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Abstract: Rapid and highly sensitive detection of iodine gaseous species is crucial as the first response
in case of nuclear accidents and nuclear waste clean-up. A robust and user-friendly sensor-based
technology that allows online monitoring is highly desirable. Herein, we report the success of using a
covalent organic framework (AQ-COF)-based sensor for real-time iodine gas adsorption and detection
by the electrochemical impedance spectroscopy (EIS) technique. The sensor exhibits a high sensitivity
and a pronounced electrical response to trace amounts of iodine vapor. Gaseous iodine was readily
detected with a significant change in resistance (104×) at 70 ◦C within 5 min exposure to air. Notably,
the EIS response is quite chemoselective to iodine over other common species such as air, methanol,
ethanol, and water, with a selectivity of 320, 14, 49, and 1030, respectively. A mechanical study shows
that the adsorption of iodine can reduce the optical bandgap of the AQ-COF, causing the impedance
to drop significantly. This study demonstrates how the adsorption enrichment effect of selective I2

adsorption by a covalent organic framework can be leveraged to create a highly selective sensor for
the direct online electrical detection of radioactive gaseous toxins.

Keywords: covalent organic frameworks; COFs; iodine vapor; sensor; direct sensing; electric
impedance spectroscopy

1. Introduction

The highly sensitive detection of fission gas is of great importance for the protection of
both animals and plants, particularly in the field of nuclear industry, as this field is always
accompanied by the production of nuclear waste. Iodine radioisotopes (129I and 131I) are
the two major concerns linked to nuclear fission because of their volatile and radioactive
nature [1–3]. In particular, while 131I has a short half-life (8 d) but strong negative activity
in human metabolic processes, 129I has an ultra-long half-life (1.57 × 107 y) [4–6]. What
is more, iodine is easily volatilized to the atmosphere, causing ozone destruction in the
stratosphere [7], and can accumulate in living organisms via gas inhalation or the food
chain, resulting in thyroid diseases and cancer [8,9]. In the case of a nuclear accident or
inadvertent environmental release of radioactive iodine vapour, remarkable efforts are
being made to improve the detection technics for early warning and first responses [10–12].
Among which, electrochemical impedance spectroscopy (EIS), combining a highly selective
material with electrical readout responses, has been a promising technic for direct electrical
detection of iodine gas [13,14].

Covalent organic frameworks (COFs), a new type of crystalline porous material,
have been attracting a significant interest in recent decades [15–17]. As a result of their
excellent porosity, periodic framework, fine tunable structure, chemical/thermal stability,
and host-guest interactions, COFs are a promising platform for broad applications, such
as gas separation [18], catalysis [19,20], electrochemical energy storage [21,22], proton
conduction [23], optical/electrical sensing [24,25], and other fields. COFs are conductive
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to the transport of substances because of their highly regular, ordered pore structure and
adjustable pore size, which can speed up the entire interaction between targeting analytes
and sensing materials and so promote the effective detection of chemicals. At the same
time, the stable covalent bonding allows COFs to retain their original structure under
harsh conditions [26], providing an ideal platform for corrosive gas, e.g., I2, adsorption
and sensing [27–29]. However, COF-based chemical sensors have been reported but
are mainly limited to the transduction mechanisms based on luminescence quenching
or enhancement [30,31]. On the other hand, COF-based electrical sensors are relatively
rare [32]. To our best knowledge, the use of COFs as a sensing material for EIS has not
been explored.

In this work, we reported the synthesis of an anthraquinone-containing COF (AQ-COF)
linked by β-keto amines with unique enol-keto tautomerism structure. The synthesized
AQ-COF was used for the first time as a sensitive material for electrochemical sensing. High
sensitivity towards iodine gas was demonstrated, with a resistance change over 104× of the
AQ-COF-based sensing film coated on the surface of the active area of Au-interdigitated
electrodes (IDEs) within only 5 min at 70 ◦C. It is worth mentioning that AQ-COF exhibits
a selective impedance change to iodine molecules at room temperature, without being
affected by air, water vapor, methanol, or ethanol vapor. This study reveals a novel method
for the fabrication of gas sensors based on COFs and provides a new perspective for the
design of advanced gas sensors with high detection efficiency, sensitivity, and selectivity.

2. Materials and Methods
2.1. Materials

1,3,5-triformylphloroglucinol (TFP) was synthesized following a reported procedure [15].
A MilliQ System (Millipore, Inc., Billerica, MA, USA ) was used to apply deionized water
(DI) water. All other chemicals were obtained from Sinopharm (Shanghai, China) and used
as received.

2.2. Characterization

Solid-state nuclear magnetic resonance spectroscopy (NMR) was performed on a
Bruker NMR spectrometer (ADVANCE III 600). N2 adsorption–desorption isotherms for
the AQ-COF at 77 K were obtained by a physisorption instrument (BSD-PM2). Thermo-
gravimetric analyses (TGA) were conducted on a Netzsch TG 209 F3 analyzer. The powder
X-ray diffraction (PXRD) experiments were conducted on an X-ray diffractometer (Bruker
D8 ADVANCE) equipped with a Cu Kα radiation source, with scanning at rate of 1◦/min
from 2.5 to 40◦. A BRUKER TENSOR 27 FT-IR spectrometer was used for Fourier transform
infrared (FTIR) spectra. UV-Vis absorption spectra were acquired on a Shimadzu UV-2600i
(Shimadzu, Tokyo, Japan) with a wavelength ranging from 200 to 800 nm, using BaSO4 as
the reference. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo Scien-
tific ESCALAB Xi+. The electrochemical impedance response was analyzed on a Corrtest
CS 310M workstation. The highest input impedance of this workstation was 1012 Ω. The
frequency range of the alternating current was 100 kHz–10 mHz, and the perturbation
amplitude was 50 mV. The experiments were conducted at room temperature with sensors
placed on an alumina plate that was 5 mm thick. The Zview software version 3.1 (Scribner
and Associates Inc., Southern Pines, NC, USA) was used to fit their impedance plots using
equivalent circuits.

2.3. Synthesis of the AQ-COF

An amount of 0.9 mmol (189 mg) of TFP and 1.35 mmol (321.3 mg) of 2,6- diaminoan-
thraquinone (DAAQ) in a Pyrex tube were added to 9 mL of mesitylene and 1,4-dioxane
(1:1 volume). After 10 min of sonication, the mixture formed a uniform solution, and then
1.5 mL of 6 M aqueous acetic acid was added to the mixture dropwise at room temperature.
Degassing was carried out by three cycles of freeze–exhaust–thaw in a liquid nitrogen bath.
The reaction tube was flame sealed and kept at 120 ◦C for 72 h. After cooling to room
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temperature, the mixture was filtered and a red precipitate was obtained after extensive
washing with acetone, methylene chloride, and ethanol. Then, Soxhlet was extracted with
ethanol for one day. Finally, a maroon solid was obtained after drying under vacuum at
70 ◦C for 24 h.

2.4. Sensor Fabrication

The Au-interdigitated electrodes (IDEs) on an alumina substrate were supplied by
Guangzhou Yuxin Sensor Technology Co., Ltd. (Guangzhou, China). The active area of
the electrode was around 0.3 cm2. Each electrode contained 10 pairs of gold lines with a
width of 100 µm, at 100 µm apart from each other. Before use, the IDEs were pre-treated
by soaking in methanol for 10 min and dried under a flow of N2. The blank IDEs were
measured and had impedances higher than 1.1 × 1010 Ω at 10 mHz. An amount of 10 mg of
AQ-COF was dispersed in 1 mL methanol by sonication and then 10 µL was pipetted to the
active area of IDE. After drying for 10 min on a heating plate, a thin film of AQ-COF was
formed on the surface of the IDE. Before exposure to the analyte, the sensor was pre-dried
in a drying oven at 70 ◦C for 30 min.

2.5. Iodine Gas Exposure

A 250 mL glass bottle with lip containing 200 mg iodine powder was heated to 70 ◦C
in a constant temperature oven for 2 h to reach iodine vapor equilibrium. The sensor was
then put into the vial and kept for different time intervals of 0.5, 1, and 5 min. After this, the
sensor was immediately taken out from the vial and employed directly for EIS measurement
without further processing. At least three runs of each experiment were completed.

2.6. Selectivity Test

Air, methanol, ethanol, and water were also investigated as possible chemical interfer-
ing species, in a similar way to iodine gas, but using another analyte instead of iodine. In
order to produce saturated vapor pressure for other chemically disturbed species, 10 mL
of methanol, ethanol, or water were put in 250 mL clean glass vials and held at room
temperature for 2 h. After that, the sensors were each sealed for 5 min in vials and removed
right away for EIS measurements.

3. Results and Discussion
3.1. Materials Synthesis and Characterization

The AQ-COF powder was synthesized by a solvothermal method, with slight modi-
fications to a reported protocol [33]. The compounds 1,3,5-triformylphloroglucinol (TFP)
and 2,6-diaminoan-thraquinone (DAAQ) were Schiff-condensed to synthesize AQ-COF
with a solvent mixture of anhydrous 1,4-dioxane, mesitylene, and acetic acid (Figure S1).

The 13C solid-state NMR spectra (CP-MAS) were obtained and are depicted in Figure 1a.
The characteristic signal peaks of keto at 181 ppm and an enol-imine carbon signal at 148 ppm
suggest the successful synthesis of the AQ-COF framework dominated with the known enol-
imine structure. The high crystallinity of AQ-COF was confirmed by powder XRD patterns
(Figure 1b). AQ-COF shows intense diffraction peaks at 2θ = 3.14, 5.90, 6.82, 12.72, 22.78,
and 26.83◦, which can be assigned to the (100), (110), (220), (101), (202), and (001) facets,
respectively. The composition of the AQ-COF was further investigated by XPS analysis. As
shown in Figure S2, two characteristic peaks in the O 1s high resolution spectra, i.e., the C=O
of the keto-amine (531.23 eV) and the C-OH of the enol-imine (532.79 eV), were observed.
Meanwhile, characteristic peaks at 399.26 eV, 400.24 eV, and 404.86 eV in the N 1s core level
spectrum correspond to the C=N in the enol-imine, C-NH in the keto-amine, and π excitation,
respectively [33–36]. These results suggest AQ-COF is in an equilibrium of both its keto-amine
and enol-imine forms.

SEM imaging of the powder revealed a micro-sized fiber-like morphology, which
self-assembled into nanoflowers (Figure S3). Thermogravimetric analyses (TGA) disclosed
the high decomposition temperature of AQ-COF, of above 316 ◦C (Figure S4), indicating its
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high thermostability. The porous nature of AQ-COF was measured by N2 physisorption
at the temperature of liquid nitrogen, and typical isotherms are depicted in Figure 1c. A
typical I-type reversible isotherm was demonstrated, indicating that AQ-COF contains a
large number of microporous structures. The specific surface area of pristine AQ-COF was
calculated to be about 706 m2/g from the adsorption curve with the Brunauer–Emmett–
Teller (BET) method, indicating the microporous nature of the material. Such a microporous
architecture of AQ-COF contains open and interconnected voids for guest molecules,
which is expected to improve its adsorption capacity and selectivity because of the high
surface area and size sieving effect [10,37]. Indeed, in a static iodine adsorption experiment
(Figure 1d), AQ-COF adsorbs iodine quickly once exposed to the iodine gas environment
and quickly achieved equilibrium within 4 h. It is worth mentioning that the capacity of
470 mg·g−1 for AQ-COF is much higher than the capacity of Ln-MOF (340 mg·g−1) [37].
In addition, the iodine adsorption properties of AQ-COF and other COF materials are
compared in Table S1 [27,38–42].
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3.2. Sensor Fabrication and the Iodine Vapor Impedance Sensing

The AQ-COF powders were well pipetted onto the active area of the IDE to form a
sensing film layer as described in the experimental section, and the sensor was subsequently
exposed to gaseous iodine at 70 ◦C for different time intervals. The typical impedance
spectra are presented as the impedance amplitude and phase spectrum in the frequency
range of 10 mHz–100 kHz (Figure 2a). The blank IDE displays a very high capacitive re-
sponse, with the impedance, |Z|, increasing linearly to >1010 Ω with decreasing frequency
from 100 kHz to 10 mHz. The phase angle was almost −90◦ for all the frequencies. Upon
AQ-COF coating, neither the impedance nor the phase angle changed appreciably in the air,
indicating the highly capacitive nature. After iodine exposure at 70 ◦C for 5 min, however,
the I2 was adsorbed and the low-frequency impedance, |Z|, sharply leveled out to 107 Ω



Atmosphere 2023, 14, 181 5 of 10

below 10 Hz, three orders of magnitude lower than the pristine sample. Simultaneously,
the phase angle significantly changed from −90◦ to 0◦, indicating the electrical response
had changed from capacitive to resistive.
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To better quantify the electrochemical response and obtain additional information
through the extraction of meta-variables, the Bode plots in Figure 2a were fitted and
analyzed using Zview software, and a simplified equivalent circuit model was proposed to
describe the impedance behavior of the system, as depicted in Figure 2b [11]. In the specified
circuit, two parallel shunt resistance–capacitor (R//CPE) networks were connected in series
with a series resistor, RS. The series resistance, Rs, was usually 660 ± 5 Ω for each sensor,
mainly due to the metal wire on the sensor. The RA, CPEA, RC, and CPEC are the resistance
and capacitance of the alumina substrate and the resistance and capacitance of the AQ-
COF coating, respectively. The CPE is a frequency-dependent constant phase element that
describes the non-ideal behavior of the electrode due to the roughness and non-uniform
surface [43]. To obtain the most consistent fitting results, the variables of RS (669 Ω), RA
(≈2.3 × 1011 Ω), and CPEA (0.5–0.9 nF) were fixed by recording the values for the blank
sensor and used for the subsequent analysis [11].

3.3. Time-Dependent Sensor Response

The sensitivity of the activated sensor was first evaluated by monitoring the impedance
changes with varying exposure time to iodine vapor. The charge transfer resistance (RC)
is the most important circuit element because it is directly related to sensor accessibility
and reflects the flow of charge into the electrode through the interface. The response of the
AQ-COF-based sensor is defined as (R0 − RC)/RC to reflect the response intensity, where R0
and RC represent the original resistance and the change in resistance upon exposure to the
analyte, respectively [44]. As shown in Figure 3, the pristine blank IDE showed a quite low
response, with response values of 2.67, 3.97, and 49.28 after iodine exposure for 0.5, 1, and
5 min, respectively. Upon AQ-COF coating, but without iodine exposure, the response was
constantly maintained at a low value of <0.6 with prolonged time. As expected, on the other
hand, a significant increase in the gas response with increasing iodine exposure time was
obtained for AQ-COF sensor, with values of 81.66, 162.49, and 3.14 × 104, at the exposure
times of 0.5, 1, and 5 min, respectively. The response (4 orders of magnitude change after
5 min exposure) is lower than the PIM-1 membrane-based iodine EIS sensor that we have
reported earlier (7 orders of magnitude change) [11], but comparable with MOF-based
EIS sensors [13,14]. It is worth mentioning that MOFs constructed with metal–organic
coordination are inherently less stable than COFs which are covalently bonded, particularly
in water stability. In addition, the responses of MOF-based EIS sensors are much slower
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(30 min to several hours at 70 ◦C) than the AQ-COF sensors. A timely and high response
are equally important for the first response in case of a nuclear accident.
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3.4. Selectivity

For application under real conditions, high chemical selectivity of the sensor is of great
importance to give reliable output signals, since the real gas is always a complex mixture of
many components. The selectivity of the AQ-COF sensor was investigated by comparing
the resistance response against potentially interfering chemicals, including air, methanol,
ethanol, and water. The selectivity, S, towards iodine to other species was defined as
S = Response (I2)/Response (chemically disturbed species), and the results are shown in
Figure 4. It was found that there were no appreciable resistance changes in the sensor to
any of these chemicals. The resistance response values varied slightly and were all less
than 15, which were far lower than the value obtained for iodine (211.36). The selectivity, S,
values were calculated to be 319.23, 14.20, 48.97, and 1029.85 for air, methanol, ethanol, and
water, respectively, indicating that the AQ-COF sensor had good selectivity and specificity
towards iodine vapor. The water stability and low moisture response indicate that the
material is promising for real applications.
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3.5. Mechanism Study

In order to understand the electrochemical interaction mechanism between the io-
dine vapor and the AQ-COF/IDE, further experiments were carried out. Firstly, FT-IR
measurements were conducted to investigate the structure changes of the AQ-COF after
iodine exposure. As presented in Figure 5a, the FTIR spectra of AQ-COF before and after
iodine doping are almost identical, indicating that no functional group changes occurred.
However, the characteristic absorbances at 1252, 1564, and 1620 cm−1, belonging to the C-N,
C=C, and C=O bonds of β-ketoenamine, downshifted slightly to 1249 cm−1, 1560 cm−1,
and 1614 cm−1, respectively, indicating the existence of interactions between AQ-COF and
iodine molecules. Then, solid-state UV-Vis spectroscopy was used to analyze the optical
characteristics of AQ-COF before and after iodine loading. The optical bandgap of AQ-
COF and the I2-laden AQ-COF were assessed by a Tauc plot (Figure 5b). An approximate
extrapolation of the linear region of the transition map resulted in an optical bandgap (Eg)
of 1.49 and 1.11 eV for AQ-COF before and after iodine exposure, respectively. The reduc-
tion in the optical bandgap by approximately 34% in the iodine-laden AQ-COF suggests
new pathways for charge transfer had been created, causing a significant improvement
in conductivity.
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C=C (yellow) and C-N (blue) bands of vibration. (b) The optical band gap of AQ-COF and I2 vapor
adsorbed AQ-COF, (c) XPS survey spectra of AQ-COF and I2 vapor adsorbed AQ-COF, and (d) XPS
spectra of I2 vapor adsorbed AQ-COF.

Thirdly, X-ray photoelectron spectroscopy (XPS) was performed to analyze the chem-
ical composition and the chemical oxidation state of elements in the composite. The full
spectrum of the XPS survey clearly presented peaks of C 1s, N 1s, and O 1s for pristine
AQ-COF, while two new strong and sharp peaks, assigned to I 3d3/2 and I 3d5/2, were
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observed in the I 3d region for the I2-laden AQ-COF (Figure 5c), indicating the adsorption
of iodine on the surface of the framework. Deconvolution of the high resolution I 3d peaks
resulted in two types of iodine, which are zero valence I2 (binding energy centered at
630.66 eV and 619.18 eV) and polyiodide anions, I3

− (binding energy centered at 630.26 eV
and 618.79 eV), similar to what was observed for I2-laden PIM-1 [11]. Combing the above
results, it can be concluded that it appears that charge transfer occurred in the π electrons
of the conjugated framework and guest iodine molecules. The formation of the more
conductive ion, I3

−, may be responsible for the low resistance.

4. Conclusions

In summary, we demonstrated a COF-based gas sensing platform for direct electrical
iodine vapor detection using the EIS technique in critical environments. The sensor exhibits
an excellent I2 sensing performance with a fast response and high sensitivity and selectivity.
A high response factor of up to 104× was obtained within 5 min of exposure. On the
other hand, the sensor is silent to other potentially interfering species such as air, water,
methanol, and ethanol, with a chemical selectivity of up to 103. Further optimization of the
sensor fabrication process and the active layer geometry to minimize the COF thickness
and maximize the sensing capacity towards trace iodine detection is ongoing. The success
of this research not only provides an effective way to monitor iodine leakage, but also
opens the prospect for the design of COF-based sensing devices in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14010181/s1, Figure S1: Scheme illustration of the synthesis
of AQ-COF; Figure S2: N1s (a,b) and O1s (c,d) spectra of AQ-COF before and after iodine adsorption.
Figure S3: SEM image of AQ-COF. Figure S4: TG analysis of AQ-COF.
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