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Abstract: Particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs)
were first systematically studied in downtown (XT), suburban (GL) and rural (DA) sites in winter and
summer in Hanoi, Vietnam, from 2019 to 2022. The mean concentrations of PAHs and NPAHs ranged
from 0.76 ng m−3 to 50.2 ng m−3 and 6.07 pg m−3 to 1.95 ng m−3, respectively. The concentrations of
PAHs and NPAHs in winter were higher than in summer, except for NPAHs in XT. We found the
benzo[a]pyrene (BaP)/benzo[ghi]perylene (BgPe) ratio could effectively identify biomass burning
in this study, in which a higher [BaP]/[BgPe] value indicates a greater effect of biomass burning on
PAHs and NPAHs. The results indicated that atmospheric PAHs and NPAHs were mainly affected
by motor vehicles (especially the unique motorcycles in Southeast Asia) in the summer in Hanoi. In
winter, all sites were affected by the burning of rice straw to varying degrees, especially DA. The
incremental lifetime cancer risk (ILCR) in Hanoi was first determined through ingestion, inhalation
and dermal absorption. The results showed that residents in Hanoi faced high health risks, while
females experienced higher health risks than males. The ingestion and dermal pathways indicated
higher exposure risks than the usually considered inhalation pathway.

Keywords: air pollution; polycyclic aromatic hydrocarbons; nitro-polycyclic aromatic hydrocarbons;
biomass; Hanoi

1. Introduction

Among all air pollutants, polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs
(NPAHs) are widely noted for their carcinogenicity and mutagenicity, and are associated
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with oxidative stress and DNA damage [1–4]. PAHs are formed through the incomplete
combustion of organic materials. For example, the incomplete combustion of petroleum,
biomass and coal for industry, vehicle (cars and motorcycles) emissions, residential heating
and cooking in daily life are the main anthropogenic sources of atmospheric PAHs [5,6].
PAHs can also be formed through natural sources, for example, forest fires, volcanic
activity and living vegetation [7]. Most NPAHs, for example, 6-nitrobenzo[a]pyrene and
1-nitropyrene, are formed during the incomplete combustion of fossil fuel and atmospheric
reactions, but some NPAHs (e.g., 2-nitropyrene) can only be formed through atmospheric
reactions [8,9].

The inhalation of urban air and tobacco smoke, ingestion of cooked food and drinking
water, and dermal absorption of the particles that adhere to exposed skin are considered the
main exposure pathways in humans [10]. The inhalation exposure pathway is utilized for
those PAHs and NPAHs inhaled by humans through breathing the exhaust gases emitted
by the combustion of fossil fuel/biomass [11]. The ingestion exposure pathway is used for
the adsorption and formation of those PAHs and NPAHs created during the production,
transportation and storage of the foods [12,13]. Different from the inhalation and ingestion
pathways, dermal exposure is the main pathway when skin is exposed directly to the
consumer products that have high levels of PAHs and NPAHs. Skin exposure can be at
both the internal boundary and external boundary during the health risk assessment [14].
Previous researches have shown the close relationship between cancer, heritable (pater-
nal germ-line) mutations and human reproduction and exposure to PAHs [15,16]. The
metabolites of certain PAHs and NPAHs, such as benzo[a]pyrene and 6-nitrochrysene,
which have been reported by the International Agency for Research on Cancer as Group 1
(carcinogenic to humans) and Group 2A (probably carcinogenic to humans) substances,
respectively, might show harmful biological activities to humans [17–19]. Moreover, some
NPAHs (with direct-acting mutagenicity) that can cause a higher toxicity than their parent
PAHs have been increasingly considered [20]. In addition, the study of Shen et al. showed
approximately 1372, 709 and 796 cancer cases might occur among one million residents in
Shenyang, Chongqing and Changsha, China, due to exposure to PAHs and NPAHs. The
study of Yadav et al. showed approximately 102–788 cancer cases might occur among one
million residents in Delhi, India, and Thepnuan et al. reported approximately 100 cancer
cases might occur among one million residents in Chiang Mai, Thailand [21–23]. The lack
of detection of PAHs and NPAHs can cause severe underestimations of fine particulate
matter (PM2.5)-related health risks since high health-risk PAHs and NPAHs are mainly in
particulate matter [24,25]. Thus, the detection of PAHs and NPAHs in PM2.5 is essential,
especially in lower- to middle-income countries that are developing rapidly and suffer
severe air quality problems [26].

Vietnam is located on the eastern Indochina Peninsula in Southeast Asia and has a pop-
ulation of over 96 million people. In this study, we collected PM2.5 samples at downtown,
suburban and rural sites in Hanoi, Vietnam, during the summer and winter from 2019 to
2022. The aim of this research was to (1) determine the characteristics of atmospheric PAHs
and NPAHs and the influencing factors of the concentration, composition and emission
sources at these different typical sites, and (2) comprehensively evaluate the incremental
lifetime cancer risks (ILCRs) of PAHs and NPAHs along three exposure pathways. The
results of this study will provide valuable, comprehensive and systematic information
for atmospheric conservation not only in Hanoi but also in other regions of Vietnam and
Southeast Asian countries with a similar environment.

2. Materials and Methods
2.1. Site Depiction Description

Vietnam has exhibited a relatively high constant growth rate of the gross domes-
tic product (GDP) of approximately 6.5% over the past two decades [27]. The high de-
velopment speed has aggravated air pollution, with severe health risks to the people
of Vietnam [28,29]. Biomass combustion and emissions from motor vehicles, especially
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motorcycles, are considered to be typical sources of atmospheric PAHs and NPAHs in
Vietnam [30–32]. Vietnam is the 5th largest rice exporter in global rice production, and
approximately 4 × 107 tons of rice is produced in Vietnam each year [33,34]. Rice is har-
vested two times a year in Vietnam; after each harvest season, there are large amounts of
crop residues (e.g., rice straw and rice stubble) that must be treated/processed [35–37]. To
complete field preparation faster during the two planting periods, straw is normally di-
rectly burned in the field [38,39]. Moreover, the registered motorcycles in Vietnam account
for over 80% of all registered vehicles, and the number of motorcycles reached more than
6 million units in 2018 [40,41].

In Hanoi, the capital of Vietnam, the air pollution and health risks of PAHs and NPAHs
caused by the above reasons have caused much concern [42–45]. However, to the best of
our knowledge, there have only been two investigations so far other than our groups, and
these studies were limited to PAHs only. Relevant research in Hanoi was first started in
2005, and roadside particulate and gaseous PAHs were studied [42]. Saha et al. observed
the impact of biomass combustion, even in the non-rice straw burning season, through
the investigation in 2009–2010 [43]. Our research group first reported concentration and
composition of NPAHs and toxic equivalent assessment results of atmospheric PAHs and
NPAHs in residential and roadside sites of Hanoi, and we found that the burning of rice
straw after the harvest could result in the emission of high levels of PAHs and NPAHs via
laboratory and field experiments, and calculated the unit emissions of PAH and NPAH
emitted by burning rice straw [32,46–48]. Moreover, we simply analyzed the inhalation
health risks caused by Hanoi traffic and calculated only PAHs [49,50]. However, the above-
mentioned past studies on PAHs and NPAHs in Hanoi lacked an overall analysis. For
example, different functional sites in Hanoi include downtown, suburban and rural sites,
and in different seasons. In addition, previous scholars conducted simple assessments of
the health risks but did not consider ingestion and dermal exposure, the results of which
are very likely to underestimate the exposure health risks of PAHs and NPAHs in Hanoi.
Therefore, three sites, namely, Xuân Thuỷ (XT), Gia Lâm (GL) and Ðông Anh (DA), were
selected in Hanoi, Vietnam, as shown in Figure 1. Sampling site XT is situated in the inner
part of Hanoi city, far away from rice fields, and represents downtown Hanoi. Sampling
site GL is located at the junction of downtown and rural sites, and represents the suburban
site of Hanoi. Sampling site DA is situated in the residential site of Hanoi, and is close to
rice fields, representing rural Hanoi.
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2.2. Sampling

The PM2.5 samples were collected on filters (2500QAT-UP, 25 mm ϕ and 47 mm ϕ,
Pall Life Sciences, Ann Arbor, MI, USA) by a mini sampler with a Sibata pump (MP-
Σ500NII) at a flow rate of 3 L minute−1. The samples were gathered in the winter and
summer from 2019 to 2022 in Hanoi, Vietnam. The sampling periods in GL ranged from
24–30 December 2019, 9–15 January 2020 and 15–21 February 2020 (n = 21, called GL-Winter)
and from 9–21 June 2020, 7–19 July 2020, and 5–17 August 2020 (n = 21, called GL-Summer).
The sampling periods in XT ranged from 20–27 January 2022 (n = 8, called XT-Winter)
and 30 June 2022–22 July 2022 (n = 15, called XT-Summer). The sampling periods in DA
ranged from 26 November 2021–10 December 2021 (n = 15, called DA-Winter) and 27 June
2022–24 August 2022 (n = 15, called DA-Summer). All filters were replaced every two
days in summer and one day in winter. It should be noted that the DA-Winter samples
were collected during the rice straw burning period, and the rest of the samples were
obtained during the non-rice straw burning season. All sampled filters were stored at
−20 ◦C before analysis.

2.3. PAHs and NPAHs Analysis

Ten PAHs, including fluoranthene (FR), pyrene (Pyr), benz[a]anthracene (BaA), Chry-
sene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP),
benzo[e]pyrene (BeP), benzo[ghi]perylene (BgPe) and indeno [1,2,3-cd]pyrene (IDP) (Su-
pelco Park, Bellefonte, PA, USA), and six NPAHs, including, 2-nitrofluoranthene (2-NFR),
6-nitrochrysene (6-NC), 7-nitrobenz[a]anthracene (7-NbaA), and 6-nitrobenzo[a]pyrene
(6-NbaP) (Chiron AS, Trondheim, Norway), 1-, 2-nitropyrenes (NPs) (Aldrich Chemical,
Osaka, Japan) were analyzed in this study. Pyrene-d10 (Pyr-d10) and benzo[a]pyrene-d12
(BaP-d12) were used as the internal standards that supplied by Wako Pure Chemicals (Osaka,
Japan). All other analytical reagents used in this study were of analytical grade.

Details of the sample analysis process are provided in our previous research and
shown in the Supplementary Materials (Text S1) [51,52]. In summary, the sample filters
were cut into small pieces and placed into different flasks. Two internal standards (Pyr-
d10 and BaP-d12) were then added. Dichloromethane was added to each flask, and the
compounds were then ultrasonically extracted, concentrated, diluted and filtered. High-
performance liquid chromatography with fluorescence detection (Shimadzu Inc., Kyoto,
Japan) was used to analyse the PAHs and NPAHs.

Blank filters were applied in this study to avoid filter contamination during the sam-
pling and transport processes, and the results of the blank filters showed no contamination
in the process. The method of recovery was evaluated through the addition of internal
standards. The recovery rates were 87% ± 7% for Pyr-d10 and 88% ± 6% for BaP-d12. In
addition, blank filters were adopted in three sites to avoid filter contamination during the
sampling and transport processes. The same procedures with other sample filters were
used to treat the blank filters, including weighing, storage and analysis. The analysis
of the blank filters showed no detection of target PAHs and NPAHs, indicating that no
contamination occurred during the transportation and storage of the sample filters.

2.4. Health Risk Assessment

Previous reports showed that toxicity equivalency (TEQ) and incremental lifetime
cancer risk (ILCR) effectively determine the carcinogenic risk of PAHs and NPAHs. The
equations of TEQ are expressed as follows:

TEQi = Ci × TEFi (1)

TEQtotal = ∑TEQi (2)

In Equation (1), the Ci and TEFi are the concentration and reference toxicity equiva-
lence factors, respectively, of each PAH and NPAH (Table S1).
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The U.S. EPA standard model was used to calculate the ILCR under different exposure
pathways, the equations of which are shown below [53,54]:

ILCRing = (C × CSFing × 3
√(BW/70) × IRing × EF × ED)/(BW × AT × 106) (3)

ILCRinh = (C × CSFinh × 3
√(BW/70) × IRinh × EF × ED)/(BW × AT × PEF) (4)

ILCRdem = (C × CSFdem × 3
√(BW/70) × SA × AF × ABS × EF × ED)/(BW × AT × 106) (5)

In Equations (3)–(5), ILCRing, ILCRinh and ILCRdem are the risk values for ingestion, inhalation
and dermal exposure, respectively, C is the concentration of TEQPAH (ng m3), and CSFing, CSFinh
and CSFdem are the carcinogenic slope factors for ingestion, inhalation and dermal exposure ((mg
kg−1 day−1)−1), respectively [11,55,56]. The values of CSFing, CSFinh and CSFdem capture the cancer-
causing ability of BaP at 7.3, 25 and 3.85 ((mg kg−1 day−1)−1), respectively. BW is the average body
weight (kg), EF is the annual exposure frequency (day), ED is the duration of exposure (years), SA is
the exposed area of skin (cm2), AF is the skin adherence factor (mg cm−2), ABS is the skin absorption
factor (day−1), and IRing and IRinh are the intake rates under the ingestion and inhalation exposure
routes (mg day−1), respectively [12,57]. The specific values are shown in Table S2.

The sum of all three ILCRs under the different exposure pathways is the total ILCR, which can
be calculated as follows:

Total ILCR = ILCRing + ILCRinh + ILCRdem (6)

3. Results
3.1. Concentrations of PAHs and NPAHs

Figure 2 provides the average concentrations of PAHs and NPAHs at the three sites in Hanoi
during the sampling periods, the details of which are listed in Tables S3 and S4. The average total
concentrations of PAHs and NPAHs at all sites were higher in the winter than in the summer, except
for XT-Summer. The results showed that the concentration tendency of PAHs and NPAHs in Hanoi
was similar to that in other Asian countries (e.g., China and Japan), in which the main reasons are the
differences in sources and meteorological conditions between winter and summer [3,52,58]. However,
unlike other Asian countries, the concentrations of PAHs and NPAHs in the downtown site, XT
(2.95 ng m−3 and 58.0 pg m−3), were much lower than GL (suburban site, 12.1 ng m−3 and
494 pg m−3, p < 0.01) and DA (rural site, 22.1 ng m−3 and 548 pg m−3, p < 0.01) in the winter.
A reduction in traffic and factory manufacturing during the COVID-19 pandemic might be one
reason for the relatively low concentration at XT, although the sampling periods were not during the
lockdown period. In the summer, the concentrations of PAHs and NPAHs in XT (2.55 ng m−3 and
115 pg m−3) were higher than those in GL (2.20 ng m−3, p > 0.05 and 55.3 pg m−3, p < 0.01) but lower
than those in DA (4.38 ng m−3, p < 0.01 and 137 pg m−3, p < 0.05). In addition, the winter–summer
ratios of the atmospheric concentrations of PAHs and NPAHs in XT were 1.16 and 0.48, respectively.
As shown in Table S3, the increase in PAHs in winter is mainly due to the increase in the particle
phase distribution of 4-ring PAHs under the lower temperature condition [24,59]. However, the
concentration of NPAHs in the summer was higher than that in the winter, which is due to the
increase in the concentration of the secondary formation of NPAHs caused by the strong atmospheric
reactivity in the summer and the lack of detection of several NPAH species in the winter (Table S4).
This is an important result, and we will identify the phenomenon in our future studies. Nevertheless,
compared with XT, the winter–summer ratio of the atmospheric concentrations of PAHs and NPAHs
in DA (5.50, 8.93) and GL (5.05, 4.00) were much higher. This result cannot simply be explained by
the above reasons. Since the winter sampling of DA was performed in the rice straw combustion
period, and the sporadic combustion of RS used as fuel in daily life in the GL site can still emit high
concentrations of PAHs and NPAHs [32,47,48], therefore, burning RS in winter may be a reason for
the increased concentrations of atmospheric PAHs and NPAHs in DA and GL.
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3.2. Prospective Emission Sources of PAHs and NPAHs
The emission sources of PAHs and primary NPAHs can notably control the corresponding compo-

sition characteristics [60]. Therefore, to identify the potential sources, diagnostic ratios of PAHs, and pri-
marily NPAHs, such as the ratios of [FR]/([FR] + [Pyr]), [BaA]/([BaA] + [Chr]), [BbF]/([BbF] + [BkF])
and [IDP]/([BgPe] + [IDP]), have typically been used in many studies [6,61–63].

Figure 3 showed the values of the PAHs diagnostic ratios at all sampling sites and periods.
As shown in Figure 3a, the value of [FR]/([FR] + [Pyr]) in Hanoi was mainly higher than 0.5,
which indicates emissions resulting from biomass/coal during winter. The [FR]/([FR] + [Pyr])
value in Hanoi was mainly lower than 0.5, which indicates the notable effect of traffic emissions
in summer [64–66]. The [BaA]/([BaA] + [Chr]) results showed that the emissions of PAHs and
NPAHs resulting from biomass/coal burning cannot be ignored in both summer and winter. The
[BbF]/([BbF] + [BkF]) and [IDP]/([IDP] + [BgPe]) results showed that the levels in both summer and
winter in Hanoi were affected by traffic emissions (Figure 3b) [6,67,68]. Based on the above results, the
atmospheric PAHs and NPAHs of the three different functional sites in Hanoi were comprehensively
impacted by biomass combustion and vehicles simultaneously all year. Even in the winter of our
selected DA (RS burning period), the proportion of biomass combustion was not fully highlighted.
This indicates that these commonly used diagnostic ratios give uncertain results when evaluating the
contribution rates of atmospheric PAHs and NPAHs in Hanoi.

Figure 4 shows the ratio of BaP and BgPe in the atmosphere at the three different functional
sites in Hanoi in this study and different emission sources in the previous studies. According to ours
and other previous studies on the different emission sources of atmospheric PAHs and NPAHs, the
[BaP]/[BgPe] ratios are between 0.08 and 0.49 in motorcycle emissions [42,69–73], 0.6 and 1.64 in
biomass burning [74–79] and 0.53 and 0.90 in automobile emissions [6,80–85]. In this study, the ranges
of [BaP]/[BgPe] in summer were 0.34–0.47 (GL), 0.23–0.34 (XT) and 0.26–0.42 (DA), which are close
to the emission characteristics of motorcycles. In winter, the ranges of [BaP]/[BgPe] were 0.24–0.73
(GL), 0.33–0.51 (XT) and 0.51–1.05 (DA), which are close to the other referenced cities with vehicles as
the primary source but lower than the ratio of biomass burning. Our previous studies showed that
atmospheric PAHs and NPAHs at the urban stations in Hanoi mainly came from motorcycles, and the
contribution rate of vehicles was relatively low [31,46,49]. In addition, as mentioned in the previous
section, the DA site is very close to the rice fields, and the samples of DA-Winter were collected
during the RS burning period in Hanoi. Therefore, due to the [BaP]/[BgPe] value for motorcycles
(median ratio = 0.37) being significantly lower (p < 0.01) than DA-winter (median ratio = 0.81) and
higher than the [BaP]/[BgPe] value for biomass burning (median ratio = 0.70), the high [BaP]/[BgPe]
ratio of DA-Winter shows that atmospheric PAHs and NPAHs were mainly affected by RS burning.
The [BaP]/[BgPe] median values in GL and XT were 0.55 and 0.41, respectively. The [BaP]/[BgPe]
median value in GL was significantly higher (p < 0.05) than those for motorcycle exhausts (median
ratio = 0.37), and the [BaP]/[BgPe] median value in XT was higher than motorcycle exhausts. This
indicated that the other two sites in Hanoi were also impacted by RS burning to varying degrees,
although the sampling period was not the main period of RS burning. This may be related to the
habit of burning RS as fuel for daily life in some sites of Hanoi in winter [32,47,48,86].
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Figure 5 shows the diagnostic ratio distributions of NPAHs and the corresponding sources.
1-NP is mainly formed during the combustion process, whereas 2-NFR and 2-NP are formed through
atmospheric reactions [87]. [2-NFR]/[2-NP] ratios close to 10 and 100 are typically used to deter-
mine if the formation pathway of NPAHs is dominated by OH and NO3 radical-initiated reactions,
respectively [88,89]. As shown in Figure 5a, the [2-NFR]/[2-NP] ratio in this study ranged from
1.89 to 20.8, and closer to 10, the results of which are similar to those in our previous studies in
Hanoi, Singapore and Xinxiang, China [32,58,63]. This result showed the importance of the OH
radical-initiated reaction pathway in Hanoi in both summer and winter. [2-NFR]/[1-NP] ratios
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indicate atmospheric NPAHs mainly originate from primary emissions (≤5) or secondary formation
(>5) [90]. Although this ratio reflects the aging of aerosols, it is also affected by the atmospheric
reaction rate of 1-NP degradation and 2-NFR formation [91]. As shown in Figure 5b, most of the
ratios of [2-NFR]/[1-NP] in DA-Winter were close to 5 and were significantly lower (p < 0.01) than
in other sites and seasons. Higher 1-NP levels and a lower formation rate of 2-NFR during the rice
straw burning period were considered (Table S4). Similar [2-NFR]/[1-NP] results were found in other
studies in Lanzhou (mean = 4.70) that experienced a biomass burning period [92].
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3.3. Health Risk Assessment
3.3.1. BaP Equivalent Concentration

Among all PAHs, BaP has been found to be the primary contributor to cancer risk, and the
BaP equivalent concentration (TEQ) has been widely used as an indicator for modelling air quality
and assessing the health risk [93,94]. Table S5 shows the TEQ of each PAH and NPAH. During
winter, the average total TEQs in GL, XT and DA were 1730 ± 1577 pg m−3, 363 ± 319 pg m−3 and
3877 ± 2548 pg m−3, respectively, which were higher than those in summer, with corresponding
values of 298 ± 218 pg m−3, 335 ± 152 pg m−3 and 571 ± 111 pg m−3, respectively. The highest total
TEQ appeared in DA, followed by GL, emphasizing the health effect of biomass burning on the rural
residents of Hanoi. In both winter and summer, BaA, Chr, BbF and BaP were the major contributors to
the total TEQ, accounting for 58.0% to 85.2% of the total TEQ. 6-NC showed the highest contribution
among all three NPAHs due to its high atmospheric concentration and high toxic equivalent factor
(10 times higher than that of BaP) [95,96]. Compared with other motorcycle-dominated cities in
Southeast Asia, the TEQs in winter in GL and DA were higher than the background site in winter
in Ho Chi Minh City, Vietnam (0.91 ng m−3), and the Mae Sot District, Thailand (1.57 ng m−3), the
samples of which were collected during a biomass burning period [73,97]. The results show the
relatively high health risks in Hanoi, Vietnam, compared with other motorcycle-dominated cities.

3.3.2. ILCR Assessment
The ingestion, inhalation and dermal contact pathways have been reported to be the main

pathways for human exposure to PAHs and NPAHs [98]. Based on the total TEQ, the mean ILCR
values for the three exposure routes in Hanoi were assessed, as shown in Table 1. The mean ILCR
values for males and females were all higher than the acceptable threshold of the ILCR recommended
by the U.S. EPA, at 1 × 10−6 [99]. The mean ILCR in DA (3.00 × 10−5 and 3.26 × 10−5 for males
and females, respectively) was the highest, followed by GL (1.37 × 10−5 and 1.49 × 10−5 for males
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and females, respectively), which indicates that approximately 30 and 33 cancer cases might occur
among one million males and females, respectively, in rural Hanoi. The results showed relatively
high health risks for the residents of Hanoi, especially in the rural site. The risks under the three
exposure routes were ranked in the following order: ingestion > dermal > inhalation. In this study,
females in Hanoi experienced slightly higher health risks than males, which is different from other
studies [51,63]. The reason might be due to the relatively long lifetime of females (80 years) relative to
males (75 years) in Vietnam, causing a more extended exposure period. The mean ILCR values in GL
and DA in this study were higher than those in our previous study (the mean ILCR values ranged
from 7.5× 10−6 to 2.3× 10−5), and the results were calculated by using the TEQ [50]. The comparison
revealed that the lack of determination of the ILCR through ingestion and dermal ingestion could
cause underestimations of the health risks in Hanoi. However, the mean ILCR value in this study
was lower than the ILCR value in our previous study obtained by using the CALUX bioassay (the
mean ILCR value ranged from 1.0 × 10−4 to 2.8 × 10−4) to determine the TEQ, which is based on
the ligand-activated aryl hydrocarbon receptor (AhR)-mediated induction of biological responses to
PAHs and can more particularly identify the AhR-mediated risk of PAHs [50,100]. Therefore, future
studies in Hanoi should consider all three exposure routes for a more precise determination of ILCR
and CALUX-based TEQ values.

Table 1. The mean ILCRs for three exposure routes from 2019 to 2022 in Hanoi, Vietnam.

GL XT DA

Male Female Male Female Male Female

Ingestion 1.07 × 10−5 1.17 × 10−5 3.69 × 10−6 4.01 × 10−6 2.36 × 10−5 2.56 × 10−5

Inhalation 5.22 × 10−9 4.76 × 10−9 1.79 × 10−9 1.64 × 10−9 1.14 × 10−8 1.04 × 10−9

Dermal 2.94 × 10−6 3.19 × 10−6 1.01 × 10−6 1.10 × 10−6 6.44 × 10−6 7.00 × 10−6

Total 1.37 × 10−5 1.49 × 10−5 4.70 × 10−6 5.11 × 10−6 3.00 × 10−5 3.26 × 10−5

4. Conclusions
This study surveyed the concentration, composition and health risk of PM-bound PAHs and

NPAHs from 2019 to 2022 at three specific sites in Hanoi, Vietnam. The concentrations of PAHs
and NPAHs were highest in a rural site (DA) in winter and were lowest in a suburban site (GL) in
summer. Combining several diagnostic ratios of PAHs and NPAHs, we found that the atmospheric
PAHs and NPAHs of all areas in Hanoi were affected by the burning of RS with varying degrees in
winter, especially during the large-scale RS burning period, while in the summer, the motorcycle
was considered the main contributor. The [2-NFR]/[2-NP] ratios showed that OH-initiated reactions
comprised the main formation pathway of 2-NFR and 2-NP in Hanoi. The ILCR values in this study
were higher than the safe limit, especially in the RS burning period. We first reported that the three
exposure routes for ILCR determination showed that ingestion yielded higher health risks than the
dermal and inhalation pathways in Hanoi. The implementation of this study will urge the Vietnamese
government to take further measures to control RS combustion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14050782/s1, Text S1. Pretreatment and instrumental
analysis of PAHs and NPAHs. Table S1: The toxic equivalent factor (TEF) of PAHs and NPAHs;
Table S2: Parameters of incremental lifetime cancer risks (ILCRs); Table S3: Average PAHs’ concen-
tration (ng m−3) at three sites in Hanoi during the sampling periods; Table S4: Average NPAHs’
concentration (pg m−3) at DA and XT in Hanoi during the sampling periods; Table S5: The toxic
equivalent concentration range (pg/m3) of PAHs and NPAHs (except 2-NP, 7-NbaA and 6-NbaP).
References [57,101–106] are cited in the supplementary materials.
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