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Abstract: The atmospheric dust caused by the cement industry is one of the main components of
air pollutants. China is the largest producer and consumer of cement. It is challenging to balance
cement needs and environmental protection. Based on the emission source data, this study examined
the spatial and temporal patterns of PM2.5 by the cement industry’s contribution (PM2.5Cement). The
annual value of PM2.5Cement decreased from 1.40 × 106 µg/m3 in 2010 to 0.98 × 106 µg/m3 in 2017,
which was reduced by 30.31%. I used the standard deviation ellipse and gravity center transfer
method and identified that the cement industry center shifted from the east to the midwest of China,
where a high-density population exists and a large portion of the population is exposed to the air
pollution. The geographical detector method was used to analyze the contribution of the natural
environment, green development, and socioeconomic development to PM2.5Cement. The main driving
factors were identified as the socioeconomic development and the traffic conditions in 2010, which
was giving way to the regional independent innovation in 2017. The cement industry’s contributions
to atmospheric PM2.5 vary spatially, suggesting that green development and optimized location for
the cement industry are crucial to reducing the size of the population exposed to the pollutants.

Keywords: air pollution; cement industry; PM2.5; geographical detector

1. Introduction

The cement industry is considered to be one of the energy, resource, CO2, and pollutant
emission-intensive sectors; the caused dust is a main component of air pollution [1], and
its particles contributed 92.5% PM2.5 and 61.0% PM10 [2]. In China, with high levels of
PM2.5 pollution and a large population, the harm is extensive and far-reaching, including
sickness and economic burdens [3], high risks for cancer [4], increased morbidity and
mortality of respiratory [5,6], rebrovascular diseases [7], and, even worse, the impact
on children [8,9]. Meanwhile, the dust emitted by the cement industry is classified as
“mixed dust”, including silica, SO2, and other elements [10,11]. Silica content in the air
directly determines the probability of pneumoconiosis [12]. Mahlet [13] found that 50.8%
of cement factory workers suffered from chronic respiratory symptoms. Meanwhile, types
of aerodynamic noise generated during the operation of equipment in the cement industry
causes irreversible sensorineural hearing damage [14,15]. In addition, dust emitted by the
cement industry is mostly composed of alkaline, which can easily cause the alkalization of
surrounding land and affects plant growth [16]. Moreover, in the production of building
materials, cement can result in high CO2 emissions that contribute to greenhouse gases’
accumulation and cause environmental pollution [17,18], reducing essential short-term
health benefits.

China is the world’s largest cement producer and consumer (https://www.emis.com/,
accessed on 12 March 2021) making up about 60% of global production (USGS, 2015). The
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pollutant emissions by the cement production are far higher than the air quality control
standard [19–24]. The environmental pollution by the cement industry should not be
underestimated under the requirement of advocating green development [25]. From 2013
to 2017, with the implementation of the toughest-ever clean air policy in China, significant
declines in fine particle (PM2.5) concentrations occurred nationwide [26,27], but it is still far
below the international standards. Linked in 2017 in mainland China, premature deaths
and a loss of quality of life due to PM2.5, approximately a total of 852,000 and 19.98 million
people, respectively, represented 30% of all victims worldwide [28]. Meanwhile, more
cement output was demanded for infrastructure systems due to the ongoing urbanization
in China. The conflict is inevitable between industrial development and environmental
pollution [29].

In response, China launched the “Pollution Prevention and Control Battle” to control
atmospheric pollution by focusing on limiting pollution emissions, adjusting industrial and
energy structures, improving policies and regulations, exercising strict supervision and
management, and strengthening scientific research [30–32]. The polluting industries seek-
ing the “pollution refuge” phenomenon were evident in the local government department,
where underdeveloped areas in the central and western regions accommodated portions
of highly polluting industries from the eastern areas through “regional competition” and
“policy depression.” The industrial agglomeration and pollution antagonistic zones were
dominated by polluting industries; environmental risks were the greatest in these areas [33].
Therefore, it remains unknown whether PM2.5 concentration through cement production in
China was significantly reduced or whether the drop was caused by regional transfer. More
importantly, it is urgent to know what the main driving factors of such transfer are that
should be formulated by region and pollutant industry to improve environmental quality.
In this paper, I explore the cement industry in China and its spatial distribution of PM2.5
and target and adopt more reasonable and precise policies to reduce air pollution caused
by the cement industry. My purposes were to understand (1) the temporal and spatial
patterns of the cement industry and their contribution to regional air quality and (2) the
main factors driving the spatiotemporal distribution of the cement industry in different
regions. This study can provide a guidance for formulating corresponding policies on
the cement industry’s layout in different regions and promoting clean production and
green development.

2. Materials and Methods
2.1. Data Sources

PM2.5 emission inventory data of cement production and PM2.5 emission inventory
data of the whole department (http://www.meicmodel.org, accessed on 1 January 2021)
and the spatial distribution of the cement industry (http://www.shuini.biz, accessed on
1 January 2021) during 2010–2017 in China were collected. Here, I chose 2010 and 2017
annual data to demonstrate the differences in PM2.5 spatial and temporal distribution
prior/after the air pollution control enforcement. From 2013 to 2017, to address the severe
air pollution issues and protect public health, the State Council of China promulgated the
toughest-ever Air Pollution Prevention and Control Action Plan (Action Plan) [34]. The
national five-year plan (2013–2017) aims to decrease the concentrations of PM2.5 by 10%
by 2017 in populated regions and metropolises, compared to before 2013 [35]. The data
cover 22 provinces, 5 autonomous regions, and 4 municipalities that are directly under the
Central Government. In addition, the cement industry development is affected by regional
social development level, policy, and innovation ability, and the pollution emissions are
affected by pollution sources, pollution path, emission reduction, environmental purifica-
tion capacity, pollution diffusion, vegetation coverage, meteorological conditions, and so
on. Consequently, I analyzed the factors that are potentially responsible for the spatial and
temporal changes of the cement industry from three aspects: natural factors, socioeconomic
factors, and green development (Table 1).

http://www.meicmodel.org
http://www.shuini.biz
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Table 1. The 14 influencing factors for three types (natural factors, social economic factors, and green
development). The effect shows the positive or negative effect on PM2.5Cement.

Type Indicator Factor Unit Effect The Data Source

Natural
factors

Annual precipitation X1 mm −
China Meteorological Data

Network (http://data.cma.cn/,
accessed on 1 June 2021)

Mean annual temperature X2 ◦C +
Annual sunshine hours X3 0.1 h −

Wind speed X4 0.1 m/s −
The green area X5 ha −

China Urban Statistical
Yearbook (2011, 2016), China

Provincial Statistical Yearbook
(2011, 2016), China

Environmental Statistical
Yearbook (2011, 2016), China

Environmental Statistical
Yearbook (2011, 2016), China

Urban and Rural Construction
Statistical Yearbook (2011, 2016)

social
economic

factors

Gross regional Product
(GDP) X6 ×104 Yuan (¥) +

The proportion of secondary
industry in GDP X7 % +

Labor force X8 ×104 (pers) +
The length of the road X9 km +

Industrial smoke (powder)
dust emission X10 Tons +

Comprehensive utilization
rate of general industrial

solid waste
X11 % −

Green
development

factors

Science and technology
spending X12 ×104 Yuan (¥) −

Green patent grant X13 - − http://www.cnipa.gov.cn/,
accessed on 1 June 2021Green patent filings X14 - −

Green development policy can affect the distribution and output of cement enterprises
and the discharge of pollutants. In the process of transportation, cement products will also
cause serious dust hazards [18]. The comprehensive utilization rate of general industrial
solid waste reflects the intensity of pollutant reduction. Gross Regional Product (labeled
as GDP) and the secondary industry structure reflect the quality of regional economic
development. The workforce reflects the potential for regional development. Vegetation
coverage and atmospheric environment regulate the potential for atmospheric purification
and pollutant diffusion in the region. The government’s investment in science and technol-
ogy is evident; the number of green patent applications and grants reflect the government’s
emphasis on green technology and the ability to improve pollution prevention and control,
energy conservation, and emission reduction. Considering all the above factors, six param-
eters of socioeconomic factors, three green development factors, and five meteorological
and natural factors were selected for every province in the study (Table 1).

2.2. Methods
2.2.1. PM2.5 by Cement Industry

The Community Multiscale Air Quality (CMAQ) modeling system used in this study
was developed by the U.S. Environmental Protection Agency [36–38] for air quality man-
agement and atmospheric research. The model represents atmospheric processes including
emissions from anthropogenic and biogenic sources, meteorological transport, atmospheric
chemical reactions, radiation, cloud processing, and deposition. Here, I evaluate the an-
nual PM2.5Cement value and the percentage of PM2.5Cement in the atmosphere (PPM2.5Cement).
First, I used the CMAQ model to simulate the ambient air quality based on the emission
inventory of 2010 and 2017, through which the annual average concentration of PM2.5 was
predicted by summing the emission inventory (PM2.5total). Then the cement industry was
removed from the emission inventory. The average annual concentration of PM2.5 was not
included in the emission of the cement industry (PM2.5no-Cement). The formula is as follows:

PM2.5Cement = PM2.5total − PM2.5no−Cement (1)

http://data.cma.cn/
http://www.cnipa.gov.cn/
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PPM2.5Cement =
PM2.5Cement
PM2.5total

(2)

where PM2.5Cement is the annual contribution value of PM2.5 from cement production;
PM2.5total is the annual contribution value by totaling emission inventory; PM2.5no-Cement is
the PM2.5 excluding cement industry emission inventory; PPM2.5Cement is the percentage
contribution of PM2.5Cement to PM2.5total. I also used the standard deviation ellipse and
gravity center transfer method [39] to explore the spatiotemporal changes in the cement
industry between 2010 and 2017.

2.2.2. Geographic Detector Model

I used the Geographic detector model [40] to analyze the main factors affecting
PM2.5Cement. The model includes four detectors: factor detection, interaction detection,
risk detection, and ecological detection. To achieve my study objectives, I chose factor
detection and interaction detection, with factor detection defined as follows: to detect
spatial association of the dependent variable Y(PM2.5Cement) and independent factor Xj
(j = 1,2. . . 14). Here, the independent variable X was the natural factor, socioeconomic
factor, and green development factor, and the formula is as follows:

q = 1−
∑L

i=1 Ni,jσ
2
i,j

Nσ2 = 1− SSW
SST

(3)

SSW =
L

∑
i=1

Ni,jσ
2
i.j, SST = Nσ2 (4)

where q is the explanatory strength of a given independent variable Xj on the dependent
variable Y(PM2.5Cement), with a range of [0,1]; L represents the number of stratum of X
variable; N and Ni,j represent the size of sample in the whole study region and the i-th
stratum of the j-th variable. A large value indicates a high degree of explanation, i.e.,
stronger effect of the independent variable Xi on the dependent variable Y. σi,j

2 and σ2 are
the variances of Y value in each stratum of j-th variable and whole region, respectively;
SSW is the sum of squares, and SST is the total sum of the squares. The method has no
linear or non-linear relationship assumption; it can only be used to measure the actual
spatial association between two variables. Interaction detection is as follows: to judge the
interaction effects of two factors on the PM2.5Cement value (q (Xa1 ∩ Xb)). The relationship
between the two factors can be divided into the following categories (Table 2).

Table 2. Interaction detection by the Geographic detector model.

Criterion Interaction

q (Xa
⋂

Xb) < Min (q (Xa), q (Xb)) Nonlinear weakening
Min(q(Xa), q(Xb))< Q(Xa∩ Xb)< Max(q(Xa), q(Xb)) One factor nonlinear attenuation

q (Xa ∩ Xb) > Max (q (Xa), q (Xb)) Two factor enhancement
q (Xa ∩ Xb) = q (Xa) + q (Xb) independent
q (Xa ∩ Xb) > q (Xa) + q (Xb) Nonlinear enhancement

Min(q(Xa), q(Xb)): select the minimum value at q(Xa) and q(Xb); q (Xa) + q(Xb): sum of q(Xa) and q(Xb); Max(q(Xa),
q(Xb)): select the maximum value between q(Xa) and q(Xb); q (Xa

⋂
Xb): q (Xa), q(Xb) both interact.

3. Results
3.1. Spatial and Temporal Characteristics of PM2.5Cement

The annual total PM2.5Cement value was 1.40× 106 µg/m3 in 2010 and 0.98 × 106 µg/m3

in 2017 for the study areas, which was decreased by 30.31%. The PPM2.5Cement decreased
from 0.24% in 2010 to 0.21% in 2017. Spatially, the high annual PM2.5Cement were concen-
trated in the east and southwest (Figure 1a), and the high PPM2.5Cement measures were
mainly found in the central region, western and eastern provinces, and Qinghai Provinces
(Figure 2a) in 2010. Interestingly in Qinghai provinces, although its PPM2.5Cement value
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was the highest (1.22%, 1.35%) in all provinces in the two years, the annual PM2.5Cement
was only 23,463 µg/m3 in 2010 and 20,115 µg/m3 in 2017, and it ranked 18th in the
31 study regions (Figure 4). Then I used the annual PM2.5Cement value to range segmenta-
tion. In 2010, there were eight provinces with PM2.5Cement > 60,000 µg/m3, including Hunan
(PM2.5Cement, 20,152.8 µg/m3, PPM2.5Cement, 0.56%), Anhui (17,247.2 µg/m3, 0.55%), Jiangsu
(85,846 µg/m3, 0.40%), Zhejiang (76,522.03 µg/m3, 0.68%), Sichuan (73,124.01 µg/m3,
0.21%), Shandong (68,368µg/m3, 0.18%), Yunnan (63,530 µg/m3, 0.38%), Hebei (60,344 µg/m3,
0.20%); in seven provinces, the PM2.5Cement was between 40,000–60,000 µg/m3, which can
be ordered as follows: Hubei, Shanxi, Liaoning, Fujian, Jilin, Henan, Chongqing. The
area with an annual PM2.5Cement between 20,000–40,000 µg/m3 covered seven provinces,
which can be ordered as follows: Guangxi, Guangdong, Gansu, Jiangxi, Shanxi, Xinjiang,
Qinghai. Provinces with an annual PM2.5Cement value between 0–20,000 µg/m3 included
Inner Mongolia, Guizhou, Ningxia, Heilongjiang. Provinces with the lowest the annual
PM2.5Cement value were Beijing, Shanghai, Tianjin, Hainan province, and Tibet Autonomous
Region (Figures 1a and 2a).
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The annual PM2.5Cement in 2017 showed a decreasing trend compared with 2010
(Figure 4A). The region with high PM2.5Cement value shifted to the midwest region (Figure 1b),
and the high PPM2.5Cement value also migrated to the northwest (Figure 2b). The number of
provinces with PM2.5Cement > 60,000 µg/m3 decreased from seven in 2010 to four in 2017.
The four provinces included Hunan (76,120 µg/m3, 0.28%), Anhui (74,786 µg/m3, 0.31%),
Yunnan (70,200 µg/m3, 0.55%), and Shandong (62,456 µg/m3, 0.22%). The PM2.5Cement
value in Hunan and Anhui decreased from 125,408 µg/m3 to 97,686 µg/m3 from 2010 to
2017 (Figure 4A), and their PPM2.5Cement values decreased by 0.28% and 0.24%, respectively
(Figure 4B). However, Shandong and Yunnan provinces showed a slightly decreasing trend,
indicating that the cement industry was still a very severe air pollution emission source.
For Jiangsu, Zhejiang, Sichuan, and Hebei provinces, the annual PM2.5Cement value dropped
to 40,000–60,000 µg/m3. There were eight provinces in this value range and another four
provinces were Hubei, Henan, Shaanxi, and Fujian. Six provinces were in the range be-
tween 20,000–40,000 µg/m3, including Chongqing, Guangxi, Gansu, Liaoning, Guizhou,
Qinghai. Eight provinces were in the range of 0–20,000 µg/m3, including Xinjiang, Ningxia,
Guangdong, Shanxi, Jiangxi, Inner Mongolia, Jilin, Heilongjiang. No PM2.5Cement value was
provided for Beijing, Shanghai, Tianjin, Hainan province, and Tibet Autonomous Region
(Figure 1b).

3.2. Gravity Center Transfer of the Cement Industry

The standard deviation ellipse and gravity center transfer analysis showed that the
PM2.5Cement center of gravity shifted 100.8 km from east to west, and the PPM2.5Cement
center shifted 120.8 km from southeast to northwest (Figure 3) from 2010 to 2017, which
reflected that the cement industry in China migrated to the midwest region from the eastern
region during 2010 and 2017. The spatial shift might be related to air quality control and a
change in the industrial structure policy in China. The gravity center transfer analysis also
illustrates that midwestern people were more exposed to environmental pollution from the
cement industry.
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The PPM2.5Cement was the highest in Qinghai among the region, with a value of 1.22%
in 2010 and 1.35% in 2017 (Figure 4B). The PPM2.5Cement in 2017 was slightly higher than
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that in 2010, but its annual PM2.5Cement value was down from 23,463.5 µg/m3 in 2010 to
20,115.13 µg/m3 in 2017 (Figure 4A). Except the no-emission source regions, the lowest
annual PM2.5Cement (PPM2.5Cement) was found for Heilongjiang in both years; the value was
13,164 µg/m3 (PPM2.5Cement, 0.03%) in 2010 and 7828 µg/m3 (0.02%) in 2017 (Figure 4). The
PM2.5Cement value dropped more than 40% during this period. With China’s transformation
from extensive to intensive development during 2010–2017 and with it supervised by the
stringent pollution control measures since 2013, PM2.5Cement in each province has decreased
to some extent, but the magnitude is limited to minimal decreases, except larger decreases
in Hunan and Anhui.
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Figure 4. The annual PM2.5Cement value (A) and PPM2.5Cement value (B) of each province in the study
area in 2010 and 2017.

3.3. Geographical Dtection of Driving Factors
3.3.1. Influence of Detection Factor

The explanatory intensity of PM2.5Cement based on factor detection (q value) includes
14 factors. According to the q value classification, the explanatory intensity in 2010 was
GDP (0.57) > the proportion of secondary industry (0.47) > the road length (0.42) > the
number of labor (0.38) > the industrial smoke (powder) dust emission (0.37) > the sunshine
duration (0.36) > the air temperature (0.35) > the number of green patents (−0.34) > the
Green patent application (−0.32) > the green area (−0.32) > the rainfall (−0.29) > the
science and technology expenditure (−0.27) > the wind speed (−0.19) > the comprehensive
utilization rate of general industrial solid waste (−0.11) (Table 1, Figure 5).
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Figure 5. The geographic detector model analysis on the contribution of each single factor to regional
PM2.5Cement. x1. . . x14 were the 14 factors for natural, society economical, and green development
aspects in Table 1.

In 2017, ranking order on contribution of each factor was the green patent authorization
(−0.51) > the green patent application (−0.50) > the GDP (0.43) > the air temperature
(0.43) > the green area (−0.42) > the wind speed (−0.40) > the road area at the end of the
year (0.38) > the proportion of secondary industry (0.34) > the number of the labor force
(0.32) > the comprehensive utilization rate of general industrial solid waste (−0.31) > the
science and technology expenditure (−0.30) > the rainfall (−0.28) > the sunshine duration
(−0.29) > the industrial smoke (powder) dust emission (0.20) (Table 1). From 2010 to 2017,
with the change in China’s development mode and the regional government’s mounting
attention to green technology, the strengthened pollution prevention and control, energy
conservation, as well as the emission reduction, the cement industry’s emissions of air
pollutants have relieved (Figure 5).

I also analyzed factor detection results (q value) for each region and found there existed
high variations (Table 3). In 2010, for the eight provinces with PM2.5Cement > 60,000 µg/m3,
the top three factors with the highest explanation were the industrial smoke (powder) dust
emission (0.72) > GDP (0.53) > the secondary industry (0.44), and the three factors with the
lowest explanation were road length (0.07) < wind speed (0.13) < air temperature < (0.16).
In 2017, the three factors with the highest q value were industrial smoke (powder) dust
emission (0.59) > road length (0.58) > proportion of secondary industry (0.55), and the three
factors with the lowest q value were the sunshine duration (0.05) < rainfall (0.17) < science
and technology expenditure (0.21). For the PM2.5Cement between 40,000–60,000 µg/m3, in
2010, the three factors with the highest q value were GDP (0.82) > road length (0.76) > the
green space area (0.74), and the three factors with the lowest q value were the temperature
(0.13) < rainfall (0.18) < the sunshine duration (0.28). In 2017, the three factors with the
highest q value were GDP (0.70) > the comprehensive utilization rate of general industrial
solid waste (0.69) > the number of green patents granted (0.61), and the three factors with
the lowest q value were meteorological factors: sunshine duration (0.13) < wind speed
(0.17) < rainfall (0.18). For PM2.5Cement < 40,000 µg/m3, the results showed similar explana-
tory strength. In 2010, factors with the highest q value were GDP (0.85) > the industrial
smoke (powder) dust emission (0.84) > the general industrial solid waste comprehen-
sive utilization rate (0.73), and those with the lowest q value were the sunshine duration
(0.01) < the rainfall (0.20) < the number of the green patent application and green patent
grant (0.21). In 2017, factors with the largest q value were the road length (0.95), the indus-
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trial dust emission (0.95) > GDP (0.89), and the three factors with the least q value were the
sunshine duration (0.18) < the air temperature (0.19) < the number of green patents granted
(0.26) (Table 3).

Table 3. Differentiation and factor detection from the Geographic detector model. The Effect (+/−)
was the promoting or inhibiting factors.

Indicators (I) Indicators (II) Factors Effect
q Value of Factors in Different PM2.5Cenment Value Class

<40,000 40,000–60,000 >60,000
2010 2017 2010 2017 2010 2017

Natural
factors

Annual precipitation X1 − 0.2 0.31 0.18 0.18 0.31 0.17
Mean annual temperature X2 + 0.24 0.19 0.13 0.52 0.16 0.24

Annual sunshine hours X3 − 0.01 0.18 0.28 0.13 0.43 0.05
Wind speed X4 − 0.51 0.64 0.32 0.17 0.13 0.27

The green area X5 − 0.62 0.73 0.74 0.6 0.31 0.46

Social
economic

factors

Gross regional Product
(GDP) X6 + 0.85 0.89 0.82 0.7 0.53 0.48

The proportion of secondary
industry in GDP X7 + 0.52 0.65 0.36 0.34 0.44 0.55

Labor force X8 + 0.61 0.83 0.68 0.3 0.43 0.51
The length of the road X9 + 0.71 0.95 0.76 0.27 0.07 0.58

Industrial smoke (powder)
dust emission X10 + 0.84 0.95 0.55 0.27 0.72 0.59

Comprehensive utilization
rate of general industrial

solid waste
X11 − 0.63 0.41 0.52 0.69 0.36 0.49

Green
development

factors

Science and technology
spending X12 − 0.61 0.83 0.36 0.39 0.28 0.21

Green patent grant X13 − 0.21 0.27 0.48 0.53 0.36 0.39
Green patent filings X14 − 0.21 0.26 0.34 0.61 0.33 0.47

3.3.2. Interactive Factors

Based on the geospatial characteristics of each driving factor, I used the interaction
detection module to analyze the explanatory intensity of PM2.5Cement by driving factor.
The q value increased after including the interaction of any two factors. Specifically for
the natural environment factors in 2010, the q value gained the greatest increases (0.48,
0.55, 0.57, 0.49) for the green space area interaction with the other four factors, followed
by interactions between wind speed and sunshine duration (0.48), air temperature and
sunshine duration (0.48) (Table 4). In 2017, the interaction between wind speed and the
other four factors enhanced the explanatory intensity, and the q value increased to 0.59,
0.55, 0.59, 0.72, respectively, followed by interactions of sunshine duration and temperature
(Table 4). For the green development factors, the q value strength in 2010 increased after
including the interaction between science and technology input, such as the factors of the
green patent application volume, and the green patent grant volume were 0.72 and 0.65,
respectively (Table 5). In 2017, including the interaction between science and technology
input and the other two factors also increased the explanatory strength (Table 5). For
socioeconomic factors, including the combined effect of GDP and road length increased
the q value to 0.85. Including the proportion of secondary industry and the road length
increased the q value to 0.82, and including the labor force and industrial smoke (powder)
dust emission increased the q value to 0.76. For other factors, including their interactions,
all increased the q value (Table 6).
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Table 4. Interaction effects of the natural environmental factors on PM2.5Cement. The gray shaded
items are the top three values in year. X1. . . 54 are the Natural factors found in Table 1.

Natural Factors
2010 2017

X1 X1

X1 0.29 X2 0.28 X2

X2 0.44 0.37 X3 0.43 0.45 X3

X3 0.46 0.48 0.35 X4 0.57 0.55 0.43 X4

X4 0.42 0.46 0.48 0.2 X5 0.59 0.55 0.59 0.4 X5

X5 0.48 0.55 0.57 0.49 0.32 0.47 0.51 0.54 0.72 0.42

Table 5. Interaction effects of Green Development factors on PM2.5Cement. The gray shaded items are
the top three values in the two years. X12–14 are the Green Development factors found in Table 1.

Green Development Factors
2010 2017

X12 X12

X12 0.27 X13 0.3 X13

X13 0.72 0.32 X14 0.6 0.5 X14

X14 0.65 0.48 0.34 0.58 0.52 0.51

Table 6. Interaction effects of the Social economic factors on PM2.5Cement. The gray shaded items are
the top three values in the two years. X6–11 are the Social economic factors found in Table 1.

Social Economic Factors
2010 2017

X6 X6

X6 0.57 X7 0.44 X7

X7 0.65 0.47 X8 0.75 0.34 X8

X8 0.56 0.71 0.36 X9 0.54 0.79 0.33 X9

X9 0.85 0.82 0.54 0.43 X10 0.59 0.82 0.53 0.38 X10

X10 0.7 0.66 0.76 0.71 0.37 X11 0.68 0.71 0.73 0.78 0.2 X11

X11 0.59 0.35 0.72 0.6 0.46 0.13 0.65 0.86 0.62 0.73 0.86 0.31

Except in 2017, the interaction between GDP and other factors did not enhance ex-
planatory strength. The highest q value was the interaction between the proportion of the
secondary industry and the comprehensive utilization rate of general industrial solid waste
(0.86), the comprehensive utilization rate of general industrial solid waste, and industrial
smoke (powder) dust emissions (0.86). The second highest was interactions between road
length and the proportion of the secondary industry (0.83). Clearly, interactions with other
factors also increased the q value (Table 6).

4. Discussion

The rapid development of China’s industrial economy has caused serious pollution;
the Chinese government has been investing mounting efforts on environmental protec-
tion [5,41–43]. In 2013, China reinforced national air quality monitoring [44,45]. The PM2.5
values, as an important air quality index, was included in the emissions standards. Al-
though, it is a very complex process to determine the source of PM2.5 in the atmosphere [41],
attributing its sources and revealing its spatial pattern are vital for implementing preven-
tion and control measures [46]. The cement production, as a basic supporting material in
urbanization construction, is also a heavy industry with high energy consumption and
high pollution. One needs to weigh its impact on the ecological environment, which is
directly related to sustainable development.

Here, I quantified the temporal and spatial patterns of the cement industry and atmo-
spheric PM2.5Cement content in two typical years, 2010 and 2017 (before and after the national
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PM2.5 control). Overall, the annual PM2.5Cement value decreased 30.31% from 2010 to 2017,
as a number of cement-related environmental protections and energy saving policies were
introduced since 2013, such as the “Technical Policy of Pollution Control in Cement Indus-
try” by the Ministry of Environmental Protection, which has greatly increased the operation
cost of the backward production capacity of the cement industry and has reflected the
environmental protection requirements in a market-oriented way that affects the price of
production factors of enterprises and “forced” industrial transformation and upgrading,
structural adjustment, and optimization of the layout, but the reduction magnitudes vary
greatly among each province. Hunan and Anhui provinces have witnessed a significant
reduction, with a declining rate of 62.23% and 56.64%, respectively. The decreasing values
are in line with other studies [21,47,48], in which the implementation of environmental
protection policies by the central government are considered, strict emission reform pol-
icy for cement enterprises, closure of small and medium-sized cement enterprises, the
transformation and upgrading of large enterprises, which were also the main factors for
reducing pollution. The decreasing rate for other provinces appeared small, especially
for Shandong, Yunnan, Hubei, Shanxi, Sichuan, and Hebei provinces. The main reason is
that these provinces play a key role in China’s cement production, and they are obligated
to improve energy efficiency and reduce air pollution. In addition, the PPM2.5Cement also
varies greatly among provinces. Qinghai, Ningxia, Fujian, Zhejiang, and Chongqing have
seen increasing trends of PPM2.5Cement from 2010 to 2017. These provinces play a key role
in China’s cement production and have great potential to improve energy efficiency and
reduce air pollution.

The cement industry’s gravity center shifted from the east to the midwest (Figure 4),
to places such as Hunan, Hubei, Sichuan, Shanxi, Guizhou, Henan, Shandong provinces,
and so on. This conclusion was consistent with previous studies [49,50]. These regions are
all highly populated. Transitioning to green production of cement may be the most efficient
way to balance economic development and human well-being [17,42,51,52].

There are great differences in the socioeconomic development levels and the natural
environment in each province. The geographic detector model analysis shows that, for the
natural factors, only the contribution of green space area was relatively large in the two
study years. For the social economic factors, GDP and the second industry area play an
important role, which shows that the regional economy and industry regulate the regional
cement industry layout. In addition, industrial smoke dust emissions (powder) were also
important explanatory variables. The cement industry is the second greatest industry of
heavy pollution industries. The rapid social development in China and the increasing
demand for cement have added to the regional tolerance for the cement industry. Interest-
ingly, in 2017, road length boosted regional PM2.5Cement, and long-distance transportation
increased air pollutants. Meanwhile, the q value increased when an interaction of any two
factors was considered based on the geospatial characteristics of each driving factor. The
three factors of green development showed a higher contribution value in 2017 than that in
2010. It meant that green development has become the main driving force in reducing air
pollution in the cement industry. This change is conducive to the sustainable development
of the cement industry in China [17,37,41].

5. Conclusions

I analyzed the contribution of the cement industry to PM2.5 in each province in
China and examined the gravity center shift and the main driving factors on the annual
PM2.5Cement in each province based on their natural, green development, and socioeco-
nomic environments. I found that the annual PM2.5Cement value of all provinces showed a
decreased trend from 2010 to 2017, especially in Hunan and Anhui, but the decreasing was
slight in other regions. Even PPM2.5Cement for each region was not significantly decreasing,
especially in Qinghai, Ningxia, Fujian, and Zhejiang regions, and some of them even saw a
slight increase. It seems that the influence of the cement industry on air quality in these
regions was still very severe. The cement industry’s center of gravity shifted from the
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east to the midwest of China, which has a large population exposed to the dangers of air
pollution. The driving factors analysis showed that social economic development was the
main driving factor for the PM2.5Cement in 2010; the main driving factors in 2017, however,
changed to green development, regional independent innovation ability, and traffic condi-
tions, while meteorological environment play a less influential role in the two years. At the
same time, the contributions of the cement industry to atmospheric PM2.5 varies spatially.
The cement production process needs to be further refined to minimize pollution effects.
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