on 
the new combustion modes of diesel engines and combustion systems of new clean fuel 
has received extensive attention [51–53]. If the combustion path of the diesel engine can 
be effectively controlled, so that the working medium can burn efficiently in the cylinder, 
then the pollutant emission concentration will be significantly reduced [54]. We believe 
that the change in the combustion process has an important influence on the generation 
and emission of BC, and selecting CCPs that can describe the combustion process as the 
features of BC emission prediction model can not only improve the prediction perfor-
mance of the model, but also provide a meaningful reference for the application of com-
bustion control technology. In this paper, five commonly used CCPs are selected as re-
search objects: Maximum Cylinder Pressure (Pmax), Maximum Pressure Rise Rate 
(MPRR), Maximum Heat Release Rate (MHRR), Maximum Heat Release Rate Phase 
(MHRRP) and Heat Release Center Phase (CA50). 

Figure 9 shows the relationship between CCPs and BC concentrations in pairs, and 
the graph on the diagonal represents the distribution of each parameter. Figure 9 shows 
that there are obvious correlation trends between the parameters. For example, it can be 
seen that CA50 and MHRRP have a highly linear positive correlation, because both are 
directly affected by the fuel injection time and injection pressure. This result also confirms 
the accuracy of our parameter calculation results. However, the relationship between 
most parameters is not a simple linear correlation, and as there are 161 groups of valid 
data, the pixel-based distribution map cannot accurately depict the local details in the fig-
ure, so we will use the scatter map for further discussion. 
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Figure 9. Distribution of the relationship between CCPs and BC. 

Figure 10 shows the scatter plot of CCPs and BC concentrations under different work-
ing conditions. It can be seen from Figure 10a–c that with the increase of Pmax, MPRR and 
MHRR, the BC concentration shows a significant downward trend. 

Pmax is primarily related to the total amount of premixed working medium formed 
during the ignition delay period, and the total amount of premixed working medium will 
be affected by factors such as the fuel injection amount, fuel properties, and cylinder air 
flow strength [55]. The increase in Pmax means that the proportion of fully oxidized fuel 
increases, thus reducing the BC concentration. Similar to Pmax, MHRR is related to the 
cylinder pressure and combustion chamber volume [56]. The larger the MHRR, the greater 
the proportion of the ignition delay period in the combustion duration will be, this, in 
turn, speeds up the conversion rate from fuel to energy, and renders the maximum drop 
rate of BC at more than 90%. 

It can be seen from the green oval area in Figure 10b that with the increase in MPRR, 
the BC concentration rises, slightly, from the lowest point. The increase in MPRR indicates 
that the turbulence of the working medium is more intense, the flame propagation speed 
is increased [57,58], and this inhibits the generation process of black BC caused by local 
hypoxia, thus greatly reducing the BC concentration. However, with the continuous in-
crease in MPRR, there is a pressure difference in the combustion chamber at the same 
time, resulting in pressure oscillations, which aggravates the combustion process in the 
cylinder, and the diesel engine cannot run smoothly [59]. The obvious inflection point 
occurs when MPRR is 6 bar/° CA. After the inflection point, the BC concentration in-
creased significantly, from 1.4 mg/m3 to 6.2 mg/m3. 
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(a) Pmax vs. BC (b) MPRR vs. BC (c) MHRR vs. BC 

  

 

(d) MHRRP vs. BC (e) CA50 vs. BC  

Figure 10. Influence of CCPs changes on BC concentration. 

The MHRRP is affected by the injection timing and the starting point of combustion, 
and also has a clear positive correlation with CA50. It can be seen from Figure 10d that 
the earlier MHRRP occurs, the more forward the starting point of combustion is, the more 
combustible mixture is formed during the ignition delay period, and the lower the BC 
concentration is. 

CA50 is primarily affected by the injection timing and injection pressure [54,60–62]. 
Figure 10e shows that when CA50 is forward, the diffusion combustion duration is rela-
tively short, and the BC concentration is relatively small. It is worth noting that, as shown 
in the data of the blue rectangular area in the figure, under some working conditions, the 
delay of injection timing (delay of CA50) shortens the mixing time of oil and gas, and more 
fuel forms BC through incomplete combustion, so the BC concentration will increase. 

3.2. Correlation Analysis between CCPs and BC 
Correlation analysis is an important prerequisite for establishing efficient prediction 

models. Scientists usually use correlation coefficients to perform correlation analysis on 
different parameters [53,63]. However, correlation coefficients cannot measure complex 
nonlinear relationships. In addition, MI has been proven to be a better and more accurate 
measurement method. Therefore, this paper uses MI theory for correlation analysis. Fig-
ure 11a,b shows the NMI and AMI between the parameters, respectively. The color blocks 
in the figure represent the MI between different parameters. The darker the color of the 
color blocks, the stronger the correlation between the parameters. It can be seen from Fig-
ure 11 that Pmax and MHRR have the strongest correlation, with NMI and AMI reaching 
0.99 and 0.97, respectively. Moreover, BC has a high correlation with various CCPs, which 
is shown in Figure 12. 
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(a) NMI (b) AMI 

Figure 11. MI heat map of parameters. 

Figure 12 shows the MI values between CCPs and BC concentrations. The green col-
umns in the figure represent the NMI value, while the brown columns represent the AMI 
value. It can be seen from the figure that the NMI between the CCPs and BC concentra-
tions are greater than 0.9, while the AMI are greater than 0.75. The AMI are smaller than 
the NMI, indicating that the AMI reduces the measurement deviation of NMI due to mul-
tiple variable values [64,65]. The correlations between CCPs and BC concentrations are 
strong, and the AMI between Pmax and MHRR and BC concentrations are significantly 
higher than the other three parameters (0.8587 and 0.8556). Therefore, the selected CCPs 
can all be used as the feature of BC prediction model. 

In addition, because BC concentration is measured under different steady state work-
ing conditions of the diesel engine, in order to accurately predict BC concentration, it is 
necessary to add speed, torque, power and fuel consumption, which can describe the 
working conditions as the feature of the prediction model. 

 
Figure 12. MI of CCPs and BC Concentration.  
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3.3. Prediction of BC Concentration 
Generally speaking, using machine learning to solve regression problems includes 

four steps: data cleansing, split of dataset, adjustment of hyper parameters, and model 
performance evaluation. Figure 13 is the flow diagram of establishing the prediction 
model. We use Python to complete the establishment of BC emission prediction model, 
and the compilation environment is Pycharm. Python libraries used in modeling include 
scikit-learn, pandas, numpy and matplotlib. 

Raw data

Cleansing Integration Reduction Transformation

Training Set Test Set

TestingTraining
Prediction

Model

Meet the 
requirement?

N
Adjusting

hyper 
parameters

Evaluation & optimization

Y

 
Figure 13. Flow chart of establishing prediction model. 

3.3.1. Split and Preprocessing of Dataset 
According to the diesel engine steady state condition test described above, 161 

groups of raw data that can be used to train and test the prediction model are finally col-
lected after removing missing and invalid data. Divide the training set and the test set 
according to the proportion of 8:2, set 121 samples for the training set and 30 samples for 
the test set. Then, set the remaining 10 groups of samples as the validation set; the samples 
of the validation set are randomly selected from the original data, and the samples are 
evenly distributed according to the numerical value. 

The algorithm using gradient descent requires feature scaling. The reason for this is 
that when the data dimensions are inconsistent, the contour of the loss function is an el-
lipse with a very high eccentricity, which will lead to very complex calculations and will 
not achieve convergence. After feature scaling, the contour of the loss function tends to be 
circular, prompting the algorithm to iterate toward the origin, thus effectively reducing 
the number of iterations. The use of SVR and RR requires feature scaling, while XGB, LGB 
and RF composed of tree structures do not require feature scaling. The tree model is 
formed by finding the optimal split point. The numerical scaling of samples does not affect 
the location of the split point, so it does not affect the structure of the tree model. 

The common feature scaling method is normalization, which makes features dimen-
sionless and scales their values to [0, 1]: 

𝑥𝑥� =
𝑥𝑥 −  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥  −  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
 (13) 
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where 𝑥𝑥 is the raw data and 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum value of the feature; 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥 is the max-
imum value of the feature; 𝑥𝑥� is the data after normalization. 

Table 4 lists the information of the normalized features. 

Table 4. Data information after normalization. 

Items 
Features 

Pmax MPRR MHRR CA50 MHRRP Speed Torque Power FC 
max 1 1 1 1 1 1 1 1 1 

mean 0.598 0.430 0.597 0.370 0.404 0.575 0.524 0.446 0.421 
std 0.297 0.212 0.249 0.229 0.249 0.266 0.314 0.283 0.262 
min 0 0 0 0 0 0 0 0 0 
25% 0.361 0.242 0.451 0.181 0.222 0.333 0.233 0.223 0.214 
50% 0.650 0.425 0.629 0.331 0.364 0.600 0.551 0.409 0.371 
75% 0.890 0.582 0.824 0.536 0.538 0.800 0.805 0.675 0.598 

count 161 161 161 161 161 161 161 161 161 

3.3.2. Evaluation Criteria of the Model 
In statistics, there are various statistical metrics used to evaluate the prediction per-

formance of the model. This paper used four common metrics. These metrics are Mean 
Square Error (MSE), Root Mean Squares Error (RMSE), Mean Absolute Error (MAE), and 
Coefficient of Determination (R2). The equations and performance criteria of these metrics 
are shown in Table 5. 

Table 5. Evaluation metrics of the model. 

Metric Equation 1 Performance Criteria 

MSE 
1
𝑚𝑚
�(𝑦𝑦�𝑖𝑖  −  𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 The smaller the MSE value, the higher the prediction accuracy of the model. 
The value range of MSE is [0, +∞]. 

RMSE �
1
𝑚𝑚
�(𝑦𝑦�𝑖𝑖  −  𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

2

 RMSE is the arithmetic square root of MSE.  

MAE 
1
𝑚𝑚
�|𝑦𝑦�𝑖𝑖  −  𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 
When the predicted value is completely consistent with the actual value, 

MAE is equal to 0. The greater the error, the greater the MAE, and the value 
range of MAE is [0, +∞]. 

R2 
∑ (𝑦𝑦�𝑖𝑖  −  𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖  −  𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

 
The value range of R2 is [0, 1]. The closer it is to 1, the stronger the model’s 

ability to explain the predicted object. The closer it is to 0, the worse the fit of 
the model. 

1 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖 is the true value and 𝑦𝑦� is the average of the true values. 

3.3.3. Analysis of Prediction Results 
The quality of the data determines the upper limit of the prediction performance of 

the models, and the purpose of adjusting the hyper parameters is to ensure the prediction 
capability of the models approach the upper limit as much as possible. In the process of 
establishing the model, adjusting the hyper parameters is the most time-consuming step, 
besides preprocessing. Since there is no reliable theoretical basis for the selection of hyper 
parameters of the model, most operations can only rely on the intuition and experience of 
data scientists. 

We use grid search to optimize the hyper parameters. Grid search is one of the most 
basic hyperparameter optimization algorithms. The basic principle is to adjust the param-
eters sequentially in steps within the specified parameters range, and use the adjusted 
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parameters to train the prediction model until the optimal hyper parameters are found 
[66,67]. 

We define the search range of the hyper parameters of different models and take the 
MSE of the model on the test set as the optimization goal. The hyper parameters of the 
models, search range and final optimization results are listed in Table 6. 

Table 6. Hyper parameters of the models. 

Hyper Parameters Search 
Range 

Algorithm 
XGB LGB RF SVR RR 

max_depth [1, 10] 10 7 9 / / 
n_estimators [10, 1000] 970 1000 980 / / 

eta [0.01, 0.3] 0.2 / / / / 
min_child_weight [1, 10] 4.3 / / / / 

gamma [0.01, 0.3] 0.001 / / 0.002 / 
num_leaves [10, 100] / 21 / / / 

learning_rate [0.1, 1] / 0.7 / / / 
min_data_in_leaf [10, 20] / 17 / / / 

min_sum_hes-
sian_in_leaf Default / 0.001 / / / 

min_samples_split Default / / 2 / / 
min_samples_leaf Default / / 1 / / 

C [1, 12] / / / 9 / 
epsilon [0.001, 0.2] / / / 0.01 / 
alpha_ [10−7, 102] / / / / 7.62 

In order to evaluate the prediction performance of the model, the raw data set is ran-
domly divided into training set and test set, according to the proportion of 8:2; then, each 
model is trained and tested separately, and the MSE of the model for the test sets is calcu-
lated and recorded. We repeated the above steps 299 times, and the final results are shown 
in Figure 14. It can be seen from the figure that the average MSE of XGB, LGB, SVR, RF 
and SG are 0.0532, 0.0566, 0.1074, 0.0831 and 0.0485, respectively. The SG model has 
achieved the best prediction result of all models. When facing different test sets, the pre-
diction results are more stable because of the small variance. In addition, LGB has 
achieved the lowest variance outside SG, and its prediction performance and stability are 
better than other algorithms. Many studies have also obtained similar conclusions [68–
70]. 

 
Figure 14. MSE results of the models. 
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Table 7 lists the evaluation results of the prediction performance of each model. The 
scores of XGB and LGB are relatively close, and their R2 for the test set are more than 0.995. 
The prediction effect of RF and SVR is relatively poor. Their MSE for the training set and 
test set are relatively larger, and their R2 are less than 0.98. SG has the best prediction 
results among them, with scores higher than the other models. This result proves the ef-
fectiveness of the model fusion method, and achieves a high degree of fitting for both test 
sets and training sets. It is not difficult to see that, compared with our previous research 
results, this paper uses new features and less training data, but has achieved better pre-
diction results [36]. 

Table 7. Prediction performance evaluation results of each model. 

Models 
MSE RMSE MAE R2 

Test Training Test Training Test Training Test Training 
XGB 0.0563 0.0033 0.2373 0.0574 0.1630 0.0133 0.9964 0.9996 
LGB 0.0537 0.0041 0.2317 0.0640 0.1413 0.0105 0.9941 0.9999 
SVR 0.1189 0.0283 0.3448 0.1682 0.1977 0.0875 0.9768 0.9977 
RF 0.0822 0.0219 0.2867 0.1480 0.3123 0.1459 0.9779 0.9984 
SG 0.0470 0.0016 0.2168 0.0403 0.1175 0.0087 0.9983 0.9999 

As the 10 groups of samples in the validation set are independent of the training set 
and the test set, the prediction of the validation set can more effectively reflect the real 
prediction ability of the model [71]. The prediction results of each model on the validation 
set are shown in Figure 15. The average relative error of each model on the validation set 
is marked in the lower right corner of the figure. From the prediction results of each model 
on the validation set, it can be seen that the prediction results of SVR are poor, the average 
relative error exceeds 20%, the prediction results of XGB and LGB are similar, the average 
relative errors are 14.48% and 13.42%, respectively, while SG has also reached a very high 
prediction accuracy on the validation set, and the average relative error for each sample 
is only 10.17%.  
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Figure 15. Prediction results of each model on validation set. 

Figure 16 shows the relative errors of SG and LGB for each sample in the validation 
set. It can be seen that the relative errors of SG on the validation set are predominantly 
less than 15%, while the maximum relative errors of LGB on the validation set samples 
are more than 30%. The maximum difference between the prediction errors of the two 
models in all samples is 20.62%. SG can predict samples with smaller values more accu-
rately, which is also SG’s advantage over other models. It can accurately capture the dif-
ferences between samples and accurately predict smaller values. 
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Figure 16. Comparison of relative errors between SG and LGB for validation set. 

4. Conclusions 
In order to accelerate the research and development process of BC emission control 

technology for marine diesel engines, this paper proposes an SG-based BC emission pre-
diction model for marine diesel engines, which combines five machine learning models: 
XGB, LGB, RF, SVR and RR. CCPs with a high correlation with BC emissions are taken as 
the features of the model. Finally, by comparing the prediction results of the single model 
and fusion model on the same datasets, the effectiveness of the method is proved. The 
main research conclusions of this paper are as follows: 
 Due to the improvement of fuel utilization efficiency, the increase in Pmax, MPRR 

and MHRR will reduce the BC concentration; however, with the shortening of the 
ignition delay period and uneven fuel diffusion, the delay of MHRRP and CA50 led 
to a significant increase in BC concentration; 

 The correlation analysis results show that the NMI between the CCPs and BC con-
centrations are higher than 0.9, while the AMI are higher than 0.75, which proves that 
there is a strong correlation between the CCPs and BC concentrations; 

 The fused model reconciles the inherent bias of a single model to data, and achieves 
the best prediction effect on the different data sets. The MSE and R2 of SG model for 
the test set are 0.0485 and 0.9983, respectively, and its average relative error for vali-
dation set is only 10.17%. 
As mentioned in the introduction of this paper, machine learning is a cutting-edge 

data science technology, which can play a very prominent role in engine pollutant predic-
tion. In the future, this technology can also be used to reduce the calculation cost of engine 
numerical simulation, adaptive control and the construction process of combustion reac-
tion mechanism and other fields 

In addition, the limitations of the method proposed in this paper and the research 
that can be carried out in the future are: (1) The data used in this paper only comes from 
one diesel engine, and subsequent tests should be carried out on different types of diesel 
engines to verify the universality of the conclusions in this paper; (2) The method pro-
posed in this paper can only be used to predict the black carbon emission concentration 
of engines under steady state conditions (marine engines are more often under steady 
state conditions), and the prediction of BC emission of diesel engine under transient con-
dition should be discussed in the future; (3) In practical application, the available effective 
data may be less, so a small sample size BC emission prediction model can be developed 
to solve the problem. 
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