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Abstract: Exposure to air pollution will pose a serious threat to human health. Accurate air pollution
forecasting can help people to reduce exposure risks and promote environmental pollution control,
and it is also an extremely important part of smart city management. However, the current deep-
learning-based models for air pollution forecasting usually focus on prediction accuracy improvement
without considering the model interpretability. These models usually fail to explain the complex
relationships between prediction targets and external factors (e.g., ozone concentration (O3), wind
speed, temperature variation, etc.) The relationships between variables in air pollution time series
prediction problems are very complex, with intricate relationships between different types of variables,
often with nonlinear multivariate dependencies. To address these problems mentioned above,
we proposed a hybrid autoformer network with a genetic algorithm optimization to predict air
pollution temporal variation as well as establish interpretable relationships between pollutants and
external variables. Furthermore, an elite variable voting operator was designed to better filter out
more important external factors such as elite variables, so as to perform a more refined search
for elite variables. Moreover, we designed an archive storage operator to reduce the effect of
neural network model initialization on the search for external variables. Finally, we conducted
comprehensive experiments on the Ma’anshan air pollution dataset to verify the proposed model,
where the prediction accuracy was improved by 2–8%, and the selection of model influencing factors
was more interpretable.

Keywords: air pollution forecasting; external factor optimization; genetic algorithm, autoformer;
temporal variation; multivariate dependencies; relationships analysis; model interpretability

1. Introduction

In recent years, with the development of urbanization and industrialization, air quality
issues have been on the agenda [1], and air pollution has been placed on an increasingly
important position in policy formulation and implementation. Air pollution in cities is
mainly caused by industrial emissions and transportation, which can produce pollutants
such as NO2, O3, and SO2 [2]. According to the 2021 China Ecological Environment Status
Bulletin, only 64.3% of China’s 339 cities at the prefecture level and above met the ambient
air quality standards in 2021. In the Yangtze River Delta region, the average percentage of
days with air quality exceeding standards was 13.3%, with O3 and PM2.5 as the primary
pollutants accounting for 55.4% and 30.7% of the total exceedance days, respectively. The
synergistic treatment of multiple pollutants has become the focus of air pollution prevention
and control in China [3].

Air pollution prediction refers to the extraction of information and characteristics from
historical air pollution data to predict the future trend of air pollution [4]. Multivariate
time prediction means that, for the predicted time series, there may be very many external
factors that affect the predicted target, such as the value of some pollutants related to
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the historical value of the target pollutant, as well as the closely related external factors
including temperature, humidity, wind direction etc. [5]. Many cities have established
monitoring stations in various locations to detect ozone (O3), nitric oxide(NO), PM2.5, and
other detection data. The main source of air pollution from industrial emissions, human
activities, transportation, natural causes (wild fires), and other factors, such as weather
factors, wind speed, temperature, and humidity, will also affect the settlement of pollutants
and, thus, affect their monitoring values. One contaminant may also be a precursor to
another, and Figure 1 shows the correlation relationships of different pollutants. Thus, air
pollution is affected by many complex factors, and these factors can interact with each
other, thus making the prediction of air pollution a difficult problem. If it were possible to
predict the place with high pollution probability one or two days in advance, more efficient
actions could be taken to alleviate the potential regional pollution [6].

Figure 1. The daily trend of O3 with PM2.5 and precursor NOx on a certain day at a monitoring
station:(a) O3-PM2.5; (b) O3-NOx.

Traditional air pollution prediction research are based on statistical methods, such as the
Autoregressive Model (AR), the Moving Average Model (MA), and the Auto-Regression and
Moving Average Model (ARMA), as well as the Autoregressive Integrated Moving Average
(ARIMA) [7]. Although these methods can model the time series well, they all need the time
series to have large smoothness, which requires high requirements on the dataset. However,
in air pollution monitoring, there will often be problems such as missing data due to sensor
failure, so pre-processing of the data is usually required in the application [8]. However, most
statistical methods focus only on air pollution values in their predictions, without considering
the changes in pollutant concentrations themselves by other factors, such as weather factors
and the effects of other pollutants on them. With the development of artificial intelligence
approaches and big data, many research projects have utilized machine learning and deep
learning techniques for air pollution prediction. In traditional machine learning methods,
Fan et al. [9] used a heuristic algorithm combined with SVM to predict daily diffuse solar
radiation in air-polluted regions. S.Gocheva-Ilieva et al. [10] proposed a novel framework
for stacked regression based on machine learning to predict the daily average concentrations
of particulate matter (PM10), where four base models were built and evaluated. Johansson,
C et al. [11] applied different machine learning (ML) algorithms—including Random Forest
(RF), Extreme Gradient Boosting (XGB), and Long Short-Term Memory (LSTM)—to improve
deterministic predictions of PM10, NOx, and O3 for 1, 2, and 3 days at different locations in
Greater Stockholm, Sweden.

In the problem of air pollution prediction, the use of sample features in traditional ma-
chine learning methods mainly requires expert knowledge in air pollution, which is usually
time-consuming and laborious. In particular, different regions have different environmental
conditions and different characteristics of air pollution changes, and different structural
characteristics of atmospheric flow due to topography and population density [12] make
it more difficult to extract relevant features. Moreover, air pollutants have very complex
chemical reactions; for example, NOx are important precursor pollutants in O3 forma-
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tion and produce complex photochemical reactions, which makes it difficult to construct
complex nonlinear feature mappings through traditional machine learning.

Deep learning has made many promising advances in the field of air pollution pre-
diction and analysis. Shikhovtsev A.Yu et al. [13] used a deep neural network based on
GMDH to estimate and predict the characteristics of turbulence intensity in the stratosphere.
M.Catalano et al. [14] used Autoregressive Integrated Moving Average with Explanatory
Variable(ARIMAX) and Artificial Neural Network (ANN) models to compare the result
of urban transportation networks for air pollution peak predictions. The results showed
that neural networks were predicting peaks at a superior rate to the ARIMAX model.
However, the ANN does not reflect the temporal characteristics of air pollution variation
well, where the air pollution variation is highly time-dependent and is closely related to
the recent air pollution observation, as well as the previous period of variation. Recurrent
Neural Networks (RNNs) can use the output of the previous moment as the input of
the next moment to achieve feature extraction and the learning of time series. B.T. Ong
et al. [15] proposed a Deep Recurrent Neural Network (DRNN) with a novel pre-training
method to predict PM2.5 in Japan. However, RNNs suffer from gradient disappearance
and gradient explosion when dealing with long time sequence problems. M. Krishan
et al. [16] used the Long Short-Term Memory (LSTM) approach to predict O3, PM2.5,
NOx, and CO concentrations at a location in the NCT of Delhi. Li et al. [17] proposed a
hybrid CNN-LSTM model by combining a Convolutional Neural Network (CNN) with a
Long Short-Term Memory (LSTM) neural network for forecasting the next 24 h of PM2.5
concentration in Beijing. In recent years, Transformer has made incredible progress in
sequential problem processing by using a multi-headed self-attentive mechanism to obtain
point-in-time correlations. Chen et al. [18] combined a CNN with Transformer to predict
O3 concentrations and achieved good results in both short- and long-term predictions.
Wenfeng Zheng et al. [19–24] used various deep learning methods to achieve better results
on both haze time scale and spatio-temporal prediction.

Several contributions have been made in combining genetic algorithms with neural
network models to explore hyperparameters; for example, Rana Muhammad Adnan et al.
used ALO to optimize the number of hidden layer neurons and the learning rate of an
LSTM [25]. The ANFIS-GBO model used two operators to optimize the learning parameters
to improve the prediction accuracy of the ANFIS [26]. In addition, the PSOGWO and
PSOGSA algorithms have also been used to optimize the control parameters of the ELM
model [27]. The SVR-SAMOA model integrates the Simulated Annealing (SA) algorithm
with the Mayor Optimization Algorithm (MOA) to determine the optimal hyperparameters
for Vector Regression (SVR) [28], and the ANN-EMPA combines mutation and crossover
operators with the ANN to produce robust hybrid prediction model [29]. The CNN-INFO is
highly efficient in optimizing complex phenomena with unacknowledged search areas [30].

However, all these machine-learning-based methods are hard to interpret and require
manual feature engineering based on a priori knowledge, which is prone to prediction
errors. For the models built by deep learning training, although the prediction accuracy is
high, their trained weights are of little use to us, because they have little physical meaning
for real-world problems. For the air pollution prediction problem, the external variables
have a very strong correlation with the prediction target, as shown in Figure 1, where
PM2.5, NOx, and O3 are significantly negatively correlated, and, as the PM2.5 concentration
increases, the chemical reaction is suppressed, thus reducing the rate of O3 production. In
addition, the non-homogeneous chemical reactions occurring on the surface of the particles
due to the increase of PM2.5 concentration also affect the concentration of O3, while NOx
is a precursor of O3 and undergoes photochemical reactions to produce ozone. These
correlations can help the authorities in predicting atmospheric pollution while helping
them to develop effective policies to mitigate pollution, but this information is difficult
to obtain in deep learning, and a model is needed that can explore the impact of current
external factors on atmospheric pollution while also predicting them.
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All these challenges inspire us to rethink the air pollution prediction problems based
on deep learning models with model interpretability. Specifically, a Hybrid Autoformer
Network with a Genetic Algorithm Model (GA-Autoformer) was proposed to predict air
pollution temporal variation, as well as explore the relationship between external variables
and target pollution. The main contributions of the proposed method are summarized
as follows:

(1) A Hybrid Autoformer Network with a Genetic Algorithm Model was proposed to
predict the air pollution variation, where the genetic algorithm was used to optimize
the external variable weighting problem for different variables that have different
effects on the target pollution.

(2) The Elite Variable Operator was proposed to vote at fixed intervals of generations to
find out the variables that have a greater impact on the target prediction to be selected
as elite variables, which are explored to perform a more refined search.

(3) The proposed Archive Storage Operator, using genetic algorithms, led to deviations in
the final results due to the influence of the initialization of individual models, where
the individuals with better value may be less effective due to initialization and vice
versa. The archive mechanism was used to store the individuals with good results
and to filter them to get the really good ones.

(4) We conducted comprehensive experiments on the Ma’anshan air pollution dataset to
verify the proposed model, where the prediction accuracy was greatly improved, and
the selection of model influencing factors was more interpretable.

The rest parts of this paper is arranged as follows. We describe our study area and
data set in detail in Section 2. Sections 3 and 4 review the related work and detail our
model. The experiments and result analysis are presented in Section 5. Finally, we discuss
and conclude the paper in Sections 6 and 7.

2. Study Area and Data Requirement
2.1. Study Area

Ma’anshan is located in East China (Figure 2), east of Anhui Province, in the lower
reaches of the Yangtze River, bordering Nanjing, located between 31◦46′42′′–31◦17′26′′

north latitude and 118◦21′38′′–118◦52′44′′ east longitude. Furthermore, it is an important
node city in the South Anhui International Tourism and Culture Demonstration Zone. The
overall terrain of the city is relatively flat, slightly higher in the north and lower in the
south. It has a north subtropical monsoon climate with four distinct seasons. Ma’anshan
Port is one of the top ten ports on the Yangtze River, and Zhengpu Port is the only 10,000-
ton deep-water port in the Jiangbei region of Anhui Province, where an Anhui river–sea
intermodal transport hub is being built.

As an important industrial city in the Yangtze River Delta region, Ma’anshan straddles
the Yangtze River and has a large impact on the surrounding air quality. Our study area
covers residential, industrial, and rurial areas of Ma’anshan. The air quality data collected
from the above areas can reflect the main air quality conditions of representative areas in
Ma’anshan.
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Figure 2. The map on the right identifies the location of the urban area of Ma’anshan, and the red
dots represent the location of the monitoring stations where the data are concentrated. Location
A is located in Ma’anshan Hudong Road Fourth Primary School (Resident area), Location B is
located in Poutang National Resort Park (Rurial area), and C is located in Maanshan Economic and
Technological Development Zone (industrial area), which correspond to Location A, Location B, and
Location C used in the experiment, respectively.

2.2. Data Requirement

We used the air pollutant data from the air pollution quality testing station in Ma’anshan,
Anhui Province, and our predicted targets were ozone concentration (O3), particulate mat-
ter with a particle size below 2.5 microns(PM2.5), and the air quality index (AQI). The final
model input includes three kinds of information:

(1) Air pollution gas detection content, including carbon monoxide (CO), nitrogen dioxide
(NO2), and sulfur dioxide (SO2).

(2) Air pollution index, including particulate matter with a particle size below 10 microns
(PM10) and total suspended particulates (TSPs).

(3) Environmental factors of the target AQI station, including wind direction, wind speed,
precipitation, vapor pressure, humidity, visibility, atmospheric pressure, and temperature.

The specific data set partitioning and description will be detailed in Section 5.1.

3. Preliminary
3.1. Transformer for Time Series Forecasting

Recently, the Transformer model has achieved very excellent results in natural lan-
guage processing. The self-attention mechanism enables the network to capture long
sequences of features while avoiding the circular structure that exists in RNNs and LSTMs
by using the parallel design that allows for a significant reduction in prediction time [31].

The Transformer model is a multi-layer model, including a multi-headed self-attentive
layer, followed by a feed-forward layer, plus residual connections and layer normalization,
as shown in Figure 3.
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Figure 3. Architecture of Transformer.

Due to its great potential in sequence modeling, the Transformer soon attracted the
attention of researchers. Wu et al. [32] first applied the Transformer to the influenza
outbreak prediction problem. Subsequently, researchers carried out optimization of their
model, and Li et al. [33] proposed a convolutional self-attention by producing queries and
keys with causal convolution and sparse bias to reduce the computational complexity from
O(L2) to O(LlogL). Zhou et al. [34] proposed the ProbSparse Self-Attention mechanism,
called Informer, and designed a generative style decoder to produce long-term forecasting.
Xu et al. [35] decomposed the time series into trend parts and seasonal parts and used an
auto-correlation mechanism.

3.2. Genetic Algorithm

The genetic algorithm was proposed by Professor Holland in 1975 [36]. It is a compu-
tational model that simulates Darwin’s biological evolutionary process of genetic selection
and natural elimination, and, so far, genetic algorithms have been considered as the basis
of intelligent optimization algorithms [37]. Genetic algorithms have been widely used
in many fields, such as function optimization, path planning, production scheduling,
neural-network-structured searches, and other problems [38].

The basic idea of the genetic algorithm is to borrow the law of biological evolution
through reproduction–competition to achieve superiority and inferiority, so that the prob-
lem is approached to the optimal solution step-by-step. In the process of problem solving,
we modeled the data as similar to genes in an organism, and approximate the optimal
solution through genetic, selection, crossover, and mutation operations of genes.

The general process of the genetic algorithm is as follows in Figure 4.
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Figure 4. Framework of the genetic algorithm.

(1) Selection

Individuals who are suitable as parents are selected from the population according to
certain criteria, and the offspring are reproduced by mating. There are various selection
methods, such as the fitness proportion method, roulette method, essence preservation
method, etc.

(2) Crossover

Crossover is the operation of swapping two chromosomes into groups (recom-
bination). There are various methods of crossover, such as single-point crossover,
multi-point crossover, partial mapping crossover (PMX), sequential crossover (OX),
heuristic crossover, etc.

(3) Mutation

Mutation is a change in a gene with a certain probability. Mutation has the function of
local search, while crossover has the function of global search compared to variation. The
crossover and mutation operations help to maintain the diversity of the population and
avoid falling into local optima in the early stage of the search.

From the above three basic operations, selection embodies the competitive evolu-
tionary idea of superiority and inferiority, wherein superior individuals are obtained by
crossover and mutation operations.Through several iterations, the individuals approach
the optimal solution.

In recent years, genetic algorithms have also played a role in air pollution control. The
Artificial Neural Network with Back Propagation (BP) with a middle layer and sigmoid
activation function and its hybrid with a Genetic Algorithm (BP-GA) were used to predict
PM10 levels by M. Asghari [39]. G. Nunnari et al. [40] combined the use of wavelets and
genetic algorithms to search for the best wavelet parameters to predict the daily average
of SO2.

3.3. Problem Formulation

In this section, we provide the air pollution prediction problem definition. With a fixed
sliding window, the inputs for external factors (other pollutants, meteorological factors,
etc.) are XT = (X1, X2, ......., XT−1, XT), where Xi = (X1

i , X2
i , ......., XL−1

i , XL
i ) represents a

particular external factor belonging to XT , and the sliding window size is L. Furthermore,
we set the atmospheric pollutants history value as yT = (y1, y2, ......., yT−1).

ỹT = f (X, y) (1)
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Our goal is to build a model that uses external factors XT and historical pollution
values y to obtain predicted air pollution ỹT = f (X, y), where f is the nonlinear mapping
model to be learned.

4. Methodology

In this section, we will give a detailed description of the Hybrid Autoformer Network
with a Genetic Algorithm model (GA-autoformer). A genetic algorithm was used to explore
the influence of external factors on the prediction target, determine the degree of influence
of each factor on the target, and then put the approximate optimal results into the neural
network model. The back-bone neural network model adopted in this paper is Autoformer,
which can obtain the best particles and the best prediction accuracy through n iterations.
The overall structure of the model is as shown in Figure 5. We will explain the process of
the whole structure in detail in Sections 4.1–4.7. The pseudo code for the whole algorithm
is shown in Algorithm 1.

Figure 5. Architecture of GA-autoformer. The whole neural architecture consists of two parts. The
right side is the neural network architecture, and the autoformer model is used as back-bone network
in this paper. The left side is the genetic algorithm, and the lower left side is two operators that we
proposed: Elite Voting Operator and Archive Storage Operator.
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Algorithm 1 Frame process of the GA-autoformer model

Require: D: Multivariate time series dataset on air pollution used in this iteration,
t: Number of iterations,
p: Population number,
k: Interval iteration of executive operator,
M: Neural network model

Ensure: Wb: Best weight
Randomly generate W = [W1, W2, W3, . . . , Wp−1, Wp]
archive_weight = ∅
archive_ f itness = ∅
elite = ∅
for i = 1 to t do

FitnessW ← M(D, W)
Fitnessa ← M(D, archive) ∪ Fitnessa
W = tournament_selection(W,FitnessW)

if i%k==0&&i!=0 then
elite← elite_voting(W ′,FitnessW)
archive← archive_storage(archive_weight, archive_ f itness,W ′,Fitnessa,FitnessW)

end if
W ′ ← crossover(FitnessW ,W ′,elite)
W ′ ←mutation(FitnessW ,W ′,elite)
W ← generate_population(FitnessW ,W ′)

end for
Wb ← select_best(archive)
return Wb

4.1. Generate Random Individuals

Firstly, n individuals are randomly generated as the population, and each individual
represents a candidate solution, namely, the weight of external factors.

Wi = [W1
i , W2

i , W3
i , . . . , WL−1

i , WL
i ] (2)

where L is the number of external variables i ∈ (1, 2, 3, . . . p), and p is the number of
populations.

4.2. Calculation of Fitness Values

The weight value of each individual is cross multiplied with the multivariate variable
value in the current air pollution data set D, and the obtained result is input into the
neural network as a new data set D′ to obtain the corresponding prediction accuracy, so
the prediction accuracy can be used as the fitness value of the current individual.

4.3. Selection

In order not to lose information, we put the best particle into the new population.Then,
we used the Tournament Selection Algorithm to randomly select n individuals from the rest
of the population and let these n individuals compete. Then we put the best individuals
into the new population. We keep iterating until the population of the new population
meets the requirements. This new population is the produced offspring and has a higher
fitness value than before. Furthermore, n is usually set as 2.

4.4. Elite Variable Voting Operator/Archive Storage Operator

Elite Variable Voting and Archive Storage are performed every k generations. The Elite
Variable Voting Operator can find elite variables from excellent individuals and search more
finely in the subsequent mutation and crossover. The Archive Storage operator can reduce
the instability caused by the randomness of neural model initialization by sending the
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weight into the neural network model. The specific implementation details are expanded
in Sections 4.8 and 4.9.

4.5. Crossover

Although the average fitness value is improved in the process of selection, it cannot
produce new individuals. Crossover mimics the method of biological clock hybridization
to produce new varieties, transposes some parts of chromosomes, and uses the random
pairing method to determine the parents of individuals.

We adopted the following strategy on the crossover of elite variables: elite variables
tend to have high weight values, and if they are crossed with some non-elite, it may lead
to the loss of information preserved by elite variables, thus leading to population non-
convergence, but moderate elite crossover with non-elite variables may also lead to an
increase in population diversity, for which we proposed that elite variables be crossed
with non-elite variables in the early stage and only with elite variables in the later stage,
thus maintaining population convergence. We treated the first 50% of the iteration as the
early stage, where elite variables can cross with non-elite variables, and, in the later stage,
elite variables could only cross with elite variables. We adopted shuffle crossover as our
crossover method [41]. The flow chart of the crossover is shown in Figure 6.

Figure 6. Description of crossover. We separated the elite and non-elite variables for shuffle crossover
and then combined them.

4.6. Mutation

Crossover and selection can ensure that excellent genes are left in each evolution, but
this may lead to the local optimization of the whole population. When we cross generate a
new chromosome, we can randomly select several genes on the chromosome, and randomly
modify the value of genes [42].

f (x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
(3)
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Wk
i = Wk

i + γ ∗Wk
i ∗ N(0, 1) (4)

Furthermore, we performed a Gaussian variation on Wk
i , wherein the Gaussian distri-

bution random perturbation term Wk
i ∗N(0, 1) was added to the original state Wk

i . Equation
(3) is the general form of the Gaussian distribution, where N(0, 1) is the standard normal
distribution, µ is 0, and σ is 1. In order to reflect the difference between elite and non-elite
variables, different weighting coefficients γ were used as in Equation 4. When non-elite
variables are selected for variation, γ = 1. Furthermore, when elite variables are selected
for variation,γ = 1.2. We can find that the elite variables are more important to find the
global optimum. It can make the population jump out of the local optimum and improve
the convergence speed.

4.7. Iteration

Through n iterations of 1–6, the highest fitness value of the individual in the archive
in the last generation was calculated, and the individual was taken as the optimal weight
as the return value.

4.8. Elite Voting Operator

In the time series prediction of air pollution, certain variables will have more influence
on time series forecasting; we call them elite variables. The elite variables vary in different
problems. This operator can automatically find the elite variables and optimize them more
finely. The pseudo code for the whole algorithm is in Algorithm 2. The following is the
step of the Elite Variable Voting Operator.

dist(Wa, Wb) =

√√√√ L

∑
i=1

(
xi

a − yi
b
)2 (5)

Elite variable voting was conducted every k generations.

(1) Candidates are selected from the top 30% of the population based on population
fitness, and these individuals are the best candidates in the population; they represent
the evolutionary direction of the population.

(2) Among the candidates, we want to have some particles that can lead the candidates
to the optimization direction more effectively; we call these particles “chairman”. We
appoint two particles with highest fitness value among the candidates as “chairman”.
In order to maintain diversity, the candidates that differ most from the “chairman”
are added in “chairman”. We use the Euclidean distance as Equation (5) to measure
the distance between two particles.

(3) The elite variables chosen by vote are able to give special treatment in the process of
mutation and crossover: there is a higher probability of becoming larger in the process
of mutation and crossover.

Algorithm 2 Elite Voting Operator

Require: W:Population,
FitnessW : Population fitness value

Ensure: elite: Elite Variables
chairman← ∅
voters← ∅
chairman← Take the top 2 fitness values in voters as chairman
chairman← chairman+Take the particle in W that is most different from the particle in
chairman voters←W- chairman
elite← voting(chairman,voters)
return elite
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4.9. Archive Storage Operator

During the process of neural network training,the result can be bad due to different
initialization weights, which can inter the judgment about the effect of weights of different
external variables. Therefore, we introduced an archive storage mechanism to put poten-
tially optimal solutions into the archive. The pseudocode for the whole algorithm is in
Algorithm 3, and the process is as follows:

Algorithm 3 Archive Storage Operator

Require: archive_weight,
archive_ f itness,
W: population,
FitnessW : Population fitness value,
Fitnessa: archive fitness value

Ensure: W: population
d← size(archive)
FitnessW = FitnessW/size(FitnessW)
for i = 1 to d do

if Fitnessi
a >FitnessW then

W ← rejoing_population(Wi, W)
else

Discard(Wi, archive_weight,archive_ f itness)
end if

end for
return W

(1) Every k generations, the best particle in all k generations is copied into the archive.
(2) In the next k iterations, individuals in archive will not be involved in the process of

the genetic algorithm, but only in the calculation of the fitness.
(3) Every k generations, we perform an examination. If the fitness value of the individual

is greater than the average fitness value of the current population, this individual
will replace the individual with the lowest fitness in the population; otherwise, it will
be discarded.

4.10. Prediction and Optimization

For the populations obtained in Sections 4.1–4.7, each particle represents a candidate
solution denoted as Wi = (W1

i , W2
i , .......WL

i ), which represents the weight of each external
factor. For the external factor input XT = (X1, X2, .......XT−1, XT), by multiplying each
weight with its input counterpart, X

′
t = (W1

i ∗ X1
t , W2

i ∗ X2
t ......WL−1

i ∗ XL−1
t , WL

i ∗ XL
t ). X

′
t

is fed into the Transformer network along with y.
Unlike traditional forecasting methods that decompose into seasonal parts and trend

parts, we gradually decomposed trend and periodic parts from hidden variables in the
learning process. This was based on the idea of sliding average, as shown in (6), to achieve
progressive decomposition.

X
′
ttrend

= AvgPool(Padding(X
′
t))

X
′
tseasonal

= X
′
t − X

′
ttrend

(6)

After X
′
t decomposition into seasonal terms X

′
tseasonal

and trend terms X
′
ttrend

, the simi-
larity of the different seasonal terms is further aggregated at the encoder pair periodicity
using an autocorrelation mechanism. The autocorrelation coefficients can be obtained using
the fast Fourier transform, and, finally, the similar subsequence information is aggregated
in (7) and (8), where the τk = arg Topk

τ∈{1,··· ,L}
(RQ,K(τ)). Here, the multi-headed form of query,

key value, is still used so that the self-attentive mechanism can be replaced seamlessly.
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Furthermore, the most probable cycle length is k = bc× log Lc to avoid fusion of irrelevant
or even opposite subsequences.

[H]R̂Q,K(τ1), · · · , R̂Q,K(τk) = SoftMax(RQ,K(τ1), · · · ,RQ,K(τk)) (7)

AutoCorrelation (Q,K,V) =
k

∑
i=1

Roll(V , τk)R̂Q,K(τk) (8)

In the decoder, the trend and seasonal terms are predicted separately. For the seasonal
term, the feature information obtained by using encoder is aggregated into predicted
seasonal values. For the trend term, the information is gradually extracted from the
predicted hidden variables using the cumulative method. Finally, the predicted values of
the trend and periodicity terms are summed to obtain the predicted values.

By calculating the empirical loss between the trained predicted pollutant value ỹT
and the real pollutant value yT , we train the entire model. Our loss function is Root Mean
Square Error(RMSE); the loss is not only propagated back from the decoder’s outputs across
the entire transformer model, it is also involved in the selection of the new generation of
the population as the fitness value.

5. Experiments and Results

In this section, we give the parameter settings and experimental results, compare
them with some current baselines, and attempt to translate the results into interpretable
conclusions. We also try to prove and explain the role of each operator through a series
of ablation experiments.

5.1. Dataset Descriptions

The details of the datasets are shown in Table 1. We cut the dataset into a training
set and test set by 70% and 30%, respectively, in chronological order. In particular, when
we made a prediction for one of the targets, the other two targets were entered into the
model as external variables. To measure the importance of external factors, we normalized
the dataset.

Table 1. Details of the datasets.

Dataset Location A Location B Location C

Time_interval 1 h

Time span 1 January 2020–6 October 2020

Prediction target O3, PM2.5, AQI

External factors

Relevant pollutants CO, NO2, SO2

Air pollution index PM10, TSP

Weather factors wind direction, wind speed, precipitation, vapor
pressure, humidity, visibility, atmospheric pres-
sure, temperature.

The units of CO (carbon monoxide) is mg/m3, the units of O3, NO2,PM2.5 and PM10
are µg/m3, and TSP is total suspended particulate matter (mg/L). The unit of wind speed is
m/s, which is the average wind speed in 10 min. Furthermore, wind direction is measured
by an anemometer, which is projected to the [0, 360◦] interval. Precipitation (mm) refers to
the amount of precipitation per hour, visibility (m) is the 10-min average visibility, humidity
(%) is the relative humidity, pressure (hPa) is the atmosphere pressure measured by the
monitoring point, and temperature (◦C) is measured in degrees Celsius. In addition, we
performed statistical analysis of the data in Table 2 to avoid the presence of extreme data.
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Table 2. Descriptive statistics of the datasets.

Variables Measurement

O3 [2, 300]

PM2.5 [30, 320]

AQI [30, 320]

CO [0, 5]

NO2 [0, 150]

SO2 [5, 210]

PM10 [0, 330]

TSP [0, 330]

WindDirection [0, 360]

WindSpeed [0, 15]

Precipitation [0, 82.1]

vapor pressure [0, 54.9]

humidity [0, 99]

visibility [0, 31,565]

atmospheric pressure [0, 1019.8]

temperature [−0.8, 37.1]

The available time period was from 1 January 2020 to 6 October 2020, and Figure 7
shows the distribution of the amount of data by seasons of the available time period.

(a)

(b)

Figure 7. Distribution of the AQI, PM2.5, and O3 data by seasons. (a) AQI-PM2.5. (b) AQI-O3.
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5.2. Parameter Setting

The length of the input sequence in the autoformer was 96, the length of the predicted
sequence was 24, the number of headers was 8, the value of dropout was 0.05, the batch_size
was 32, and the learning rate was 0.0001. In the genetic algorithm, the size of population
was 20, the number of iterations was 50, the probability of crossover was 0.8, the probability
of variation was 0.1, and the size of the archive was 5. We set k to be 10.

5.3. Evaluation Metrics

We chose the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE) as the criteria for evaluating the prediction performance.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

where n is the length of the time series prediction, yi is the target value of the model
prediction, and yi is the actual target value.

5.4. Baselines

To verify the performance of our proposed model, we compared GA-autoformer with
the following baseline models.

(1) RNN: RNN is a classical time series prediction model that is capable of extracting
time series features. Unlike feed-forward neural networks, which use the output of
the previous neuron as input to the next neuron, RNN involves a structure that gives
the network the ability to remember information about trends and cycles [15].

(2) LSTM: LSTM belongs to the class of RNNs and also belongs to the recurrent network
model. LSTM solves the problem that RNNs cannot extract long-term time depen-
dence and uses multiple gate mechanisms to alleviate the gradient explosion and
gradient disappearance problems that exist in RNNs [16].

(3) EA-LSTM: EA-LSTM is based on the attention LSTM and uses the genetic-algorithm-
based competitive random search (CRS) instead of gradient-based approach to explore
the attention layer weights; thus, it better assigns the weights of features within the
time window [43].

(4) Transformer: Recently, the Transformer model has made a big breakthrough in
time series prediction. Unlike the RNN and LSTM, Transformer is not a cyclic
sequence model. Its prediction efficiency and its ability to predict long-term time
series are greatly improved [32].

(5) Informer: The authors designed an efficient transformer-based long-time prediction
model, named Informer, by proposing a ProbSparse self-attentive mechanism, which
utilizes self-attentive distillation to highlight dominant attention by halving the cas-
cade layer input with a generative decoder for the one-time prediction of long-time
sequence sequences. A new solution to the long-time sequence prediction problem is
provided [34].

(6) Autoformer: The authors used a deep decomposition architecture. The authors de-
signed sequence decomposition units to embed deep models, implement progressively
predictive, auto-correlation mechanisms, discard point-wise connected self-attention
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mechanisms, and implement series-wise connected autocorrelation mechanisms to
break information utilization bottlenecks [35].

5.5. Analysis of Prediction Result

We trained the GA-autoformer for 50 iterations. Table 3 shows the prediction accuracy
comparison with different baselines, and the prediction line graphs are put in Figure 8.
From Table 3, we can see that our model had a higher prediction accuracy compared to other
baseline models, and in comparison with several baseline models, 23 out of 27 comparisons
achieved the first, and the remaining four were in the second. For the LSTM and RNN,
which all belong to recurrent network structure, they all had a big gap with our model. The
EA-LSTM uses the genetic algorithm to optimize the attention layer, combined with the
LSTM, but there was still a gap relative to Transformer. Most of the advantages over the
Transformer and its other variants were also achieved, which shows that external variables
do affect the time series prediction, and this model successfully found the approximate
optimal solution of external variables by using a genetic algorithm to jump out of the
local optimum. Furthermore, it can be seen from the Figure 9 that the Archive Storage
Operator can effectively reduce the impact of the initialization of the neural network on the
prediction model.

Figure 8. Actual normalization value and average predicted value for the test experimental run for
each monitor station with different target pollutants.The y-axis represents the predicted values and
ground truth, and the x-axis is the predicted time-step.
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Table 3. Model prediction performance on air pollution test set.

Model Location A

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

RNN 0.634 1.341 1.469 0.033 0.052 0.423 0.253 0.481 1.151

LSTM 0.612 1.313 1.419 0.034 0.047 0.346 0.251 0.477 1.072

EA-LSTM 0.573 1.226 1.297 0.029 0.041 0.335 0.249 0.473 1.081

transformer 0.514 1.175 1.069 0.030 0.037 0.311 0.241 0.468 1.011

informer 0.481 1.056 0.816 0.029 0.284 0.285 0.239 0.461 1.036

autoformer 0.479 0.990 0.778 0.027 0.294 0.275 0.235 0.462 1.021

GA-
autoformer 0.460 0.981 0.761 0.028 0.027 0.242 0.231 0.453 0.861

Location B

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

RNN 0.439 0.542 1.235 0.227 0.347 2.090 0.045 0.023 0.301

LSTM 0.422 0.513 1.238 0.156 0.246 1.654 0.041 0.212 0.284

EA-LSTM 0.342 0.459 1.239 0.107 0.106 0.715 0.034 0.213 0.265

transformer 0.333 0.454 1.234 0.031 0.044 0.225 0.036 0.189 0.235

informer 0.329 0.441 1.250 0.038 0.046 0.216 0.031 0.176 0.229

autoformer 0.305 0.432 1.205 0.028 0.041 0.208 0.034 0.172 0.217

GA-
autoformer 0.315 0.406 1.215 0.026 0.039 0.215 0.029 0.170 0.207

Location C

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

RNN 0.081 0.246 0.510 0.294 0.332 1.513 0.169 0.290 0.360

LSTM 0.061 0.240 0.412 0.262 0.316 1.479 0.091 0.159 0.311

EA-LSTM 0.057 0.233 0.346 0.251 0.281 1.431 0.041 0.106 0.281

transformer 0.056 0.231 0.348 0.241 0.279 1.419 0.033 0.063 0.245

informer 0.054 0.229 0.339 0.236 0.269 1.410 0.036 0.062 0.240

autoformer 0.052 0.228 0.336 0.231 0.264 1.369 0.034 0.061 0.239

GA-
autoformer 0.051 0.223 0.328 0.209 0.269 1.356 0.031 0.056 0.238

The RMSE, MAE, and MAPE are the normalization metrics.

Furthermore, we analyzed the effects of γ, archive size, and k on the experiment. Here,
we used the dataset Location A, and the prediction target was O3. From Figure 10, we can
see that the best results were obtained when lambda was set to 1.2, archive size was set to
5, and k was set to 10.

And the results of the training process are visualized in Figure 11. It can be clearly seen
in Figure 11 that, as the number of iterations increased, the population gradually converged
and evolved in the right direction. Regarding the interpretability of the experimental
results, we will elaborate in Section 5.6.



Atmosphere 2023, 14, 869 18 of 25

Figure 9. Scatter plot of RMSE vs. standard deviation

Figure 10. Sensitivities analysis of γ, archive size, and k.

Figure 11. The training process of genetic algorithm.

5.6. Model Interpretability

Figure 12 shows the external factor optimization weights from the last generation of
the population, as well as the elite variables that were taken at the last time in multiple
experiments. Furthermore, the color is more red, which indicates that the factor was more
important, while the yellow color indicates the less important factor to the target predicted
pollution.
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Figure 12. We took the weights of the external variables for six random individuals in the final
population; the color is more red, which indicates that the variable was more important.

When selecting O3 as the predicted target pollution, it can be seen that the optimization
individuals found all had higher values on NO2, temperature, etc. The control of O3
pollution mainly involves the control of its precursors, which are mainly nitrogen oxides
and carbon monoxide. Nitrogen oxides react with surrounding atmospheric ozone and
subsequently form nitric acid [44]. The increase in temperature represents a flanking
increase in solar radiation, which leads to an increase in ozone levels, but high temperatures
also lead to increased vertical convective activity in the atmosphere, which facilitates local
ozone and precursor diffusion dilution. High humidity facilitates O3 pollution removal. On
the other hand, water vapor in the atmosphere affects solar ultraviolet radiation and, thus,
slows down photochemical reactions, and the humidity has a large negative correlation
with O3. Furthermore, O3 pollution was mainly negatively correlated with wind speed,
mainly because wind speed enhances the horizontal diffusion of ozone and contributes to
ozone dilution. Those factors’ weights were relatively large in the experiments and were
all selected as elite variables several times, which is in accordance with our a prior studies
on O3 [45].

In terms of meteorological factors, PM2.5 was positively correlated with air temperature
and relative humidity and negatively correlated with wind speed. When the wind speed is
low and the humidity is high, the intensity of inversion temperature increases, which is
unfavorable to the diffusion of PM2.5 and other pollutants in the vertical and horizontal
directions and aggravates the accumulation of particulate matter pollution, thus making its
mass concentration remain high, and when the temperature and relative humidity are both
at high levels in autumn and winter, fog is easily produced. The suspended fog droplets
easily adsorb and capture gaseous pollutants and particulate matter pollutants, which is
favorable to the formation of secondary particles. The hourly concentration of NO2 had a
good positive correlation with the hourly concentration of PM2.5, thus indicating that the
contribution of traffic pollution emissions to PM2.5 was larger. Traffic exhaust emissions
are transformed into secondary particles after a period of chemical reaction, which affects
the concentration level of PM2.5. The results can also be clearly seen in the heat map [46].

When selecting the AQI as the predicted target, it is easy to know that there is a large
relationship with SO2, O3, PM2.5, and PM10. As an indicator to measure air pollution,
the AQI is closely related to the content of each pollutant. Not only that, wind speed,
temperature, and humidity can usually affect the diffusion rate of atmospheric pollutants,
and they had strong correlations with atmospheric pollutants, thus leading to strong
correlations between the AQI and these factors. It can be seen that various variables were
selected as elite variables several times [47].
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In addition, the weights derived from the data sets at different locations differed
when predicting the same target. In the industrial area (Location C), nitrogen oxide
emissions were much larger than in the residential area (Location A) and had a greater
weighting compared to the residential area where nitrogen oxide had a greater impact on
pollutants. The main sources of pollutants in residential areas are domestic cookers and
winter heating, which mostly consume coal and produce carbon monoxide and sulfide,
and their corresponding weights were also higher.

From the above analysis, it can be seen that, in the prediction of different targets,
our models successfully identified the relationship between external variables and the
predicted target pollution, which is consistent with the knowledge of the relevant research,
thus proving that the evolutionary direction of the final population of the genetic algorithm
is correct. Through the exploration of different external variables, we can analyze and
identify the sources of pollutants and help the government develop effective pollution
mitigation policies.

5.7. Ablation Experiment

To verify the effects of different genetic algorithm operators, we compared the base
transformer with three variant models combined with genetic algorithm optimization,
including autoformer (base model), GA-autoformer (our proposed model), autoformer
using only the unchanged genetic algorithm (denoted as autoformer-GA(u)), the model
using only the Elite Variable Operator(autoformer-GA(elite)) and the Archive Storage
Operator (autoformer-GA(archive)), respectively, which are presented in Table 4.

From Table 4, we can find that the Transformer used only the traditional genetic
algorithm (autoformer-GA(u)), which had some improvement comparing with the base
Transformer. However, the improvement was not significant, and the effects were not as
good as our proposed model(autoformer-GA). Furthermore, the two models using only
one operator (autoformer-GA(elite) and autoformer-GA(archive)) were not as effective as
the proposed model.

Table 4. Ablation experiment.

Model Location A

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

autoformer 0.479 0.995 0.778 0.027 0.029 0.275 0.235 0.462 1.021

autoformer-
GA 0.478 0.991 0.782 0.036 0.029 0.269 0.234 0.461 0.979

autoformer-
GA(elite) 0.476 0.986 0.771 0.029 0.029 0.252 0.232 0.457 0.957

autoformer-
GA(archive) 0.469 0.984 0.769 0.028 0.028 0.261 0.234 0.451 0.892

our-
model 0.460 0.981 0.761 0.028 0.027 0.242 0.231 0.453 0.861
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Table 4. Cont.

Location B

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

autoformer 0.305 0.432 1.205 0.028 0.041 0.208 0.034 0.172 0.217

autoformer-
GA 0.316 0.453 1.233 0.028 0.037 0.218 0.034 0.173 0.208

autoformer-
GA(elite) 0.311 0.443 1.234 0.029 0.038 0.195 0.033 0.171 0.205

autoformer-
GA(archive) 0.309 0.441 1.234 0.027 0.037 0.204 0.032 0.173 0.202

our-
model 0.315 0.406 1.215 0.026 0.039 0.215 0.029 0.170 0.207

Location C

Target O3 PM2.5 AQI

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

autoformer 0.052 0.228 0.336 0.231 0.264 1.369 0.034 0.061 0.240

autoformer-
GA 0.053 0.226 0.331 0.221 0.261 1.359 0.032 0.058 0.239

autoformer-
GA(elite) 0.052 0.229 0.337 0.218 0.262 1.362 0.033 0.059 0.237

autoformer-
GA(archive) 0.051 0.224 0.329 0.212 0.261 1.358 0.034 0.059 0.237

our-
model 0.051 0.223 0.328 0.209 0.267 1.356 0.031 0.056 0.238

The RMSE, MAE, and MAPE are the normalization metrics.

For the Elite Variable Operator, as can be seen in the heat map Figure 12, the variables
selected as elite variables for many times were larger than the other variables, thus indicat-
ing that elite variable operators can find variables that have a greater impact on prediction
accuracy and give special treatment to make the search more refined when crossover and
mutation occur.

For the Archive Storage Operator, it can be seen in Figure 13 that the model using the
Archive Storage Operator not only improved the overall prediction, but also the variance
was greatly reduced. This is because the fluctuations caused by the randomized weights of
the neural network model could potentially affect the accuracy of the air pollution predic-
tion. Therefore, we stored the potentially good particles and evaluated them several times
to filter out the individuals which had better fitness and put them back into the population.
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Figure 13. The box plot represents the distribution of the final prediction results of different models.
The experimental result is the average fitness value of the population for the last iteration using
Location A, with ozone as the prediction target.

6. Discussion

For the air pollution time series prediction problem, Johansson, C et al. [11] used
various machine learning methods (e.g., Random Forest (RF), Extreme Gradient Boost-
ing (XGB), and Long Short-Term Memory (LSTM)) for multiple pollutants (PM10, NOx ,
and O3) at multiple locations with multi-temporal predictions. It can be seen that, in the
time-series prediction problem, different pollutants and different locations had different
environmental conditions and air pollution change characteristics, which require certain
a priori knowledge. Prediction models using metaheuristics combined with neural
networks are also evolving, such as ANN-EMPA [29], which combines crossover and
mutation operators with ANN to enhance the prediction models. However, most of
these models generally use metaheuristics to optimize the hyperparameters and the
structure of the neural network model, but the results obtained from the optimization
are not interpretable and do not explain why the optimized hyperparameters can better
improve the pollution prediction model.

To address the above problem, we proposed a Hybrid Autoformer Network with a
Genetic Algorithm model to predict air pollution temporal variation, as well as explore the
relationship between external variables and target pollution. Unlike the above model, our
model combines genetic algorithm with autoformer, wherein autoformer has the ability of
long-time series prediction, and the genetic algorithm can explore the influence of external
variables on the predicted target, which makes our model interpretable.

From Table 3 and Figure 8, we can find that the prediction accuracy of the GA-
autoformer was higher than other baseline models. As shown in Figure 9, the standard
deviation of the GA-autoformer was also lower than the rest of the models, which indicates
that our Archive Storage Operator was able to preserve excellent particles in the iterations.
Meanwhile, Figure 12 shows the effects exhibited by different external variables for different
prediction targets in different prediction locations, such as industrial areas, residential
areas, and suburban areas, which demonstrates the robustness and interpretability of our
proposed model.
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7. Conclusions

In this study, we proposed a Hybrid Autoformer Network with a Genetic Algorithm
model to predict air pollution. A genetic algorithm was used to explore the influence
of external variables on pollutants, thus making the model explanatory. In addition, we
proposed two operators to better explore external variables: the Elite Variable Voting
Operator was used to screen out more important external factors as elite variables and
search them more finely; the Archive Storage Operator to store outstanding individuals
to alleviate model fluctuations caused by random weights in deep learning. Finally, we
conducted a comprehensive experiment on the Ma’anshan air pollution dataset to validate
the proposed model. In comparison with the current state-of-the-art models, the prediction
accuracy was improved by 2–8%, and the selection of model influencing factors was
more interpretable.

However, the air pollution prediction model proposed in this work has some shortcom-
ings, such as that the model cannot handle streaming monitoring data and cannot support
online learning. Moreover, the external factors were only explored for a single monitoring
site. In future work, we will continue to explore the relationship between external variables
in air pollution time series prediction across multiple monitoring sites and continue to
explore intelligent optimization algorithms, such as genetic algorithms combined with
transfer learning models, and apply them to cross-city air pollution forecasting.
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