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Abstract: Low-cost air quality sensors have the potential to complement the regulatory network of
air quality monitoring stations, with respect to increased spatial density of observations, however,
their data quality continues to be of concern. Here we report on our experience with a small network
of open low-cost sensor systems for air quality, which was deployed in the region of Stavanger,
Norway, under Nordic winter conditions. The network consisted of AirSensEUR sensor systems,
equipped with sensors for, among others, nitrogen dioxide and fine particulate matter. The systems
were co-located at an air quality monitoring station, for a period of approximately six weeks. A
subset of the systems was subsequently deployed at various roadside locations for half a year, and
finally co-located at the same air quality monitoring station again, for a post-deployment evaluation.
For fine particulate matter, the co-location results indicate a good inter-unit consistency, but poor
average out-of-the-box performance (R2 = 0.25, RMSE = 9.6 µg m−3). While Köhler correction did
not significantly improve the accuracy in our study, filtering for high relative humidity conditions
improved the results (R2 = 0.63, RMSE = 7.09 µg m−3). For nitrogen dioxide, the inter-unit consistency
was found to be excellent, and calibration models were developed which showed good performance
during the testing period (on average R2 = 0.98, RMSE = 5.73 µg m−3), however, due to the short
training period, the calibration models are likely not able to capture the full annual variability
in environmental conditions. A post-deployment co-location showed, respectively, a slight and
significant decrease in inter-sensor consistency for fine particulate matter and nitrogen dioxide.
We further demonstrate, how observations from even such a small network can be exploited by
assimilation in a high-resolution air quality model, thus adding value to both the observations and
the model, and ultimately providing a more comprehensive perspective of air quality than is possible
from either of the two input datasets alone. Our study provides valuable insights on the operation
and performance of an open sensor system for air quality, particularly under challenging Nordic
environmental conditions.

Keywords: AirSensEUR; nitrogen dioxide; particulate matter; Alphasense; Köhler correction

1. Introduction

Low-cost sensor systems for air quality applications are seeing increasing interest, in
both research applications and citizen science frameworks [1–3]. They provide measure-
ments with lower costs, improving the spatial coverage of the air pollution monitoring
networks due to their portability and compact size. The observations made by such
low-cost sensor systems can typically not reach the stability and accuracy of reference or
reference-equivalent instrumentation [4,5]. In parallel to the emergence of standards for
evaluating the performance of low-cost sensor systems [6], concerns regarding the low-cost
sensors’ data quality have been reflected in extensive research for evaluating low-cost
sensors under different environmental settings. Raw data obtained by the sensor systems
can be processed [7–10], to substantially improve the data quality, and thus the usability
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for various applications [11–17]. However, in doing so, one should be aware that at some
point a line is crossed, from independent measurements to statistical modelling [8,18,19].

Depending on the phase of air pollutants, low-cost sensors for monitoring air pol-
lution benefit from various technologies and calibration approaches. Conductometric
(resistive), capacitive, electrochemical, and resonant frequency (of the acoustic wave) de-
vices are widely used for measuring gaseous pollutant concentrations [16]. The output of
gaseous pollutant low-cost sensors is usually voltage or resistance instead of concentra-
tion [20]. For those sensor systems, the methodology for conversion from raw quantities
to concentrations, therefore, remains the user’s choice. The sensor manufacturers provide
limited data and methodological details for modifying raw gaseous sensor output, and
the provided data are mainly derived under well-controlled laboratory conditions [20,21].
Numerous environmental parameters, such as the presence of other gaseous pollutants
(gas cross-sensitivity) or ambient temperature/pressure variations, can influence the raw
output of gaseous pollutant low-cost sensors [22,23]. For example, a review of previous
work on the laboratory performance of nitrogen dioxide (NO2) low-cost sensors, showed a
median squared Pearson correlation coefficient, between sensor output and reference-grade
instruments, (Corr2) approximately equal to 1.00 (n = 8 studies), while this value was
0.57 (Q1 = 0.24, Q2 = 0.84) for the outdoor performance of NO2 sensors (n = 59) [5]. Ambi-
ent temperature and cross-sensitivity with other gaseous pollutants, in particular, ozone
(O3), substantially impact the performance of the NO2 sensors [24]. Accordingly, correction
and conversion of gaseous pollutant low-cost sensors’ measured voltage to concentrations,
under field conditions, remain challenging in the sensor community.

Commercial particle pollutants low-cost sensors typically operate based on the light
scattering principle, detecting the particles with aerodynamic diameters of 0.3–10 µm.
The particulate matter (PM) within an air flow is directed to a canal, passing across a beam
of infrared or visible light. The scatter of the beam forms the basis for estimating the particle
mass concentration. Compared to gaseous pollutant low-cost sensors, cross-sensitivity and
long-term sensor drift are less problematic [25]; however, previous work has uncovered
two shortcomings of most commercially available low-cost PM sensors in field conditions:
(1) the estimated mass concentration of PM2.5 (PM ≤ 2.5 µm) is typically more accurate than
PM10, compared to reference-grade measurements [26–28]; and (2) high ambient relative
humidity has a deteriorating impact on the PM sensor performance for most, but not all,
low-cost PM sensors [4,29,30]. Low-cost PM sensors can exhibit variable accuracy due to
different particle properties [31,32]; on the other hand, growth by water vapor (hygroscopic
growth), due to high levels of relative humidity [33,34], leads to higher scattering of the
light beam in the sensor chamber—overestimating the particle mass concentration. As a
result, a wide range of approaches for calibration and post-processing of PM sensor data
have been adopted [2]. Yet, these approaches are sensor/case-specific, and there is no
universal solution for correcting PM sensor data [35,36].

To characterize the reliability of low-cost air pollution sensor systems in Nordic
climatic conditions, we report here on the calibration, evaluation, and operation of a
small network of co-located outdoor air quality sensor systems, which was deployed
in the area of Stavanger, Norway. The network consists of AirSensEUR systems, that
follow a completely open and transparent design [37–39]. AirSensEUR is an open low-
cost air quality sensor platform developed by Libera Intentio (https://airsenseur.org/,
accessed on 23 February 2023), in collaboration with the European Commission’s Joint
Research Centre [40–42]. The systems can be configured to measure various pollutants;
we focus here primarily on observations of NO2 and PM2.5, air pollutants of primary
concern in Nordic countries [43,44]. While AirSensEUR systems have been evaluated in
the field before [45–47], to the best of our knowledge no studies have been published on
the deployment, calibration, and evaluation of a network of AirSensEUR systems under
challenging Nordic environmental conditions.

The manuscript is structured as follows: Section 2 provides an overview of the sensors
systems, the reference station, the calibration and correction algorithms, and a technique for
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data assimilation. Subsequently, Section 3 presents the results and discusses the findings.
Finally, Section 4 gives a summary of the study and provides conclusions.

2. Data and Methodology
2.1. Sensors and Network

A total of ten AirSensEUR devices were evaluated in this study. These units were
equipped with gas sensors for nitrogen dioxide (Alphasense NO2-B43F), carbon monox-
ide (Alphasense CO-A4), nitric oxide (Alphasense NO-B4), carbon dioxide (ELT D-300),
and ozone (Alphasense OX-A431). In addition, the systems were equipped with an Al-
phasense OPC-N3 optical particle counter, that provides particle count in 24 size bins, as
well as PM10, PM2.5, and PM1 mass concentrations (in units of µg m−3), using a factory
calibration with constant particle density. Furthermore, each unit has sensors for air temper-
ature, relative humidity, and atmospheric pressure. In this study, only the measurements
from NO2-B43F, NO-B4, and OPC-N3, as well as temperature and relative humidity, were
used. All gas sensors provide their raw output in digital numbers (DN) and need to be
calibrated/converted to geophysical concentration units, such as µg m−3.

These ten systems were first co-located for approximately five weeks at the Schanche-
holen air quality monitoring site in Stavanger, Norway. The Schancheholen air quality
monitoring station (located at 58.95188◦ N, 5.72188◦ E ) is a roadside station, located to the
side of the busy E39 highway, in the city of Stavanger. It represents an area with dense traf-
fic, and pollution levels can be expected to be comparatively high. The station is equipped
with a Grimm EDM180 dust monitor and Teledyne API T200 NOx-monitor. Figure 1 shows
the Schancheholen station with the ten AirSensEUR units mounted on top of it, for the
co-location study. The co-location period was from 9 October 2019 to 17 November 2019.

Figure 1. The roadside Schancheholen air quality monitoring station (station ID NO0125A), op-
erated by Stanvager municipality, with the ten AirSensEUR units mounted on top. Photo credit:
Rolf Haugen.

Subsequently, seven of the ten systems were deployed to various roadside locations
south of Stavanger. Two sensor systems were deployed in the Haugesund area, northwest
of Stavanger, but these were not further considered here due to the distance. Figure 2
shows a map of both the deployment sites and the location of the Schancheholen air
quality monitoring station. The geographic coordinates of the final deployment sites can
be found in Table 1. The deployment period was from 18 November 2019 to 25 May 2020.
One sensor system (AS2713) remained at the Schancheholen station throughout the entire
deployment period.
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Table 1. Geographic coordinates of the locations for the seven deployed sensor units, given in decimal
degrees (DD) on the WGS84 datum.

Sensor ID Latitude [DD] Longitude [DD]

AS0AF4 58.95441◦ N 5.69336◦ E
AS270C 58.95972◦ N 5.69963◦ E
AS2713 58.95138◦ N 5.72131◦ E
AS290D 58.88441◦ N 5.71838◦ E
AS2716 58.89665◦ N 5.66640◦ E
AS2720 58.92921◦ N 5.60756◦ E
AS4581 58.96425◦ N 5.72786◦ E

Figure 2. Overview map of the study site, showing the locations of the deployed sensor network
(black triangles) and the air quality monitoring station used for the co-location. Base map and data
from OpenStreetMap and OpenStreetMap Foundation.

2.2. Calibration for NO2

A basic calibration procedure was carried out for NO2. In principle, the digital
numbers reported by the sensors (numeric range of 0 to 65,535) should be converted to
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voltage and current first, using platform-specific constants, before fitting a linear regression
against the station-based observations [38,40]. Here, we tested the possibility of using the
sensor-reported digital numbers directly in the regression. The calibration was carried out
using the sensors NO2B43F (NO2), NOB4 (NO), and temperature, as predictor variables,
according to the following multilinear regression equation:

NO2 = a0 + a1 · NO2B43F + a2 · log(NOB4) + a3 · log(50 + T) (1)

where NO2 is the NO2 concentration in µg m−3, a0 through a3 are the regression coefficients
(unitless), NO2B43F and NOB4 are the raw DN values of the sensors (unitless), and T is the
measured temperature, in units of ◦C. Both NOB4 and temperature were log-transformed
after empirical testing. A constant of 50 was added to the temperature before transformation,
to avoid mathematically undefined values for temperatures below 0 ◦C.

As a training period, the first 70% of the data were used (9 October 2019 through
5 November 2019), whereas the remaining 30% of the data were used for testing the
calibration (6 November 2019 through 16 November 2019). Table 2 provides the calibration
coefficients as well as the corresponding statistics.

Table 2. Multilinear regression coefficients for all sensor systems.

ID Term Estimate Std. Error t Value p Value

AS2716 (Intercept) 16,467.95 188.04 87.58 0.000
AS2716 NO2B43F −0.26 0.00 −90.76 0.000
AS2716 log(NOB4) 17.75 2.89 6.15 0.000
AS2716 log(50 + temperature) −77.06 3.52 −21.91 0.000

AS270C (Intercept) 12,239.40 343.55 35.63 0.000
AS270C NO2B43F −0.20 0.01 −35.92 0.000
AS270C log(NOB4) 20.92 4.65 4.50 0.000
AS270C log(50 + temperature) 52.45 9.53 5.50 0.000

AS4581 (Intercept) 14,850.42 215.67 68.86 0.000
AS4581 NO2B43F −0.25 0.00 −70.94 0.000
AS4581 log(NOB4) 32.17 3.35 9.61 0.000
AS4581 log(50 + temperature) 33.33 5.09 6.55 0.000

AS2709 (Intercept) 14,796.37 378.20 39.12 0.000
AS2709 NO2B43F −0.24 0.01 −39.22 0.000
AS2709 log(NOB4) −11.38 4.59 −2.48 0.013
AS2709 log(50 + temperature) 48.15 8.63 5.58 0.000

AS2713 (Intercept) 12,907.25 196.38 65.73 0.000
AS2713 NO2B43F −0.22 0.00 −65.53 0.000
AS2713 log(NOB4) 95.16 2.41 39.48 0.000
AS2713 log(50 + temperature) 13.91 5.52 2.52 0.012

AS290D (Intercept) 15,154.54 183.92 82.40 0.000
AS290D NO2B43F −0.25 0.00 −82.31 0.000
AS290D log(NOB4) 37.18 2.11 17.61 0.000
AS290D log(50 + temperature) −21.54 4.31 −5.00 0.000

AS6606 (Intercept) 15,664.17 163.55 95.78 0.000
AS6606 NO2B43F −0.25 0.00 −96.20 0.000
AS6606 log(NOB4) 7.42 2.16 3.43 0.001
AS6606 log(50 + temperature) 16.35 4.34 3.77 0.000

AS0AF4 (Intercept) 17,344.91 211.91 81.85 0.000
AS0AF4 NO2B43F −0.27 0.00 −84.95 0.000
AS0AF4 log(NOB4) −8.76 3.35 −2.61 0.009
AS0AF4 log(50 + temperature) −90.21 3.52 −25.63 0.000

AS2720 (Intercept) 15,190.69 263.70 57.61 0.000
AS2720 NO2B43F −0.25 0.00 −58.60 0.000
AS2720 log(NOB4) 10.44 3.66 2.85 0.004
AS2720 log(50 + temperature) −0.30 5.61 −0.05 0.957

AS6603 (Intercept) 12,307.27 259.40 47.44 0.000
AS6603 NO2B43F −0.21 0.00 −50.27 0.000
AS6603 log(NOB4) 73.15 4.70 15.57 0.000
AS6603 log(50 + temperature) 19.86 6.61 3.00 0.003

2.3. Humidity Correction for PM2.5

For this study, we adapt and evaluate the proposed humidity correction from [33],
which was developed for the Alphasense OPC-N2 PM sensor. The idea behind this cor-
rection is that, when water vapor molecules interact with aerosol particles, they can be
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adsorbed to the surface of the particles or absorbed into the bulk of the particles [48].
Depending on the characteristics of the particle, the uptake of water vapor can lead to
aqueous solution droplet formation and a substantial increase in the particle diameter,
where the growth by water vapor (hygroscopic growth) can be described by the so-called
Köhler theory. The Köhler theory combines the Kelvin equation, for the dependence of
vapor pressure on the curvature and surface tension of a liquid droplet, and Raoult’s law
formulations of vapor pressure of aqueous solutions [49]. Based on this theory, [33] derived
a correction factor C (unitless) to account for the relative humidity (RH) (in percent) effect
on PM measurement as follows:

PMcorrected = PMraw/C (2)

C = 1 +
κ

1.65

−1 + 1
aw

(3)

where PMcorrected and PMraw are the corrected and observed PM mass concentrations in
units of µg m−3, respectively, aw is the water activity (unitless), defined as RH/100, and κ
is 0.4 (unitless).

2.4. Assimilation of Sensor Observations in a Model

One promising application of sensor networks (although ideally much denser net-
works than the relatively small one used here) is high-resolution mapping of urban air
quality, in real-time [50,51]. While it can be possible to simply use standard spatial interpo-
lation techniques, such as inverse-distance weighting or ordinary kriging, when the sensor
network is extremely dense (e.g., one sensor per 50 m by 50 m area) and/or the pollutant in
question does not exhibit very steep spatial gradients (e.g., PM2.5), such direct interpolation
under more typically encountered network densities generally does not lead to realistic
spatial patterns, but provides overly smooth results.

The most obvious solution to this problem, is to use the output from a physical
model as an a priori dataset, and to use it for guiding the interpolation between the sensor
observations. This can be done using a wide variety of techniques, most of which are
still at the very forefront of research when it comes to applying them for high-reslution
urban-scale air quality mapping. Previously, geostatistical methods have been used for
combining the two datasets [13,50], but data assimilation methods stemming from a long
heritage in numerical weather prediction are currently under consideration [51]. Data
assimilation [52–54] is a set of powerful statistical techniques for integrating the information
from observations in geophysical models. The output of a data assimilation procedure
(the “analysis”) adds value to both the observations and the model. The observations are
interpolated in space in a physically meaningful way, whereas the model is corrected for
eventual biases.

Here, we use a conceptually simple data assimilation technique called Optimal Interpola-
tion (OI) [52]. OI calculates the analysis vector xa as (following the notation by Kalnay [54])

xa = xb + W[y0 − H(xb)] (4)

where xb is the background field vector (i.e., here the output from the dispersion model),
W is the matrix of weights, y0 is the set of observations obtained from the low-cost sensor
network, and H is the observation operator that converts values from the background into
observation space (this is carried out here using simple bilinear interpolation). Subsequently,
the matrix of weights W is computed as

W = BHT
(

R + HBHT
)−1

(5)

where B is the background error covariance matrix, the matrix H is the linear tangent
perturbation of H, and R is the matrix of observation error covariances (which is diagonal
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in our case, as the observation errors at different locations are assumed to be uncorrelated).
Furthermore, if required, the analysis error covariance Pa can be computed as

Pa = (I − WH)B (6)

where I is the identity matrix. The background error covariance matrix B was generated
here as a function of both distance and the pixel-to-pixel similarity within the modeled
air quality field. As the values in the B matrix are prescribed, they are potentially sub-
optimal [52,54]. As model information, we used output from the uEMEP model [55,56],
provided by the Norwegian Meteorological Institute.

3. Results and Discussion
3.1. Pre-Deployment Co-Location

In the following sections we present the evaluation results obtained during the field
co-location at the Schancheholen air quality monitoring station. We first show results
for PM2.5 and then for NO2. PM10 was not considered here, given that the measurement
principle typically does not allow measurements of coarser particles [27].

3.1.1. Evaluation of PM2.5

One of the first steps of the co-location study was to evaluate the consistency between
individual sensors. This is important, because ideally any correction of the data, to improve
the accuracy, should be valid for all sensors. Such an intercomparison between sensor
readings can most easily be carried out using a scatterplot matrix. Figure 3 shows this for
the factory-calibrated PM2.5 readings of the OPC-N3 sensor. The inter-sensor comparison
shows mostly reasonable results, with Pearson correlation (Corr) values consistently over
0.9. The unit AS2709 shows considerably more scatter with respect to all the other units, so
there is some suspicion of sensor malfunction for this particular unit.

Figure 4 shows scatterplots directly comparing the factory-calibrated sensor PM2.5
mass concentration against the reference PM2.5 mass concentration at Schancheholen,
during the co-location period. While all sensors appear to behave quite similarly overall, it
is obvious that relative humidity significantly affects the sensor measurements, causing
strong positive biases at very low true concentrations, around 5 to 10 µg m−3. As this
causes a split shape of the scatter cloud, the correlation between sensor observations and
the reference instrument data is low, with Corr values ranging from 0.48 to 0.70, and the
fitted R2 value for all sensor units ranging from 0.25 to 0.5.

The error induced by humidity is further demonstrated in Figure 5, which shows
the difference between the sensor PM2.5 and the reference PM2.5 as a function of relative
humidity. It can be observed that, for humidity values of greater than 80%, the sensor
clearly overestimates the true PM2.5 concentration. However, negative outliers occur for all
sensors, even for lower humidities, and thus likely have a different origin.

Figure 6 shows time series of the PM2.5 measurements of all sensor units compared to
the reference PM2.5. It can be observed that, while the sensor signals generally follow the
temporal patterns of the reference (i.e., they show peaks when the reference shows peaks),
there are substantial temporally varying biases. For example, in week 43, the sensors
typically overestimate the PM2.5 mass concentrations compared to the reference, whereas
in weeks 45/46, they generally underestimate the true mass concentrations.

A more in-depth analysis and discussion of the Alphasense OPC-N3 sensor perfor-
mance under Norwegian environmental conditions, can be found in [4].
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Figure 3. Sensor-to-sensor intercomparison of the factory-calibrated PM2.5 signal from the OPC-N3
sensors against each other, during the co-location period. Axes labels are shown here in units of
µg m−3. The lower left panels show scatterplots of one sensor’s output against the other (with the
red dashed line indicating the 1:1 reference line, and the blue line a smooth LOESS fit to the data).
The panels on the diagonal show the histogram of the readings of each individual sensor. The panels
on the upper right show the Pearson correlations of the scatterplots on the lower left, where three
star indicate significance levels with p-value of <0.001.
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Figure 4. Relationship between reference PM2.5 and sensor-based factory-calibrated PM2.5.
The dashed black line represents the 1:1 reference line. The green dashed line shows a linear
regression fit to the data (with the corresponding regression equation and R2 value provided in the
top left corner) whereas the red lines indicate a LOESS fit. Relative humidity for each data point is
indicated as a color.
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Figure 5. The PM2.5 error as a function of relative humidity. The blue lines indicate a LOESS fit to the
data, with the gray zone around the line showing the 95% confidence interval.



Atmosphere 2023, 14, 540 11 of 27

46

45

44

43

2019−11−12 2019−11−13 2019−11−14 2019−11−15 2019−11−16 2019−11−17

2019−11−05 2019−11−06 2019−11−07 2019−11−08 2019−11−09 2019−11−10 2019−11−11 2019−11−12

2019−10−29 2019−10−30 2019−10−31 2019−11−01 2019−11−02 2019−11−03 2019−11−04 2019−11−05

2019−10−22 2019−10−23 2019−10−24 2019−10−25 2019−10−26 2019−10−27 2019−10−28 2019−10−29

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

P
M

2.
5 

[u
g/

m
3]

Sensor unit

AS0AF4

AS2709

AS270C

AS2713

AS2716

AS2720

AS290D

AS4581

AS6603

AS6606

Figure 6. Time series for PM2.5, faceted by week number for clarity. The black line indicates the
values from the Schancheholen reference instrument.

3.1.2. Evaluation of NO2

For the NO2 sensors (Figure 7), the intercomparison scatterplots indicate a quite
good agreement overall, with Corr values of consistently 0.9 or greater. Two aspects are
noticeable: unit AS4581 shows significantly more scatter than the other sensor systems,
and unit AS270C appears to have biases against several other units.

Figure 8 shows the time series for the test period, with the black line indicating the
observations obtained by the reference analyzer and the red line showing the calibrated
sensor NO2. Overall, we can observe an excellent correspondence between the two datasets,
for the relatively short test period. A slight underestimation is exhibited by units AS2709
and AS2713. The same data is shown in the form of scatterplots in Figure 9. The correlations
are excellent for all ten units, with consistent Corr values ranging from 0.98 to 0.99, and
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fitted R2 values of 0.96 and higher. With the exception of units AS2709 and AS2713, no
significant biases are visible with respect to the 1:1 reference line.

Corr:

0.899***

Corr:

0.962***

Corr:

0.970***

Corr:

0.932***

Corr:

0.982***

Corr:

0.978***

Corr:

0.930***

Corr:

0.972***

Corr:

0.979***

Corr:

0.993***

Corr:

0.978***

Corr:

0.968***

Corr:

0.993***

Corr:

0.991***

Corr:

0.984***

Corr:

0.979***

Corr:

0.989***

Corr:

0.999***

Corr:

0.999***

Corr:

0.992***

Corr:

0.993***

Corr:

0.993***

Corr:

0.853***

Corr:

0.927***

Corr:

0.908***

Corr:

0.869***

Corr:

0.955***

Corr:

0.961***

Corr:

0.976***

Corr:

0.968***

Corr:

0.989***

Corr:

0.982***

Corr:

0.985***

Corr:

0.999***

Corr:

0.990***

Corr:
0.956***

Corr:

0.939***

Corr:

0.978***

Corr:

0.991***

Corr:

0.998***

Corr:

0.996***

Corr:

0.988***

Corr:

0.998***

Corr:
0.901***

Corr:
0.988***

AS0AF4 AS2709 AS270C AS2713 AS2716 AS2720 AS290D AS4581 AS6603 AS6606

A
S

0A
F

4
A

S
2709

A
S

270C
A

S
2713

A
S

2716
A

S
2720

A
S

290D
A

S
4581

A
S

6603
A

S
6606

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

61
75

0

62
00

0

62
25

0

0.000

0.002

0.004

0.006

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

61750

62000

62250

raw NO2B43F DN [unitless]

ra
w

 N
O

2B
43

F
 D

N
 [u

ni
tle

ss
]

Figure 7. Sensor-to-sensor intercomparison of raw output of all NO2-B43F sensors against each other,
during the co-location period. The axes dimensions are in unitless digital numbers between 0 and
65,535. The lower left panels show scatterplots of one sensor’s output against the other (with the
red dashed line indicating the 1:1 reference line, and the blue line a smooth LOESS fit to the data).
The panels on the diagonal show the histogram of the readings of each individual sensors. The panels
on the upper right show the Pearson correlations of the scatterplots on the lower left, where three
star indicate significance levels with p-value of <0.001.
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Figure 8. Time series of calibrated sensor NO2 (red line) against the reference NO2 (black line) during
the testing period (5 November 2019 through 16 November 2019).

However, it should be noted here that the testing period for which data is shown
was only relatively short (ca. 2 weeks), and was following the training period, with very
similar environmental conditions. As such, the calibration is expected to perform quite
well, as it is an ideal scenario. It is likely that the obtainable sensor accuracy is significantly
lower in substantially different environmental conditions, and this has been documented
in several studies [5]. Even though temperature was included as a predictor variable in the
calibration, a slight residual temperature dependence is still visible in the data, with lower
temperatures resulting in slightly negative, and higher temperatures in slightly positive,
biases (see Figure 9). This indicates that the treatment of temperature in the calibration
equation was not optimal and that it would be worthwhile considering other calibration
methods, to eliminate this residual sensitivity of the NO2 signal on ambient temperature.
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It should be noted, however, that this sensitivity on temperature varies significantly from
sensor unit to sensor unit: while, for example, units AS2709 and AS2713 show this effect
quite prominently, it is nearly not noticeable in units AS2720 and AS290D.
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Figure 9. Scatterplots of calibrated sensor NO2 against the reference NO2. The black dashed line
indicates the 1:1 reference line, whereas the blue line shows a linear fit to the data, whose equation is
shown in the upper left of each panel. Temperature is given in degrees Celsius, relative humidity
in percent.

Finally, Table 3 gives the summary statistics of applying the multilinear regression
model to each sensor system during the testing period. Based on the RMSE metric, unit
AS2720 achieved the best result (with an RMSE of only 4.12 µg m−3) and unit AS2709
the worst (with an RMSE of nearly 9 µg m−3). Overall, the mean RMSE of all units was
5.73 µg m−3.
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Table 3. Summary statistics of applying the sensor-specific multilinear regression models for NO2 to the
testing period. MB is the mean bias, MAE is the mean absolute error, and RMSE is the root mean squared
error. R2 is the coefficient of determination. All values given in units of µg m−3 except R2 (unitless).

Sensor ID MB MAE RMSE R2

AS0AF4 1.96 3.78 5.01 0.98
AS2709 −4.81 7.15 8.99 0.96
AS270C −1.70 3.55 4.70 0.98
AS2713 −5.09 6.69 8.48 0.97
AS2716 −2.98 4.32 5.46 0.98
AS2720 −0.83 3.04 4.12 0.98
AS290D 0.40 3.11 4.18 0.98
AS4581 0.94 3.53 4.68 0.98
AS6603 −3.40 4.72 5.92 0.97
AS6606 −3.50 4.57 5.75 0.98

Average −1.90 4.45 5.73 0.98

3.2. Deployment

During the deployment phase, from 18 November 2019 to 25 May 2020, nine out of
the ten sensor units were deployed at various locations, without access to observations
from reference instrumentation. As such, no evaluation could be carried out for these
units during the deployment period, however, the data provided by them can be exploited
for various applications, including, for example, combination with model output (see
Section 3.5). A single sensor unit (AS2713) remained at the Schancheholen reference site
during the entire deployment period, and we use its data here to test how well the initial
calibration, carried out in the month of November, performed during other periods, with
substantially different environmental conditions.

Figure 10 shows time series of the calibrated NO2 signal from the AS2713 unit during
the deployment period. We can see that, during the beginning of the deployment period
(e.g., November and December 2019), the sensor signal matches that of the reference quite
well. However, beginning in around January 2020, a consistent bias of approximately
20 µg m−3 appears to develop, that stays mostly constant until the end of the deploy-
ment period.

This bias is likely caused by environmental conditions (primarily ozone concentration
and temperature) that are substantially different compared to those that were present
during the calibration period. In particular, the effect of ozone concentration can be seen
very well in Figure 11. The bias at lower NO2 concentrations is obvious, particularly for the
later months, and is to some extent correlated with an increase in ozone during this period.
Nonetheless, despite the substantial biases found in the later parts of the deployment
period, Figure 11 also indicates that the correlation between sensor NO2 and reference NO2
remains quite good, with R2 levels of 0.80 to 0.98 and Corr2 values ranging from 0.90 to 0.99.
If the described biases cannot be adequately compensated for as part of the calibration, other
methods exist to postprocess the data accordingly, e.g., regular bias correction of all sensors
using the mean NO2 concentration of one or more air quality reference stations, when the
NO2 concentration field can be assumed to be highly homogeneous in space [23,57,58].

3.3. Post-Deployment Co-Location

A second co-location of the ten sensor systems was carried out after the end of the de-
ployment period. On 25 May 2020, all the units were again mounted at the Schancheholen
air quality monitoring station, in order to test to what extent the behavior of the individ-
ual sensors had changed over time. Post-deployment data for this study was available
until 5 July 2020. Figures 12 and 13 show scatterplot matrices of the sensor-provided PM2.5
and NO2 signals of all ten sensor units during the post-deployment co-location period.
In both cases, there is one sensor system that consistently did not provide any data at all
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during the post-deployment co-location period: for PM2.5 this was the OPC-N3 sensor in
the AS0AF4 unit, whereas for NO2 it was the NO2B43F sensor in the AS6603 unit.

We can compare these figures directly to Figures 3 and 7, respectively. We can see
that sensor-to-sensor consistency has deteriorated slightly for PM2.5. Whereas before only
AS2709 showed a somewhat questionable signal, now it is also units AS6606 that exhibit
erratic behavior compared to all the other units. The rest of the units show roughly similar
sensor-to-sensor correspondence, as in the pre-deployment co-location, with Corr values
typically over 0.95.
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Figure 10. Time series of calibrated sensor NO2 (red line) against the reference NO2 (black line), for
sensor unit AS2713, during the deployment period (18 November 2019 through 25 May 2020), faceted
by month for clarity.
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Figure 11. Scatterplots of calibrated sensor NO2 against the reference NO2, faceted by month from
November 2019 to May 2020. The black dashed line indicates the 1:1 reference line, whereas the blue
line shows a linear fit to the data, whose equation is shown in the upper left of each panel. The marker
colors indicate the ozone concentration, however it should be noted that no ozone observations were
available in the area of Stavanger itself, so they had to be taken from a nearby station (Sandve).

When we compare Figure 13 against the results from the pre-deployment co-location
(Figure 7), we can observe a substantial decrease in the inter-sensor correspondence, that
can likely be attributed to the deterioration of the electrochemical sensors during the
deployment period. The NO2_B43F sensor in the AS6603 did not provide data during
the post-deployment co-location period. In most of the other pairings, the correlation has
decreased substantially, from values of mostly consistently over 0.9 in the pre-deployment
co-location, to a wide range of between 0.2 and 0.9, with most pairings in the 0.8 range. Some
sensors, such as the ones in AS2709 and AS6606, have completely lost any correspondence
with the signal from the sensors in the other units.

3.4. Results of Humidity Correction for PM

As seen in Figures 4 and 5, humidity significantly affects the sensor measurements.
Therefore, we implemented three types of corrections, which are shown in Figure 14 for
sensor unit AS2713 as a representative example. The first correction method was to account
for relative humidity according to [33], the second method was removing data points where
the relative humidity was greater than 70 percent, and the third one was a combination of
both of these methods.
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Figure 12. Sensor-to-sensor intercomparison of the factory-calibrated PM2.5 signal from the OPC-N3
sensors against each other, during the post-deployment co-location period. Axes labels are shown
here in units of µg m−3. The lower left panels show scatterplots of one sensor’s output against the
other (with the red dashed line indicating the 1:1 reference line, and the blue line a smooth LOESS
fit to the data). The panels on the diagonal show the histogram of the readings of each individual
sensors. The panels on the upper right show the Pearson correlations of the scatterplots on the
lower left, where three and no stars indicate significance levels with p-values of <0.001 and >0.10
respectively. Panels labeled NA did not have enough data.
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Figure 13. Sensor-to-sensor intercomparison of raw output of all NO2-B43F sensors against each
other, during the post-deployment co-location period. The axes dimensions are in unitless digital
numbers between 0 and 65,535. The lower left panels show scatterplots of one sensor’s output against
the other (with the red dashed line indicating the 1:1 reference line, and the blue line a smooth LOESS
fit to the data). The panels on the diagonal show the histogram of the readings of each individual
sensors. The panels on the upper right show the Pearson correlations of the scatterplots on the
lower left, where three and no stars indicate significance levels with p-values of <0.001 and >0.10
respectively. Panels labeled NA did not have enough data.
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Figure 14. Sensor-to-reference instrument intercomparison of the PM2.5 signal from the OPC-N3
sensor AS2713, against the reference equivalent instrument Grimm EDM180. Axes labels are shown
here in units of µg m−3. The upper left panel show scatterplots of the factory-calibrated sensor’s
output against the Grimm 180 (with the blue dashed line indicating the 1:1 reference line). The lower
left panel shows a scatterplot of the factory-calibrated sensor’s output with relative humidity values
below 70%, against the reference equivalent instrument. The upper right panel shows relative
humidity corrected sensor’s output against the reference equivalent instrument, and the lower right
panel show scatterplots of the factory-calibrated sensor’s output with relative humidity values below
70%, and corrected for relative humidity effect according to [33].

The results are shown as summary statistics in Tables 4–7. Overall, the Corr values
increased substantially, from 0.25 to 0.65. The relative humidity correction according to [33]
showed a very small improvement compared to the manufacturer calibration, in terms of
correlation. The average correlation coefficient for the ten sensors increased from 0.25 to
0.34, however, the slope decreased on average from 0.32 to 0.2, and the RMSE increased
on average from 9.6 to 10.1. The highest Corr values were found for the removal of data
for relative humidity values over 70 percent, which resulted in an increase in average Corr
values from 0.25 to 0.62. Due to the filtering, the average RMSE decreased to 7.1, and the
slope increased to 0.38, suggesting that the sensor is not operating in a functioning condition
when the relative humidity is over 70 percent. The removal of observations with relative
humidity values greater than 70 percent was based on previous projects with other low
cost sensor units, where the manufacturer defined the range of operation up to 70 percent
relative humidity (for example [7]). Alphasense defines in their technical specifications
of the OPC-N3 (http://www.alphasense.com/WEB1213/wp-content/uploads/2019/03/
OPC-N3.pdf, accessed on 22 December 2022), an operational range of the sensor of up to 95
percent relative humidity, which seems to be unrealistic based on the results shown here,
at least for Norwegian conditions.

http://www.alphasense.com/WEB1213/wp-content/uploads/2019/03/OPC-N3.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/03/OPC-N3.pdf
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The final correction seen in Table 7, shows the results of combining both methods
(removing observations with humidity values greater than 70 percent and correction for
relative humidity using Köhler theory). This correction did not further improve the statistics
compared to just filtering the data for humidity values greater than 70 percent.

Table 4. Summary statistics of manufacturer-calibrated PM2.5 mass concentrations against the
reference data, during the co-location. RMSE is the root mean squared error and MAD is the mean
absolute deviation.

Sensor Unit Bias Std. Dev. RMSE MAD Intercept Slope R2

AS0AF4 −2.04 9.5 9.69 2.54 4.09 0.3 0.22
AS2709 −3.12 8.31 8.86 2.19 2.99 0.3 0.41
AS270C −2.20 9.45 9.693 2.46 4.05 0.28 0.22
AS2713 −2.66 9.24 9.61 2.61 3.6 0.28 0.25
AS2720 −2.97 9.4 9.85 2.50 3.62 0.25 0.22
AS290D −0.92 10.31 10.34 2.61 5.01 0.32 0.18
AS4581 −0.23 9.77 9.77 2.46 5.01 0.4 0.25
AS6603 −0.41 9.49 9.49 2.46 4.87 0.4 0.27
AS6606 −1.85 9.30 9.48 2.452 4.12 0.32 0.25
AS2716 −1.41 9.41 9.5 2.59 4.33 0.35 0.25

Average −1.78 9.42 9.63 2.49 4.17 0.32 0.25

Table 5. Summary statistics of manufacturer-calibrated PM2.5 mass concentrations against the
reference data, during the co-location, after correction for relative humidity effects using Köhler
theory. RMSE is the root mean squared error and MAD is the mean absolute deviation.

Sensor Unit Bias Std. Dev. RMSE MAD Intercept Slope R2

AS0AF4 −4.82 9.08 10.28 2.42 2.34 0.19 0.32
AS2709 −5.45 8.89 10.41 2.36 1.73 0.18 0.49
AS270C −4.91 9.138 10.36 2.37 2.31 0.18 0.32
AS2713 −5.19 9.09 10.46 2.63 2.04 0.18 0.35
AS2720 −5.47 9.31 10.79 2.56 2.00 0.15 0.32
AS290D −4.21 9.23 10.11 2.56 2.85 0.2 0.26
AS4581 −3.75 8.76 9.52 2.35 2.87 0.25 0.34
AS6603 −3.86 8.719 9.52 2.35 2.78 0.25 0.36
AS6606 −4.09 8.93 9.82 2.4 2.73 0.23 0.31
AS2716 −4.444 8.86 9.91 2.39 2.46 0.22 0.35

Average −4.62 9.00 10.12 2.44 2.41 0.20 0.34

Table 6. Summary statistics of manufacturer-calibrated PM2.5 mass concentrations against the
reference data, during the co-location, after removing observations with a relative humidity greater
than 70 percent. RMSE is the root mean squared error and MAD is the mean absolute deviation.

Sensor Unit Bias Std. Dev. RMSE MAD Intercept Slope R2

AS0AF4 −3.2 6.44 7.19 1.85 1.57 0.35 0.63
AS2709 −3.28 6.22 7.02 1.64 1.3 0.36 0.67
AS270C −3.15 6.47 7.18 1.8 1.63 0.35 0.63
AS2713 −3.54 6.48 7.37 2.04 1.31 0.34 0.65
AS2720 −3.7 6.66 7.61 1.9 1.29 0.31 0.66
AS290D −2.48 6.13 6.61 1.6 1.81 0.4 0.6
AS4581 −2.06 5.66 6.02 1.37 1.72 0.48 0.67
AS6603 −2.02 5.75 6.08 1.37 1.8 0.48 0.66
AS6606 −3.25 8.61 9.19 2.202 2.94 0.31 0.42
AS2716 −2.76 6.04 6.63 1.72 1.55 0.41 0.66

Average −2.94 6.45 7.09 1.75 1.69 0.38 0.63
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Table 7. Summary statistics of manufacturer-calibrated PM2.5 mass concentrations against the
reference data, during the co-location, after correction for relative humidity effects using Köhler
theory, and after removing observations with a relative humidity greater than 70 percent. RMSE is
the root mean squared error and MAD is the mean absolute deviation.

Sensor Unit Bias Std. Dev. RMSE MAD Intercept Slope R2

AS0AF4 −4.23 7.11 8.26 2.08 1.26 0.25 0.61
AS2709 −4.24 6.97 8.15 2.1 1.11 0.25 0.64
AS270C −4.2 7.15 8.27 2.02 1.31 0.25 0.61
AS2713 −4.5 7.17 8.44 2.25 1.07 0.24 0.64
AS2720 −4.57 7.34 8.63 2.22 1.07 0.22 0.62
AS290D −3.64 6.78 7.69 1.93 1.47 0.28 0.59
AS4581 −3.36 6.44 7.25 1.86 1.43 0.34 0.66
AS6603 −3.35 6.52 7.32 1.83 1.5 0.34 0.65
AS6606 −4.82 9.02 10.23 2.38 2.15 0.22 0.44
AS2716 −3.92 6.78 7.82 2 1.25 0.28 0.65

Average −4.08 7.13 8.21 2.07 1.36 0.27 0.61

3.5. High-Resolution Mapping through Data Assimilation

A short example on the use of simple data assimilation techniques for exploiting the ob-
servations from small low-cost sensor networks is given in the following. Figures 15 and 16
show an illustration of how the results of the data assimilation process can look in prin-
ciple, even for a very small sensor network, as available in this study. Figure 15 shows
the available input data of NO2 concentration for one arbitrary hour (9 January 2020 at
15 UTC), for the greater Stavanger area. Some differences between the model forecast,
here from the uEMEP model [55,56], and the sensor observations are obvious, and the
innovation, i.e., the difference between these two datasets, is being used to update the
model forecast. Alternatively, one can think of the process as the point-based observations
being interpolated in space, using the spatial field from the model as a guide. Figure 16
shows the output of the data assimilation process, namely the original model datasets (left
panel) compared to the analysis resulting from assimilation of the sensor observations (right
panel). While the differences are subtle, it can be seen that, for example, the downtown
area of Stavanger shows increased concentration levels based on the sensor observations
made there. Similarly, for the area around the sensor system located in the very western
side of the domain, the analysis shows slightly elevated NO2 concentration values. For all
other sites, the model forecast has been slightly reduced according to the innovation data
shown in Figure 15 (right panel).

Figure 15. Input data to the data assimilation process, here shown for 9 January 2020 at 15:00 UTC.
The left panel shows the model-predicted NO2 values, here the uEMEP model developed by MET
Norway [55,56], the center panel shows the NO2 observations from the network of AirSensEUR
units reported here, and the right panel shows the innovation, i.e., the difference between the
model prediction and the actual observation at each location. Base map copyright OpenStreetMap
contributors and map tiles by Stamen Design, under CC BY 3.0.



Atmosphere 2023, 14, 540 23 of 27

Figure 16. Example showing simple data assimilation of the Stavanger sensor network in the output
from a model. The left panel shows the model-predicted NO2 values for 9 January 2020 at 15:00
UTC, whereas the right panel shows the analysis assimilating the sensor observations for the same
time. Black markers indicate the locations of the sensor systems. Base map copyright OpenStreetMap
contributors and map tiles by Stamen Design, under CC BY 3.0.

4. Conclusions and Recommendations

A small network of air quality sensor systems was set up in the region of Stavanger,
Norway, with the main goal of evaluating its performance and operation under challenging
Nordic winter conditions. A total number of ten AirSensEUR units were first co-located
at an air quality monitoring station equipped with reference instrumentation. This was
done for evaluating the performance of the PM2.5 sensors against the reference, and in the
case of NO2 in order to both evaluate the sensors, and to calibrate them, i.e., to allow for
a conversion of the raw measurement units into physical concentration units of µg m−3.
Subsequently, nine of the ten systems were deployed at various roadside locations, of which
seven were further considered in this study. After deployment, the sensor systems were
again co-located at the air quality monitoring station for evaluating possible deterioration
of the sensors.

The results of the co-location indicate, for NO2, a very good agreement with the
reference (with consistent Corr values of around 0.98), in the weeks immediately after
the calibration period. However, the calibration is sensitive to the environmental condi-
tions. As such, significant changes in the environmental conditions (e.g., temperature and
ozone concentrations) can negatively affect the calibration over the long term and result in
significant biases.

Ideally the training period for the calibration should encompass the entire range of
environmental conditions that is to be expected later on during the deployment. This is,
however, not always feasible in practice, as it would typically mean several months of co-
location period. Alternatively, there are relatively easy methods for eliminating such biases
in post-processing, for example for NO2, by regularly resetting all sensors to the station-
based average concentrations during a period in which the spatial patterns of NO2 within
a city are most homogeneous (for example at around 03:00 at night). Such approaches have
been used previously, for example by [23,57], or [58]. Another possibility is a lab-calibration
in a climate chamber, where all potential cross-sensitivites and environmental effects could
be simulated relatively quickly for a single sensor [11,59], and the resulting calibration could
subsequently be applied to the remaining sensors, assuming that they all behave identically,
which is mostly, but not entirely, the case considering the results shown in Figure 9. If this
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is carried out in a very comprehensive manner, it has the potential for resulting in sensor
calibrations that are robust in the majority of environmental conditions that might be
encountered in the field. However, such a process typically is prohibitively expensive. It
should also be noted that, the inter-sensor consistency of the used electrochemical sensors
decreased substantially over the six-month deployment period, thus further complicating
possible correction schemes over time.

For PM2.5 from the OPC-N3 sensor, the results of the co-location showed a relatively
poor agreement with the reference data, when using the factory-calibrated output. An at-
tempt was made to increase the performance using a correction algorithm based on Köhler
theory, which did not substantially improve the statistics. Restricting the data to observa-
tions with relative humidity values of less than 70 percent resulted in improvements in data
accuracy, with reasonable R2 values, of about 0.65. This indicates that when the OPC-N3
devices are being used at high relative humidity, they are being used outside of the mea-
surement range that can be realistically expected to provide reasonable values, according
to the underlying physical measurement principle. However, filtering for observations
made under high relative humidity leads to a substantial loss in data coverage (decrease in
temporal coverage of 61% and 31% during the deployment period for an RH threshold of
70% and 80%, respectively).

Finally, a brief illustration was given of the use of a data assimilation scheme for
exploiting the observations from a relatively small network of low-cost sensors. When
combined with high-resolution output of an air quality model, data assimilation can add
value to the observations, by interpolating between them in a mathematically objective
fashion, and at the same time add value to the model, by correcting it with actual observa-
tions. As a result, we find that the data assimilation process is able to provide maps of air
quality with realistic spatial patterns, even for relatively small sensor networks, as the one
available here.

Overall, the comparatively small network of AirSensEUR systems was found to be
generally useful for providing additional information on NO2 and PM2.5 beyond what the
air quality monitoring stations routinely provide, particularly for providing additional
indicative information about urban-scale spatial patterns, for which the regulatory mon-
itoring network is typically not dense enough. However, we saw indications that the
challenging Nordic winter conditions negatively impact the lifetime of the electrochemical
cells. In addition, the required routines for co-location, calibration, and post-processing
for operating a sensor network are associated with significant labor, and users have to
individually weigh this expense against the additional information obtained from the
network. Future work should focus on automated algorithms for network calibration of
the devices, without the need for expensive co-location exercises.
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