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Abstract: In order to enhance the prediction accuracy and computational efficiency of chaotic se-
quence data, issues such as gradient explosion and the long computation time of traditional methods
need to be addressed. In this paper, an improved Particle Swarm Optimization (PSO) algorithm and
Long Short-Term Memory (LSTM) neural network are proposed for chaotic prediction. The temporal
pattern attention mechanism (TPA) is introduced to extract the weights and key information of each
input feature, ensuring the temporal nature of chaotic historical data. Additionally, the PSO algorithm
is employed to optimize the hyperparameters (learning rate, number of iterations) of the LSTM net-
work, resulting in an optimal model for chaotic data prediction. Finally, the validation is conducted
using chaotic data generated from three different initial values of the Lorenz system. The root mean
square error (RMSE) is reduced by 0.421, the mean absolute error (MAE) is reduced by 0.354, and
the coefficient of determination (R2) is improved by 0.4. The proposed network demonstrates good
adaptability to complex chaotic data, surpassing the accuracy of the LSTM and PSO-LSTM models,
thereby achieving higher prediction accuracy.

Keywords: chaotic sequence; particle swarm optimization algorithm; time-mode attention mechanism;
long short-term memory; Lorenz system

1. Introduction

Chaotic time series refers to time series data that exhibit chaotic behavior. Chaotic
behavior is a nonlinear and highly unpredictable dynamic behavior, characterized by
sensitivity to small changes in initial conditions and parameters, leading to the emergence
of non-periodic and non-repeatable trajectories in the system’s evolution. The prediction of
chaotic time series is widely applied across various scientific fields, such as short-term traffic
flow prediction, economic time series forecasting, power prediction, runoff prediction, and
others. Therefore, forecasting chaotic time series holds significant importance.

At present, extensive research is being conducted by scholars both domestically and
internationally on the prediction of chaotic time series. These studies can mainly be
categorized into traditional statistical models, machine learning models, and hybrid pre-
diction models. In the realm of statistical models, Kumar et al. [1] applied the ARIMA
model, optimized by Bayesian information criterion and Akaike information criterion, to
chaotic time series data of air pollutants, thereby verifying the effectiveness of the model.
Garcia et al. [2] proposed the GARCH forecasting model, which improved the accuracy of
the prediction model. Additionally, in reference [3], a novel local nonlinear model based
on phase space reconstruction, known as the Local Polynomial Coefficient Autoregres-
sive Prediction (LPP) model, was introduced. The LPP model effectively captures the
nonlinear characteristics of chaotic time series and exhibits a simple structure with good
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one-step prediction performance. A stable time series refers to a time series whose mean
and variance do not systematically change over time. However, chaotic systems are very
sensitive to initial conditions, and small initial differences can lead to significant divergence
in the system trajectory, making long-term prediction extremely difficult. This sensitivity
causes the values in the time series to not stabilize around a fixed mean, but to constantly
change. At the same time, the frequency spectrum of chaotic time series usually exhibits
energy distributed over a wide frequency range, unlike stable time series with clear peaks
at specific frequencies. This is because chaos contains multiple frequency components,
causing the frequency spectrum to exhibit complex distributions. Therefore, according to
the above analysis, statistical models require that the data being predicted are stable, while
chaotic data are mostly non-stationary sequences, meaning that the use of statistical models
for chaotic data prediction have significant limitations. With the rapid development of
machine learning, researchers have incorporated machine learning methods into chaotic
time series prediction. In reference [4], a least squares support vector machine prediction
model combining polynomial functions and radial basis functions was proposed to address
the issue of single-kernel functions being insufficient to improve prediction accuracy. Addi-
tionally, an improved genetic algorithm was employed to optimize the model parameters,
and the effectiveness of the model was verified using a typical time series such as the
Lorenz system. In reference [5], a novel fractional-order maximum correntropy algorithm
was proposed, which employed fractional-order for weight updating and improved the
accuracy of the prediction model in chaotic time series data such as the Lorenz system.
Furthermore, in reference [6], a novel Chaotic Backpropagation (CBP) neural network
algorithm was introduced, along with an adaptive gradient correction method, to eliminate
premature convergence and enhance the prediction capability of the model. In reference [7],
an improved Time Convolutional Network (TCN) model for chaotic time series prediction
was proposed. The model utilized a Convolutional Block Attention Module (CBAM) to
enhance information capture, thereby improving the accuracy of prediction for classical
chaotic systems. Moreover, in reference [8], a method based on a stacked LSTM autoencoder
was proposed, which employed a stacked LSTM autoencoder for multi-step prediction,
thus achieving a good prediction performance for chaotic time series. Although the afore-
mentioned single models have achieved satisfactory results to some extent in predicting
chaotic time series data, they tend to overlook the nonlinear characteristics of chaotic data
and struggle to obtain optimal model parameters for achieving the best performance.

To address the limitations of single models, many researchers have adopted the ap-
proach of combining two or more models to achieve a better prediction performance. There
are two modes of hybrid models. One mode involves combining common optimization
algorithms with prediction algorithms to obtain the optimal parameters of the prediction
model, thereby achieving optimal performance. The other mode involves combining two
or more prediction models to complement each other’s shortcomings and achieve optimal
predictive performance. The literature [9] proposed a chaotic time series prediction model
based on the maximum information-mining wide-area learning system. A leak integra-
tor dynamic reservoir can simultaneously obtain historical and current state information,
while introducing a stacking mechanism to achieve feature reactivation. The experimental
results show that this method improves the prediction accuracy of chaotic data and reduces
training time. The literature [10] proposed a chaotic time series prediction model based on
fuzzy information granulation and mixed neural networks. Fuzzy information granulation
is used to simplify the complexity of data, and then the CNN-LSTM-Att model is used for
prediction. The experimental results show that the proposed prediction model has higher
accuracy and fewer errors. The literature [11] proposed combining the error compensation
idea with phase space reconstruction theory, using a vector auto-regression model and
Elman neural network to predict linear and nonlinear features, respectively, and finally
adding the results of the two to obtain the final result. The simulation experiments show
that the proposed method is better than single linear and nonlinear methods, with higher
accuracy. The literature [12] proposed a prediction model based on an improved black
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hole algorithm and least squares support vector machines. In order to prevent overfitting
in model training, an online validation method based on the fast leave-one-out method
is used to optimize the model. This combination of two or more methods has achieved
good results for chaotic data. In addition, in the literature [13–20], various methods us-
ing two prediction models have been proposed, including SVM-ARIMA-3LFFNN [13],
WT-PSR [14], DAFA-BiLSTM [15], MFRFNN [16], CNN-BiLSTM [17], Att-CNN-LSTM [18],
GRU-DTIGNET [19], and NCKCG-PRQ [20] hybrid models. These models have been vali-
dated on chaotic time series, such as Mackey-Glass, Rossler, and Lorenz systems, achieving
satisfactory results. However, although the process of model combination partially compen-
sates for the shortcomings of the models, it also leads to increased memory consumption
and a longer runtime. Furthermore, the combined models do not necessarily achieve an
optimal performance. Therefore, it is proposed to combine optimization algorithms with
prediction models to obtain the optimal parameters and improve predictive performance.
In references [21,22], an approach is proposed that uses the cuckoo search algorithm to
optimize the initial translation vector of wavelet neural networks, thereby enhancing adapt-
ability and prediction accuracy for chaotic data. Reference [23] presents a method for
chaotic data prediction that combines Holt exponential smoothing with support vector
regression, optimized by the firefly algorithm, achieving optimal results. In reference [24],
a chaotic time series prediction method based on a brain emotional learning model and
adaptive genetic algorithm is proposed. The validation using Lorenz chaotic time series
demonstrates significant advantages in terms of prediction accuracy, computational speed,
and stability compared to other traditional methods. Reference [25] adopts a parameter
adaptation optimization method based on a genetic algorithm for radial basis function net-
works (RBFN), which improves the uniformity of the algorithm and achieves satisfactory
prediction results.

Based on the above analysis, the selection an appropriate optimization algorithm and
prediction algorithm for hybridization for chaotic data prediction can not only compensate
for the shortcomings of some prediction models but also help the prediction model to
achieve optimal performance. An improved particle swarm optimization algorithm (IPSO)
is introduced to mainly adjust the hyperparameters of the LSTM model, such as learning
rate, number of neurons, and iteration times. By using IPSO, the parameters of LSTM are
better optimized, thereby improving the performance of the LSTM prediction model. The
introduction of the temporal pattern attention mechanism (TPA) mainly aims to deeply
mine the historical information of chaotic data, which helps the model to better focus
on important temporal patterns and features in the data. The IPSO-LSTM-TPA hybrid
prediction model uses optimization algorithms and attention mechanisms to improve the
prediction performance of chaotic data. IPSO improves the performance of the LSTM model
through more effective parameter optimization, while TPA enhances LSTM’s perception
of key features in time series. These two components work together to ensure that the
model better adapts to chaotic data, thereby improving prediction accuracy and robustness.
Therefore, this article uses a PSO-TPA-LSTM hybrid prediction model to predict chaotic
time series. In order to explore the important information of historical chaotic data in more
depth, a temporal pattern attention mechanism (TPA) is used for an in-depth exploration
of the information of historical chaotic information, and the historical chaotic information
is weighted according to its importance. Then, an improved particle swarm optimization
algorithm (IPSO) is used to optimize the hyperparameters (learning rate, iteration times) of
the LSTM model, optimize the network structure, and obtain the performance of the optimal
model to improve the accuracy of prediction. Finally, the adaptability and superiority of
the proposed model are verified using the chaotic data generated by the Lorenz system.

2. IPSO-TPA-LSTM
2.1. Improved Particle Group Optimization Algorithm (IPSO)

The performance of the particle swarm optimization algorithm (PSO) is significantly
influenced by three parameters: the inertia weight ω and the learning factors c1 and
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c2. The inertia weight ω balances the global search range and the local precise search.
The learning factors c1 and c2. have important impacts on whether the algorithm falls
into local optimization and convergence. Therefore, optimizing these three parameters
individually can greatly improve the algorithm’s performance. Among them, the standard
PSO algorithm’s velocity and position update rules are shown in Equation (1):{

vid(t + 1) = ωvid(t) + c1r1(pid − xid(t)) + c2r2

(
pgd − xid(t)

)
xid(t + 1) = xid(t) + vid(t)

(1)

Among them, vid (t) is the initial velocity of the i-th particle, vid (t + 1) is the current
velocity of the i-th particle; xid (t) is the current position of the i-th particle, xid (t + 1) is the
new position generated by the i-th particle; pid refers to the best position experienced by
each particle, pgd refers to the optimal position of the entire population. ω is the inertia
weight factor; d = 1,2, . . . n; i = 1,2, . . . n; n is the current iteration number; c1 and c2 are
non-negative constants called learning factors; r1 and r2 are random numbers distributed
in the interval (0,1).

2.1.1. The Inertia of Non-Linear Change

The generation process of chaotic data is typically non-linear and cannot be described
by simple linear models. Small initial changes in a chaotic system can lead to completely
different trajectories of systematic evolution. Therefore, using a linearly decreasing inertia
weight with a constantly changing velocity can easily lead to premature convergence to
local optimal solutions [26], which has a significant impact on the prediction accuracy of
chaotic data.

To better adapt to the non-linear characteristics of chaotic data, this article proposes
a method where the inertia weight decreases sinusoidally. The rate of decrease in inertia
weight with this method is non-linear, which better accommodates the non-linear nature
of chaotic data and reduces the likelihood of falling into local optimal solutions. This
approach also maintains the benefit of larger inertia weights at the beginning that facilitate
global searches, while smaller inertia weights at later stages contribute to more precise local
searches. This updated formula further improves the accuracy of trajectory prediction, as
shown below:

ω = (ωmax −ωmin)× sin
(

π × (tmax − t)
2× tmax

)
+ ωmin (2)

Among them, ωmax is the initial inertial value, and ωmin is the inertial value value of
the maximum evolution. Among them, the value of ωmax is generally 0.9, the ωmin value is
0.3, and tmax is the moment when it iterates to complete its evolution.

2.1.2. Improve Learning Factor Adjustment Strategy

Although using linearly varying learning factors instead of fixed ones can obtain better
C1 and C2 values and optimize the model’s performance to some extent [27], due to the
highly non-linear and complex nature of chaotic data generated by the Lorenz system,
using linearly varying learning factors C1 and C2 can easily lead to the model falling
into local optimal solutions or failing to find optimal solutions. Therefore, this article
proposes using learning factors that vary sinusoidally with inertia weight, which enables
the model to search for solutions in a non-linear manner during optimization, adapting
to the characteristics of chaotic data while achieving a better performance. Please refer to
Equation (3) for details. {

C1 = eω + sin(ωπ)

C2 =
√

5e−ω − 1
2 sin(ωπ)

(3)

Among them, ω is the inertial weight of the PSO algorithm, ω ∈ [0.3,0.9].
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2.2. Long Short-Term Memory Network (LSTM)

The LSTM network is a deep Recurrent Neural Networks (RNN) model composed of
LSTM units, which adds memory units on the basis of RNN. This can effectively solve the
problems of gradient vanishing and gradient explosion during long sequence training, and
thus has a better long-term prediction ability [28]. The biggest difference between LSTM
network and traditional RNN is the addition of a cell state ct check in the recurrent unit.
The cell state is the foundation of the LSTM network, and it can capture some important
signals at specific times and retain them during the corresponding time intervals. Therefore,
LSTM network has great significance for capturing the time changes of certain parameters
and their correlation with other parameters. The internal structure of LSTM-cell unit is
shown in Figure 1.
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Figure 1. LSTM−cell unit’s internal structure.

The LSTM network detects the cell state through three gates: the input gate, the output
gate, and the forget gate. The forget gate can determine whether to discard the cell state
of the previous cycle unit ht−1. The output ht value not only determines the output of the
previous cell but also determines the state of the previous cell. The calculation methods of
the three gates are as follows:

ft = σ(W f ·[ht−1, xt] + b f ) (4)

it = σ(Wi·[ht−1, xt] + bi) (5)

ot = σ(Wo·[ht−1, xt] + bo) (6)

Among them, σ is the sigmoid function, and the output range is (0,1). A vector with
the xt two vector groups in series; [ht−1, xt] is a vector composed of ht−1 and xt; Wi, Wf and
bi are the weight matrix of input gate, forgotten gate and output gate, respectively; bf and
bo are the offset top of forgetting gate and output gate, respectively.
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The candidate cell status C̃t of the corresponding to the input gate is as follows:

c̃t = tanh(Wc·[ht−1, xi] + bc) (7)

Among them, tanh is a positive cut activation function; Wc is the state weight matrix
generated by the instant unit state generated at the current moment; bc is the bias top of the
current unit state.

The internal state ct at the current moment is:

ct = ft � ct−1 + ic � c̃t (8)

Among them, � is the product of vector element.
The current output information is output to the external state of the hidden layer ht is

as follows:
ht = ot � tanh(ct) (9)

Based on the LSTM neural network, the process flowchart of the chaotic data prediction
model is designed as shown in Figure 2. This model first performs data preprocessing on
historical chaotic data, and trains the processed historical data to obtain a certain prediction
ability. In order to prevent network overfitting, a dropout layer is also arranged before
the fully connected layer, which can randomly cut off the connection of some neurons
according to a corresponding probability, thereby reducing the common adaptability and
cross-dependency between neurons and ensuring that the model can still maintain stability
under missing individuals [29]. Finally, according to the number of iterations of the model
or the prediction error reaching the preset value, the optimal prediction value is output.
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2.3. Time Mode Attention Mechanism (TPA)

The main focus of attention mechanism [30] is to enable the network to pay attention
to the most important information. In chaotic data prediction, there are many features in
the input model, and the LSTM model requires a long training time during the prediction
process. Moreover, traditional attention mechanisms involve comparing attention scores
between two data points, which results in a high computational cost. Therefore, to fully
exploit useful information in time series data, this article introduces a time pattern attention
mechanism into the LSTM prediction model to deeply mine time series information from
chaotic feature data. The mechanism enables a profound exploration of data information
at different time steps and fully exploits important information that exists between histor-
ical data. This further improves the prediction accuracy of the LSTM model for chaotic
prediction data. The structure of the time pattern attention mechanism is shown in Figure 3.
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3. Build an IPSO-TPA-LSTM Chaos Data Prediction Model

By analyzing the characteristics of chaotic data and the limitations of LSTM models in
chaotic data prediction, and considering the importance of mining historical data informa-
tion for prediction, this article proposes using an improved particle swarm optimization
algorithm to optimize the parameters of the LSTM model and adopt a time pattern atten-
tion mechanism to deeply mine historical chaotic data information. This improves the
prediction accuracy of the IPSO-TPA-LSTM model in chaotic data. The overall framework
of the chaotic data prediction model is shown in Figure 4.

3.1. Input Layer

In the input layer, the input data are chaotic sequence data generated by the Lorenz
system under different initial values, which are then normalized and input into the
LSTM model.

3.2. LSTM Layer

In the LSTM layer, the initial parameters of the LSTM model are initialized, and the
model is trained with historical chaotic data. To obtain optimal parameters (learning rate
and iteration times), an improved PSO algorithm is used to optimize the parameters. The
specific steps are as follows:

Step 1: Initialize chaotic data. Based on the input vector x and output vector y,
determine the number of input and output neurons, and initialize the iteration times and
learning rate. The aim is to balance the initial range of weights to ensure that the model can
effectively learn the patterns of the data during the initial training period without causing
gradient problems or training difficulties.

Step 2: Select the tanh function as the transfer function for the input layer to the hidden
layer and the hidden layer to the output layer, and then calculate the hidden layer values,
learning rate, and model iteration times. The purpose is to control gradient flow, better
maintain internal states, and achieve the suppression and enhancement of information.
This enables LSTM to excel at processing sequential data and long-term dependencies
without being easily disturbed by gradient problems.
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Step 3: Initialize the updated learning rate and iteration times as input of PSO, and
then calculate the current particle velocity and position. The main goal of this article is to
use PSO to optimize the learning rate and iteration times of the model. When the updated
learning rate and iteration times of LSTM are input into the PSO model, initializing the PSO
model parameters initiates the execution of the algorithm, providing a suitable starting
point for the particle swarm’s search process to effectively explore the search space of
the problem.

Step 4: Update the local optimal value (pbest) and global optimal value (gbest) ac-
cording to the particle fitness, and calculate the updated particle velocity and position
using Equation (1). Judge whether this meets the output condition. If it is met, output
the optimal iteration time and learning rate; if it is not met, repeat this step. By updating
local optimal values, the PSO algorithm can maintain memory during the search process,
guiding particles towards more promising areas and enabling a more effective search for
optimal solutions for the problem. This method helps balance global and local searches,
thereby improving algorithm performance.

Step 5: Calculate the error of the optimal value of output learning rate and iteration
times. If the error is less than the set value, stop calculating and output the predicted value;
if the error is greater than the set value, repeat steps 2–4 until the error is met and output
it. The main purpose of calculating the optimal value is to improve model performance,
enhance stability and repeatability, and find the optimal combination of hyperparameters
in hyperparameter adjustment to better meet the needs of machine learning tasks.
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3.3. Attention Layer

Output the data from the LSTM to the attention layer, and reallocate the weights of
the LSTM-predicted data to obtain the best predicted output value.

4. Chaos Data Sources

In order to fully reflect the effectiveness of the model on chaotic data prediction, the
chaotic sequence data generated by a typical LORENZ system are used.

4.1. Lorenz Systems

The Lorenz system is a nonlinear three-dimensional dynamic system whose equations
describe a system with complex behavior. Its chaotic behavior and strange attractor make
it one of the classic examples studied in chaotic theory. The state equations of the three-
dimensional Lorenz system [31] are as follows:

dx
dt

= −δ(x− y)

dy
dt

= −xz + rx− y

dz
dt

= xy− bz

(10)

where x, y, and z represent the non-linear intensity of convective velocity, temperature
difference between ascending and descending flow, and temperature distribution in the
vertical direction, respectively; δ denotes the Prandtl number; r is the Rayleigh number; b
denote the Shape ratio, respectively.

When the Lorenz system’s parameters δ, r, and b are set to 10, 8/3, and 28, respectively,
the system enters a chaotic state under this set of parameters. The Lorenz system is a chaotic
model with very typical characteristics. To demonstrate the strong temporal correlation of
the chaotic data generated by the Lorenz system, three initial values (1, 1-1, 6), (7, 7, 25),
and (9, 9, 27) were chosen to generate chaotic signal sequence plots. Due to the similarity of
the data in the x, y, and z directions, the x-directional chaotic signal data were selected as an
example, and the other two directions can be inferred analogously. To better demonstrate
the chaotic characteristics, 100,000 generated chaotic data were screened, and the last 20,000
were selected as the example and subsequent verification model data. The x-directional
sequences of the three initial values changing with time are shown in Figure 5.

4.2. Evaluation Index of the Chaotic Data Model

In order to compare the effect of different models on chaotic data prediction, using root
mean square error (root mean square error (RMSE))eRMSE, average absolute error (mean
absolute error (MAE))eMAE and goodness of fit (R2) as the evaluation index of chaotic data
prediction accuracy, the smaller the value of RMSE and MAE, the better the performance of
the prediction model, meaning that the value of R2 is closer to 1 and the model fitting effect
is better. The model evaluation expressions are as follows:

eRMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

eMAE =
1
n

n

∑
i=1
|yi − ŷi| × 100% (12)

R2 = 1−

n
∑

i=1
(yi − ŷi)

n
∑

i=1
(yi − yi)

(13)
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where n is the number of training or test samples; ŷi is the predicted value of the chaotic
data at a certain time; ŷi is the actual measured value of the chaotic data at the same time,
and yi is the average value of the data to be predicted.
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5. Experimental Design and Analysis
5.1. Prediction of Chaotic Data for Different Algorithmic Models

To test the effectiveness of the prediction model proposed in this article, based on the
hardware configuration of Dell Inter CPU i7 and 8 GB of RAM, the simulation prediction
was carried out using Python 3.7. The LSTM, PSO-LSTM prediction models and the
prediction model proposed in this article were used for comparative analysis. The Lorenz
system with three different initial values generated 20,000 data points in the x-direction as
experimental data, and the experimental data were divided into a training set of 70% and a
testing set of 30%. The prediction results are shown in Figures 6–14. As can be seen from
Figures 6–14, the PSO-TPA-LSTM model proposed in this article has a better fitting degree
in predicting the chaotic data generated from three different initial values compared to the
other two models, which verifies the effectiveness of the model proposed in this article for
chaotic data prediction.
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5.2. Comparison of Accuracy of Different Prediction Models

The accuracy of chaotic data prediction was evaluated in this article using MAE, RMSE,
and R2. The initial values (−1, 1, 6), (7, 7, 25), (9, 9, 27) Lorenz system generated XYZ
three-axis chaotic data using three models (LSTM, PSO-LSTM, and PSO-TPA-LSTM), and
the three index values of the models are shown in Tables 1–3. It can be seen from the tables
that the evaluation indexes MAE and RMSE of the proposed PSO-TPA-LSTM prediction
model are the smallest among the three different initial values generated by Lorenz system.
The R2 value is closest to 1, indicating that the proposed algorithm model has the best
fitting degree. MAE and RMSE measure the absolute deviation between the true value
and the predicted value. The smaller their values, the smaller the absolute deviation of the
model is, and the higher the prediction accuracy of the data.

Table 1. Evaluation index data for x-axis model.

MAE RMSE R2

LSTM 3.874 2.736 0.83
PSO-LSTM 3.337 2.652 0.88

PSO-TPA-LSTM 2.983 2.231 0.92

Table 2. Evaluation index data for y-axis model.

MAE RMSE R2

LSTM 6.644 4.3822 0.87
PSO-LSTM 5.261 3.872 0.89

PSO-TPA-LSTM 3.823 3.523 0.93
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Table 3. Evaluation index data for z-axis model.

MAE RMSE R2

LSTM 5.837 4.542 0.85
PSO-LSTM 3.982 2.953 0.86

PSO-TPA-LSTM 2.983 2.231 0.94

6. Discussion and Conclusions

This article proposes an improved PSO-TPA-LSTM algorithm model by combining the
characteristics of chaotic sequence data generated by the Lorenz system. Firstly, by adding
a time attention mechanism, the key information of historical chaotic data is mined. Then,
the LSTM model is used for prediction. To further improve the accuracy of LSTM model
prediction, an improved particle swarm algorithm is used to optimize the parameters of
the LSTM model. Finally, simulations based on Lorenz-system-generated chaotic data
show that, compared to other prediction models such as LSTM and PSO-LSTM, the pro-
posed method has higher accuracy for chaotic data prediction, providing a comprehensive
reference for the prediction of chaotic-data-related industries in the future.
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