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Abstract: Based on the Quick Access Recorder (QAR) data covering over 9000 routes in China, the
monthly and intra-day distribution characteristics of aircraft bumpiness at different levels were
analyzed, and the relationships between the eddy dissipation rate (EDR) and other aircraft flight
status elements during bumpiness occurrence were also analyzed. Afterward, aircraft bumpiness
routes were constructed using 19 machine learning models. The analyses show that (1) aircraft
bumpiness was mainly concentrated between 0:00 a.m. and 17:00 p.m. Severe aircraft bumpiness
occurred more frequently in the early morning in January, especially between 5:00 a.m. and 6:00 a.m.,
and moderate bumpiness always occurred from 3:00 a.m. to 11:00 a.m. (2) The relationship between
the left and right attack angles and aircraft bumpiness on the routes was more symmetrical, with
a center at 0 degrees, unlike in the approach area where the hotspots were mainly concentrated in
the range of −5 to 0 degrees. In the approach area, the larger the Mach number, the more severe
the bumpiness. (3) The performances of the Automatic Relevance Determination Regression (ARD),
Partial Least Squares Regression (PLS), Elastic-Net Regression (ENR), Classification and Regression
Tree (CART), Passive Aggressive Regression (PAR), Random Forest (RF), Stochastic Gradient Descent
Regression (SGD), and Tweedie Regression (TWD) based models were relatively good, while the
performances of the Huber Regression (HUB), Least Angle Regression (LAR), Polynomial Regression
(PLN), and Ridge Regressor (RR) based models were very poor. The aircraft bumpiness prediction
models performed best over the approach area of ZBDT (airport in Datong), ZULS (airport in Lhasa),
ZPPP (airport in Kunming), and ZLQY (airport in Qingyang). The model performed best in predicting
the ZLLL-ZBDT air route (flight routes for Lanzhou to Datong) with different prediction times.

Keywords: aircraft bumpiness; EDR; airport approach areas; flight routes; machine learning

1. Introduction

Air transportation has gradually occupied an important position in the modern trans-
portation industry; however, its safety has increasingly raised societal concerns. Air
turbulence, which causes anxiety among airline passengers and induces aircraft bumpiness,
is a typical risk that poses a serious threat to civil aviation safety. Eddy currents are a useful
concept for studying the mechanism of air turbulence [1–3]. The eddy dissipation rate
(EDR) based on eddy currents may be an ideal measurement method for evaluating aircraft
bumpiness caused by air turbulence [4] by determining the energy loss of viscous forces in
turbulence. The EDR is the rate at which turbulent energy is absorbed by decomposing
eddies into smaller and smaller eddies until it is ultimately converted into heat by viscous
forces. The larger the EDR, the stronger the turbulence. Therefore, the EDR is usually
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used to describe the amplitude of turbulence around an aircraft, thereby characterizing the
bumpiness encountered by the aircraft [5].

Many scholars have used EDR forecasting to predict aircraft bumpiness. EDRs are
commonly obtained using Doppler weather radar, Doppler light detection and ranging
(LIDAR), or a combination of both methods [6–10]. These EDRs can provide assistance in
predicting low-level aircraft bumpiness. Most input data for aircraft bumpiness warnings
come from EDRs in the Quick Access Recorder (QAR) data. Kim et al. [11] used logarithmic
normal mapping technology to estimate the EDR, thereby reducing aircraft bumpiness
caused by convective turbulence in South Korea in 2018. An EDR prediction model based
on data from over 6000 conventional flights and classification and regression-supervised
machine learning models to predict aircraft turbulence was built by Emara et al. [12]. This
model performed well in predicting EDRs and analyzing turbulence severity approximately
10 s before encountering turbulence events. Cai et al. [13] calculated multiple turbulence
indices reflecting clear air and mountain wave turbulence using China Meteorological Ad-
ministration Mesoscale Weather Numerical Forecasting System (CMA-MESO) results. They
then converted the indices into EDRs to predict aircraft bumpiness. This roughly reflected
the different types of turbulence scenarios in most regions of China during 2018–2020.
Based on the assumption that EDRs follow a log-normal distribution, Sharman and Pear-
son [14] developed an EDR prediction strategy for climatological peak EDR data from an in
situ-equipped aircraft in conjunction with the distribution of computed diagnostic values.
Pearson and Sharman [15] proposed a new EDR prediction method that combines recent
short-term turbulence forecasts with all currently available direct turbulence observations
and inferences from other sources based on Graphical Turbulence Guidance.

Currently, it is common to predict turbulence or aircraft bumpiness based on the
relationship between numerical weather prediction model results and the EDR, such as
using the CMA-MESO [13], Weather Research and Forecasting (WRF) [16], Graphical Tur-
bulence Guidance (GTG) [15,17], global Korean deterministic aviation turbulence guidance
(G-KTG), or a global Korean probabilistic turbulence forecast (G-KPT) system [18]. Predict-
ing turbulence through the numerical weather prediction model has certain advantages,
such as the ability to cover sparsely observed high altitudes and having a longer prediction
time for future turbulence.

The bottleneck of aircraft turbulence prediction mainly includes the following aspects:
(1) More precise monitoring of the aircraft flight status is required. Aircraft bumpiness
prediction requires accurate monitoring of aircraft acceleration, attitude, airflow, and other
data. (2) More precise models are needed. Aircraft bumpiness prediction is usually based
on mathematical models and algorithms, which need to describe the interaction between
aircraft and meteorological conditions as accurately as possible. However, the accuracy
of the model may be limited by various factors. (3) Accurate meteorological data are
required. Aircraft bumpiness prediction relies on accurate meteorological data; however,
obtaining accurate meteorological data may be difficult, especially in high-altitude areas.
(4) Reducing human errors is necessary [19].

For time resolution, predictions based on QAR data seem to have more advantages as
QAR data provide more accurate monitoring of the aircraft flight status. However, limited
by the time and spatial coverage of relevant data collection, research on directly predicting
aircraft bumpiness based on QAR data is not abundant. Recently, artificial intelligence
methods have also made significant contributions in addressing model accuracy [20,21].
Against the backdrop of further applications of artificial intelligence methods in the field of
aviation meteorology [22–28], this study aimed to explore the use of QAR data elements
to predict EDRs for aircraft bumpiness based on artificial intelligence methods to attempt
to break through the bottleneck of current aircraft bumpiness predictions based on high-
precision aircraft flight status and different algorithm models.

The structure of this paper is as follows. Section 2, the “Data and Methods” section,
describes the datasets and the artificial intelligence algorithms used in building the model.
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The analysis results are presented in Section 3. Section 4 contains the discussion, and
Section 5 lists the major conclusions.

2. Data and Methods
2.1. Datasets

The QAR is a system that can easily and quickly obtain aircraft operation data, which
includes various position parameters, motion parameters, operation and control parameters,
as well as alarm information throughout the entire flight phase [29]. QAR data record flight
information and several parameters related to the flight process in seconds. The EDRs used
in this study and the elements used to predict the EDRs were both derived from the QAR
data. The parameters used in this study are given in Table 1. The QAR data used in this
study cover over 9000 routes from the first half of 2020 and the first two months of 2021.
After quality control measures for the QAR data, such as outlier removal and missing value
completion, 81 flight routes and approach areas of 38 airports with the most complete data
were selected as research objects that were used to build bumpiness prediction models.
The information on the selected flight routes and the locations of the selected airports are
presented in Table 2 and Figure 1.

Table 1. Elements of QAR data used in this study.

No. Abbreviation Unit Interpretation

1 G g Vertical acceleration
2 Alt foot Altitude
3 CAS knot Calibrated airspeed
4 AOAL degree Angle of attack (left)
5 AOAR degree Angle of attack (right)
6 Pitch degree Pitching angle
7 Pitch rate degree/s
8 Roll degree Roll angle
9 IVV feet/minute Instantaneous lifting velocity
10 TAS knot True airspeed
11 Mach Mach number
12 Lat degree Latitude
13 Lon degree Longitude
14 windSpd knot Wind speed
15 windDir degree Computed wind direction
16 Date

The selected airports are evenly distributed in five climate zones: a temperate monsoon
climate (such as ZBAA in Beijing, ZHCC in Zhengzhou, and ZBTJ in Tianjin), temperate
continental climate (such as ZWWW in Urumqi, ZWSH in Kashi, and ZWTN in Hetian),
subtropical monsoon climate (such as ZGHA in Changsha, ZPPP in Kunming, ZUUU in
Chengdu, and ZSPD in Shanghai), tropical monsoon climate (such as ZJHK in Zhuhai),
and plateau mountainous climate (such as ZULS in Lhasa). The climate characteristics
of the different climate zones have their own unique effects on the occurrence of aircraft
bumpiness, and at the same time, flight routes crossing different climate zones are also
prone to aircraft bumpiness caused by changes in climate. Establishing and comparing
aircraft bumpiness prediction models using multiple algorithms for different airports and
flight routes are necessary for evaluating and predicting aircraft bumpiness.

2.2. Artificial Intelligence Algorithms

In terms of aircraft turbulence prediction, some classic algorithms have been used
by scholars to construct models, such as Random Forests (RFs) and Gradient-Boosted
Regression Trees (GBRTs) explored by Domingo et al. [23]; Support Vector Machine (SVM)
algorithms explored by Abernethy et al. [30] and Mizuno et al. [28]; and Multilayer Per-
ceptron (MLP) networks explored by Oliveira et al. [31]. However, in the field of aviation
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meteorology, especially in the field of aircraft bumpiness, there are still many opportunities
for classical methods to be fully tried and explored. This study constructed prediction
models based on different algorithms and evaluated and compared their performances.

Table 2. The details of selected flight routes.

Flight Route Departure and
Arrival Locations Flight Route Departure and Arrival Locations

1 ZLLL-ZBAA Lanzhou/Beijing 42 ZPBS-ZPJH Longyang/Xishuangbanna
2 ZLLL-ZBAD Lanzhou/Beijing 43 ZPBS-ZPPP Longyang/Kunming
3 ZLLL-ZBDT Lanzhou/Datong 44 ZPBS-ZSHC Longyang/Hangzhou
4 ZLLL-ZBTJ Lanzhou/Tianjin 45 ZPBS-ZSPD Longyang/Shanghai
5 ZLLL-ZGGG Lanzhou/Guangzhou 46 ZPBS-ZUGY Longyang/Guiyang
6 ZLLL-ZGHA Lanzhou/Changsha 47 ZPBS-ZUUU Longyang/Chengdu
7 ZLLL-ZGHY Lanzhou/Hengyang 48 ZPDL-ZGHA Dali/Changsha
8 ZLLL-ZGNN Lanzhou/Nanning 49 ZPDL-ZHCC Dali/Zhengzhou
9 ZLLL-ZGSZ Lanzhou/Shenzhen 50 ZPDL-ZHHH Dali/Wuhan

10 ZLLL-ZHCC Lanzhou/Zhengzhou 51 ZPDL-ZLXY Dali/Xian
11 ZLLL-ZHHH Lanzhou/Wuhan 52 ZPDL-ZPJH Dali/Xishuangbanna
12 ZLLL-ZHYC Lanzhou/Yichang 53 ZPDL-ZPPP Dali/Kunming
13 ZLLL-ZJQH Lanzhou/Qionghai 54 ZPDL-ZSNJ Dali/Nanjing
14 ZLLL-ZLQY Lanzhou/Qingyang 55 ZPDL-ZSOF Dali/Hefei
15 ZLLL-ZLZY Lanzhou/Zhangye 56 ZPDL-ZSPD Dali/Shanghai
16 ZLLL-ZPLJ Lanzhou/Lijiang 57 ZPDL-ZSSS Dali/Shanghai
17 ZLLL-ZPPP Lanzhou/Kunming 58 ZPDL-ZUCK Dali/Chongqing
18 ZLLL-ZSHC Lanzhou/Hangzhou 59 ZPDL-ZUMY Dali/Mianyang
19 ZLLL-ZSJN Lanzhou/Jinan 60 ZPDL-ZUUU Dali/Chengdu
20 ZLLL-ZSLG Lanzhou/Lianyungang 61 ZPDQ-ZGGG Diqing/Guangzhou
21 ZLLL-ZSLY Lanzhou/Linyi 62 ZPDQ-ZPPP Diqing/Kunming
22 ZLLL-ZSOF Lanzhou/Hefei 63 ZPDQ-ZULS Diqing/Lhasa
23 ZLLL-ZSPD Lanzhou/Shanghai 64 ZPDQ-ZUUU Diqing/Chengdu
24 ZLLL-ZUGY Lanzhou/Guiyang 65 ZPLJ-ZLLL Lijiang/Lanzhou
25 ZLLL-ZUUU Lanzhou/Chengdu 66 ZPLJ-ZPJH Lijiang/Xishuangbanna
26 ZLLL-ZWAK Lanzhou/Akesu 67 ZPLJ-ZPPP Lijiang/Kunming
27 ZLLL-ZWSH Lanzhou/Kashi 68 ZPLJ-ZSPD Lijiang/Shanghai
28 ZLLL-ZWTN Lanzhou/Hetian 69 ZPLJ-ZSSS Lijiang/Shanghai
29 ZLLL-ZWWW Lanzhou/Urumqi 70 ZPLJ-ZUMY Lijiang/Mianyang
30 ZLXN-ZBAA Xining/Beijing 71 ZPNL-ZPPP Ninglang/Kunming
31 ZLXN-ZBYN Xining/Taiyuan 72 ZPNL-ZUUU Ninglang/Chengdu
32 ZLXN-ZHCC Xining/Zhengzhou 73 ZPZT-ZBAD Zhaotong/Beijing
33 ZLXN-ZHHH Xining/Wuhan 74 ZPZT-ZPJH Zhaotong/Xishuangbanna
34 ZLXN-ZJHK Xining/Zhuhai 75 ZPZT-ZPPP Zhaotong/Kunming
35 ZLXN-ZLIC Xining/Yinchuan 76 ZPZT-ZSPD Zhaotong/Shanghai
36 ZLXN-ZLXY Xining/Xian 77 ZPZT-ZUUU Zhaotong/Chengdu
37 ZLXN-ZUGY Xining/Guiyang 78 ZULS-ZPDQ Lhasa/Diqing
38 ZLXN-ZWWW Xining/Urumqi 79 ZULS-ZPPP Lhasa/Kunming
39 ZLZY-ZLLL Zhangye/Lanzhou 80 ZULS-ZUUU Lhasa/Chengdu
40 ZPBS-ZGHA Longyang/Changsha 81 ZUXC-ZPPP Xichang/Kunming
41 ZPBS-ZLXY Longyang/Xian

In addition to RF [32], SVM [33], and MLP that have been used by scholars, this
study also used Classification and Regression Tree (CART), K-Nearest Neighbor (KNN),
Least Angle Regression (LAR) [34], Ridge Regressor (RR), Stochastic Gradient Descent
Regression (SGD) [35], Bayesian Ridge Regression (BRR) [36,37], Least Absolute Shrinkage
and Selection Operator (LASSO) [38], Passive Aggressive Regression (PAR) [39], Random
Sample Consensus Regression (RANSAC) [40], Huber Regression (HUB) [41,42], Elastic-Net
Regression (ENR), Automatic Relevance Determination Regression (ARD) [43], Tweedie
Regression (TWD) [44], Partial Least Squares Regression (PLS), Polynomial Regression
(PLN), and Theil–Sen estimator (THS) algorithms [45,46].
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(1) Ridge Regression (RR)

Ridge regression solves some of the problems with ordinary least squares by impos-
ing penalties on the size of coefficients. The ridge coefficient minimizes the sum of the
squared residuals.

min||Xω−Y||22 + α||ω||
2
2 (1)

(2) Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO is a linear model for estimating sparse coefficients. It is very useful in certain
situations as it tends to choose solutions with fewer parameter values, effectively reducing
the number of variables on which a given solution depends. The minimum objective
function is

min
1

2n
||Xω−Y||22 + α||ω||1 (2)

(3) Elastic-Net Regression (ENR)

ENR is a linear regression model trained with L1 and L2 priors as regularizers. This
combination allows a sparse model to learn where few weights are non-zero like LASSO,
while still maintaining Ridge’s regularization properties.

min
1

2n
||Xω−Y||22 + αρ||ω||1 +

α(1− ρ)
2

||ω||22 (3)

(4) Bayesian Ridge Regression (BRR)

BRR implements a Bayesian setting to the regression model and adds an L2 regular-
ization term to the regression formula to avoid overfitting. The aim is to find a parameter
distribution that minimizes the loss function (Equation (4)) with the Bayesian linear estima-
tor defined in Equation (5).

J(ω) =
m

∑
i=1
{y(xi,ω)− ti}2 (4)
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y(x,ω) =
n

∑
j=0
ωjϕj(x) = ωTϕ(x) (5)

Here, n and m are the sample dimension and capacity, respectively;ω is the n-dimensional
random Gaussian variable following N(0,σ2

2); and ϕ(x) is the n-dimensional vector of
nonlinear functions. ϕ0(x) = 1. Let ti = y(xi,ω) + ε be the ith observed value, where ε
is the random noise variable following N(0,σ2

1). Then, t follows a Gaussian distribution
with mean y(x,ω). Equation (6) is the conditional probability density function of t with the
prior probability density ofω shown in Equation (7).

p(t|ω) =
1

2πσ1
2 exp(− 1

2σ2
1

m

∑
i=1
{y(xi,ω)− ti}2) (6)

p(ω) =
1

2πσ22 exp(− 1
2σ2

2
ωTω) (7)

According to Bayesian rules,

p(ω|t) = p(ω)p(t|ω)

p(t)
(8)

ln(p(ω|t)) = − 1
2σ2

1

m

∑
i=1
{y(xi,ω)− ti}2 − 1

2σ2
2
ωTω+ c (9)

Equation (9) shows the log posterior probability density function with a constant c,
which is in the form of a ridge regression equation. BRR introduces the regularization term
to the optimization process using a Gaussian prior and thus, we can expect a more robust
parameter estimation.

(5) Random Sample Consensus Regression (RANSAC)

RANSAC builds a cost function J and obtains the model parameters by maximizing it.
The cost function is defined as follows:

θ̂ = argmax{∑ϕ∈ΦJ[ρ(ϕ, θ)]}, (10)

where θ is the target parameter to optimize, Φ is the known feature point set, and ρ is the
error function. The summation is over all feature points ϕ in the uniform set in the linear
detection problem.

(6) Huber Regression (HUB)

Huber loss is widely used when the dataset has plenty of outliers as it reduces the
impact of the outliers compared to the L2 loss. The Huber Regression estimator has been
proven to be reliable for achieving a large sample asymptotic property by Huber and
Peter [25]. The loss function of Huber Regression is defined as follows:

min
ω,σ

∑n
i=1(σ+ Hε(

Xiω− yi
σ

)σ) + α||ω||22, (11)

where

Hε(z) =
{

z2 if|z| < ε,
2ε|z| − ε2 otherwise.

(12)
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(7) Automatic Relevance Determination Regression (ARD)

Denote the training dataset as {xn, tn|n = 1, 2, · · ·N}, where xn represents the input
value and tn represents the output values. We can obtain the following equation:

tn = y(xn;ω) + ξn (13)

where ξn is the noise variable following ξn~ N(0, σ2) with unknown σ2. The condi-
tional probability density function of tn is shown in Equation (14), which follows a
Gaussian distribution:

p(tn|x) = N(tn|y(xn),σ2). (14)

The likelihood function of {xn, tn|n = 1, 2, · · ·N} is a joint Gaussian density shown in
the following given independence between each tn:

p(t|ω,σ2) = 2πσ2−N
2 exp{− 1

2σ2 ||t− θω||
2} (15)

where weight parameter ω = [ω0,ω1, · · ·ωN]
T and θ is an n× (n + 1) matrix. Each ωI

follows the Gaussian distribution with mean 0 and variance α−1
i . There is a hyperparameter

α = [α0,α1, · · · ,αN]
T that corresponds to theω in each position. According to the Bayesian

rule, p(t|ω,α,σ2) could be derived as

p(t|ω,α,σ2) =


P(t|ω,σ2)P(ω,α)

P(t|α,σ2)

(2π)−(N+1)/2|∑|−1/2exp
{
− 1

2ω−mT∑−1
(ω−m)

} (16)

where m = σ2∑ θTt, ∑= (σ−2θTθ+ A)
−1

, and A = diag(α0,α1, · · · ,αN). The maximum
likelihood function is

p(t|α,σ2) =

{ ∫
P(t|ω,σ2)P(ω|α)dω

(2π)−(N+1)/2|C|−1/2exp
{

1
2 tTC−1t

} (17)

where covariance matrix C = σ2I + θA−1θT. Taking the partial derivatives of α and σ2 and
setting them equal to 0, we obtain the following two formulas:

αnew
i = ri/µ2

i (18)

(σ2)
new

=
||t− θµ||2

N−∑N
i ri

(19)

Here, µi is the ith mean weight and ri is the ith main diagonal value of the covariance
matrix. In each optimization iteration until convergence, m and C are updated with the
posterior distribution.

(8) Tweedie Regression (TWD)

Given a variance V(µ) = µP, P ∈ (−∞, 0) ∪ [1,+∞), we could obtain a Tweedie
distribution family. Among the family, the most famous ones are normal distributions,
Poisson distributions, Gamma distributions, and inverse Gaussian distributions with
p = 0, 1, 2, 3, respectively. A generalized linear model with variables following a Tweedie
distribution can be expressed as follows:

yi ∼ TWP(ϑi,ϕi) (20)

µi = E(yi) (21)
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g(µi) = x’
iβ (22)

where ϑ and ϕ are the specification parameter and the discrete parameter for the Tweedie
distribution. xi = (xi1, · · · , xiq)

T is the data consisting of q classification entries. β is the
weight parameter vector of order q× 1.

(9) Classification and Regression Tree (CART)

Using x = (x1, x2, · · · , xn) to represent each training data point and y to represent the
category to which the training data point belongs, let Ci be the fixed output value for each
attribute xi. Equation (23) shows the regression tree model:

f(x) = ∑N
n=1CnI, x ∈ Xn, (23)

The model is looking for the best segmentation values zs for each xj, j = 1, ., n, based
on which, the data space could be divided into two regions: X1 = (j, z) = {x|x(j) ≤ z}
and X2 = (j, z) = {x|x(j) > z} such that the square difference is minimized in the
following equation.

mins,j[minc1 ∑
x1∈R1(j,s)

(y1 − c1)
2 + minc2 ∑

x1∈R2(j,s)

(y1 − c2)
2] (24)

(10) K-Nearest Neighbor (KNN)

The KNN algorithm is quite intuitive. Suppose we have training dataset T =
{(x1, y1), (x2, y2), · · · , (xn, yn)}, xi ∈ Rn, yi ∈ {c1, c2, · · · , cK}. For any test point x, the
prediction of y is

ŷ = argmaxj ∑
xi∈Nk(x)

I
{

yj = ci

}
, i = 1, 2, · · · , n; j = 1, 2, · · · , K (25)

where Nk(x) is the set of K-many samples nearest to x in the training dataset.

(11) Least Angle Regression (LAR)

min S(β) = ||y− µ||2 = ∑n
i=1(yi − µi)

2 = ∑n
i=1(yi −∑

p
j=1xijβj)

2
, (26)

s.t.
p

∑
j=1
|βj| ≤ t (27)

The least angel regression model solves an optimization problem as follows: xi =
(xi1, xi1, · · · , xip), i = 1, ., n are n independent samples and yi is the corresponding response.
βj, j = 1, ., p are the regression coefficients to be estimated and t is the constant constraint
for regularization of the target function. The LAR algorithm minimizes the sum of the
squared errors under the regularization constraint of the sum of |βj|.

(12) Multi-Layer Perceptron (MLP)

MLP feeds the sum of the weighted input data {x1, x2, · · · , xn} to the feed-forward
network through the activation function ϕ(v) = tanhv in each layer. The output ŷ is
defined as

ŷ = tanh(
n

∑
d=1,n=1

wdxn) (28)
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The weights ws are adjusted in every iteration to reduce the distance between the actual
outputs and the predicted outputs with the following adjustment formula.

wk+1
j = wk

j + β(yi − ŷk
i )xij (29)

Here, wk is the updated weights after the kth learning cycle and xij represents the jth entry
of input data xi. β indicates the learning rate. The k+1th parameter wk+1 is calculated
using wk plus an error value from decision (y–ŷ).

(13) Support Vector Machine (SVM)

Denote the training dataset as T =
{
(xi, yi)

n
i=1|xi ∈ Rd, yi ∈ Ri = 1, 2, · · · , n

}
, where

each xi represents the input and yi represents the output. The SVM model constructs a
hyperplane in the following:

f(x) = ωT·ϕ(x) + b (30)

whereω and b represent the coefficient vector and intercept of the hyperplane, respectively.
The model tolerance points do not fall on the correct side of the hyperplane by setting a
relaxation band (ξ, ξ*). The optimization problem is formed as follows:

min 1
2 ||ω||

2 + c∑l
i=1 (ξi + ξ*),

s.t.


(ω·xi) + b− yi ≤ ε + ξ, i = 1, · · · , l
yi − (ω·xi)− b ≤ ε + ξ, i = 1, · · · , l

ξi, ξ* ≥ 0, i = 1, · · · , l

(31)

Here, c acts as the penalty rate for points falling in the relaxation band and ε is the
insensitive loss parameter. We could obtain an equivalent objective function with the help
of the Lagrange multiplier, dual transformation, and nonlinear transformation.

maxV(αI,α*
i ) =

l
∑

i=1
yi(αi − α*

i )−
1
2 I

s.t.


l

∑
i=1

(α*
i − αi) = 0

0 ≤ Ii, α*
i ≤ c, i = 1, · · · , l

(32)

Here, αi and αi
* are the Lagrange multiplier. The high-dimensional computing problems

in the SVM model could be solved by implementing the kernel function K(xi, yi). We show
a linear kernel function in the following:

K(xi, yi) = xT
i ·xj (33)

(14) Random Forest (RF)

Random Forest is an ensemble learning algorithm that combines multiple decision
trees to make predictions. It constructs a multitude of decision trees during training and
makes predictions by averaging the outputs of each individual tree. Each tree in the random
forest is built using a random subset of the training data and features, ensuring diversity
and reducing overfitting.

(15) Stochastic Gradient Descent Regression (SGD)

SGD is an optimization algorithm that is widely used in machine learning and deep
learning. In a regression problem, SGD can be very effective in finding parameters that
minimize the cost function, thus achieving data fitting or predictions. The basic idea of
SGD is to randomly select one sample at a time to calculate the gradient and then update
the model parameters. This allows SGD to converge faster because it only processes one
sample at a time, rather than the entire dataset. However, this may also lead to fluctuations,
as using only one sample at a time to update parameters may result in random fluctuations
in the parameters.
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(16) Passive Aggressive Regression (PAR)

PAR is a binary machine learning method aimed at solving the problems of data
sparsity and imbalance. Its core idea is that during the training process, for each sample,
the model will attempt to predict its category and then adjust its impact on other samples
based on the prediction results. Specifically, let us assume that our training set consists of a
series of samples, and for each sample, we have a label y indicating the category it belongs
to (for example, 0 or 1). During the training process, we first initialize a weight vector w,
and for each sample, we calculate the predicted value p = w× x (where x is the feature
vector of the sample) and then update w according to the following formula:

w = w+ ∝ (y− p)× x (34)

where ∝ is a hyperparameter that controls the learning rate. This update rule results
in a greater weight adjustment for samples with an incorrect classification. In this way,
in subsequent predictions, the model will pay greater attention to those misclassified
examples. Therefore, this method is a passive and aggressive approach that adjusts its own
behavior to combat data imbalance without direct confrontation.

(17) Partial Least Squares Regression (PLS)

PLS is a statistical method where the basic idea is to find a linear regression model by
projecting the predicted and observed variables into a new space. This method is related
to principal component regression, but it is not a hyperplane for finding the maximum
variance between the response variable and the independent variable. Because both data X
and Y are projected into a new space, the PLS series of methods are called bilinear factor
models. When Y is classified data, this method is called “Partial Least Squares Discriminant
Analysis (PLS-DA)”.

The details of the BRR, TWD, ARD, HUB, SVM, RANSAC, LAR, MLP, KNN, and CART
algorithms were taken from our previous research [26,27]. The following will provide the
details for the PLN and THS algorithms that were not covered in previous research. PLN-
based models use a regression method that approximates measured points by increasing
the higher-order term of the independent variable. It can handle a considerable number of
classes of nonlinear problems and plays an important role in regression analysis. Because
any function can be piecewise approximated by polynomials, it should be noted that
the choice of the order of the polynomial to use for regression depends on the specific
problem and data. If the relationship between them is nonlinear, then we may need to use
polynomial regression for the analysis. However, as the order of the polynomial increases,
there may be overfitting issues, where the model performs very well on the training set
but poorly on the test set. Therefore, it is necessary to make appropriate adjustments and
verifications when selecting the polynomial degree to balance the complexity of the model
and the fitting effect.

The THS is a robust statistical method used to estimate the linear trends (slopes and
intercepts) of a dataset. The THS first calculates the slopes between all point pairs in the
dataset and then selects the median of these slopes as the final estimation value. By using
the median instead of the average to estimate the slope, the THS has strong robustness
to outliers in the data, effectively weakening the impact of these extreme points on the
estimation results. Its advantages are as follows: It can effectively resist the interference of
outliers in the data, making the estimation results more reliable; no special assumptions or
distribution assumptions need to be made on the data, so it is suitable for various types of
data; and there is no need to preprocess or convert the data, and raw data are directly used
for estimation.

The above machine learning algorithms used in this research all rely on Python
programming and its algorithm libraries.
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3. Results
3.1. Monthly Characteristics of Different Aircraft Bumpiness Levels

From the approach areas of all the airports, the distribution range of EDR values was
the largest in April 2020, and the largest EDR representing the strongest aircraft bumpiness
also appeared in April 2020 (Figure 2a). In January, in 2020 and 2021, the distribution range
of the EDR values was the smallest. The median EDR from March to June was also higher
than that in January and February. From all the samples, the distribution pattern of the
EDRs in each month was similar, that is, the distribution around the median was relatively
concentrated, and the upper and lower distributions were relatively uniform. Severe
aircraft bumpiness (EDR ≥ 0.7) over the airport approach area occurred less frequently in
February and June 2020, especially in June (Figure 2b). Due to severe bumpiness being an
extreme event in aircraft bumpiness, the distribution shape of the EDR varied from month
to month, and the median values of the EDR also varied from month to month. Overall,
the median of the EDRs was relatively small in the severe bumpiness sub-graph, especially
in April 2020 and February 2021. In January 2020, March 2020, and May 2020, there were
relatively serious turbulence events, with EDR values above 0.78. Compared to severe
aircraft bumpiness, the monthly distributions of the EDR for moderate (0.4 ≤ EDR < 0.7)
and mild (0.1 ≤ EDR < 0.4) aircraft bumpiness were relatively similar, and the images
were also relatively regular (Figure 2c,d). The distributions of moderate aircraft bumpiness
EDRs were relatively lower, indicating that the overall degree of moderate turbulence was
relatively mild. However, the overall distributions of mild aircraft bumpiness tended to
have larger EDR values, indicating that it was closer to the critical transition to moderate
turbulence. The distributions of moderate aircraft bumpiness EDRs were relatively lower,
indicating that the overall degree of moderate turbulence was relatively mild. The overall
distribution of mild aircraft bumpiness tended to have larger EDR values. Although the
EDRs of moderate and mild aircraft bumpiness were closer to the critical threshold for
distinguishing between the two, moderate turbulence was closer to the critical threshold
from the shape of its distribution.

Compared to the EDR distributions in the airport approach areas, the shapes of the
EDRs on the flight routes were relatively different (Figure 3). From the distribution of all
the samples, the upper limit of the EDRs on the flight routes did not differ significantly
between months, while smaller EDR values appeared in February 2020 and February 2021
(Figure 3a). Similar to the situation in the approach area, there was also no severe aircraft
bumpiness on the flight routes in February and June 2020, indicating that there were indeed
fewer severe aircraft bumpiness occurrences in these two months (Figure 3b). The routes
in January and March 2020 produced a few of the highest EDR values, namely, more
severe aircraft bumpiness. The distribution of EDR values in February 2021 was relatively
concentrated, which is different from the bottled or conical distributions in other months.
The EDR distribution shapes of moderate aircraft bumpiness in each month were generally
similar, showing a conical shape with a sharp top and a wide bottom, and the median
EDR in each month was also basically the same (Figure 3c). In the mild aircraft bumpiness
pattern, the median EDR from April to June 2020 was higher than in other months.

3.2. Intra-Day Characteristics of Different Aircraft Bumpiness Levels

Aircraft bumpiness was mainly concentrated between 0:00 a.m. and 17:00 p.m. over
the airport approach areas (Figure 4). The distribution of severe aircraft bumpiness was
more concentrated than that of moderate and mild bumpiness and mainly occurred during
the time period from 3:00 a.m. to 10:00 a.m. (Figure 4a). Severe aircraft bumpiness
occurred more frequently in the early morning of January, especially between 5:00 a.m. and
6:00 a.m. The main occurrence period of moderate aircraft bumpiness was from 3:00 a.m.
to 11:00 a.m., especially in the early morning (4:00 a.m. to 7:00 a.m.) in April and May 2020
(Figure 4b). The main distribution period of mild aircraft bumpiness was similar to that
of moderate bumpiness, both from 4:00 a.m. to 7:00 a.m. (Figure 4c). There were more
occurrences of various levels of aircraft bumpiness in the early morning in January 2020.
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Overall, the intra-day bumpiness distribution of flight route turbulence was similar to that
of the approach areas.
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3.3. The Aircraft Flight State when Bumpiness Occurs

Over the airport approach areas, the aircraft bumpiness mainly occurred when the
CAS was between 120 and 160 knots; in particular, mild aircraft bumpiness was more
concentrated in this CAS range (Figure 5a). The state of the left and right angles of attack
during aircraft bumpiness was basically the same, that is, bumpiness mainly occurred in
the AOAL and AOAR range of −5 to 0 degrees, and mainly consisted of mild bumpiness
(Figure 5b,c). When the aircraft pitching angle was 2 degrees, severe, moderate, and mild
aircraft bumpiness were all highly concentrated (Figure 5d). In addition, the number of
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occurrences of bumpiness decreased from 2 to 5 and−3 degrees, and the level of bumpiness
also decreased. The relationship graph between EDR and the roll was the most symmetrical
(Figure 5e). When severe, moderate, and mild bumpiness occurred, the roll was mainly
at 0 degrees and appeared symmetrically in a small amount within the range of plus
or minus 25 degrees. Although there was no change in vertical velocity during most
turbulence events, in a few cases, various types of bumpiness occurred in the IVV range
of 0 to −10 feet/min (Figure 5f). This indicates that the aircraft was mainly in a descent
state when it encountered aircraft bumpiness. The relationships between bumpiness and
CAS and TAS were basically the same, as both CAS and TAS are elements of aircraft
perception of wind speed, and the two are closely related (Figure 5a,g). The Mach provided
a rough understanding of the speed of the aircraft, so the graphs of EDR vs. Mach were
similar to those of EDR vs. CAS, showing that the larger the value, the more severe the
aircraft bumpiness was (Figure 5h). At Mach values in the range of 0.65–0.78, aircraft
bumpiness became more concentrated. Different wind speeds have different impacts on
aircraft bumpiness, and the correlation between the two was very high (Figure 5i).
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On the flight routes, the relationships between bumpiness and two airspeeds were
also generally similar (Figure 6a,g). Mild aircraft bumpiness was mainly concentrated
in the CAS range of 70 to 155 knots (Figure 6a). Although the relationships between
aircraft bumpiness on the routes and the left and right angles of attack were similar, the
distributions on the routes were different from those over the approach area (Figure 6b,c).
The relationships between the left and right angles of attack and aircraft bumpiness on
the routes were more symmetrical with a center at 0 degrees, unlike in the approach areas
where the hotspots were mainly concentrated in the range of −5 to 0 degrees (Figure 5b,c
and Figure 6b,c). This observation may be because the aircraft mainly descends in the
approach areas and there were more cases where the angle of attack was negative, while on
the route, there was a balance between scenarios where the angle of attack of the aircraft
was positive and those where it was negative. The aircraft bumpiness occurred within the
symmetrical range of pitch values centered around 2 degrees, but the center of symmetry
was not as obvious as in the approach areas (Figure 6d). The relationship curve between
EDR and the roll on the routes was also symmetrical (Figure 6e). On the routes, aircraft
bumpiness was still concentrated where the IVV was negative (i.e., during the descent
of the aircraft) and was more pronounced than in the approach areas (Figure 6f). Unlike
in the approach areas, the larger the Mach number, the more severe the bumpiness was.
On the routes, there was mild aircraft bumpiness at different Mach numbers. Moderate
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aircraft bumpiness occurred more frequently when the Mach was slightly greater than
0.2 (Figure 6h). The aircraft bumpiness on the routes was most concentrated when the
wind speed ranged from 0 to 40 knots (Figure 6i). Moderate and severe aircraft bumpiness
mainly occurred at wind speeds of 0–30 knots.
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3.4. Model Training and Validation
3.4.1. Aircraft Bumpiness Prediction Model for the Airport Approach Areas

The elements listed in Table 1 from the QAR data for 2020 and 2021 were used to
construct a five-second EDR prediction model over the airport approach areas for the next
5 min, 10 min, and 20 min. The 2020 data were used to train the model, and the 2021
data were used for validation. Due to space limitations, both the prediction model for the
approach areas in this section and for the air routes in the next section are presented in
the training period diagram. Due to space limitations, the training period diagram for the
prediction model for the approach areas in this section and the air routes in the next section
are not shown.

The correlation coefficients between the predicted and observed EDRs for the next
5 min at each airport using the various methods were below 0.8 (Figure 7). This indicates
that the performances of the models were not very good. From the standard deviation
ratio between the predicted and observed values, the dispersion of the EDR predictions
at most airports was smaller than that of the observed values. Under the KNN-based
model, the ratios of the two at each airport were distributed around 1, which means that
the dispersion between the predicted and observed values was relatively close. The HUB-,
LAR-, PLN-, and RR-based models performed the worst in predicting aircraft bumpiness
in the approach areas (Figures 7 and 8). The performances of the ARD-, PLS-, ENR-, CART-,
PAR-, RF-, SGD-, and TWD-based models were relatively good, but the prediction results
of the models were generally smaller than the observed values.
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The predicted results of the various models in the next 10 min were similar to the
distributions in the next 5 min (Figures S1 and S2). Compared to the predicted results
for the next 5 and 10 min of aircraft bumpiness, the predicted performance for the next
20 min was worse (Figures 9 and 10). Compared to the values for the next 5 and 10 min,
the correlation coefficient between the predicted and observed values for the next 20 min
was smaller. In addition, the standard deviation ratio between the predicted and observed
EDRs for the next 20 min was larger, which means that the difference in dispersion between
the two sets of values was greater. However, compared to the next 5 min, the forecast
results for the next 20 min using the SVM- and THS-based models improved. The HUB-,
LAR-, PLN-, and RR-based models still performed the worst for the next 20 min forecast.
Overall, the models performed best in predicting mild aircraft bumpiness, with the models
generally having predicted values lower than the observed values. The aircraft bumpiness
prediction models performed best over the approach areas of ZBDT in Datong, ZULS in
Lhasa, ZPPP in Kunming, and ZLQY in Qingyang. As the prediction time increased, the
prediction effect for ZULS decreased by the largest degree.

3.4.2. Aircraft Bumpiness Prediction Model for the Flight Routes

The QAR data elements used in the prediction model for air route aircraft bumpiness
were the same as those used for the approach areas. At the same time, model training was
conducted using the 2020 data, and model validation was conducted using the 2021 data.
Compared to the QAR data in the approach areas, the data on the flight routes extended
over a longer period of time, so aircraft bumpiness prediction models for the next 5 min,
10 min, 20 min, and 30 min were constructed for the flight routes.
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Similar to the approach area scenario, the performances of the HUB-, LAR-, PLN-,
and RR-based models were also very poor (Figures 11 and 12). The distribution of the
prediction results obtained by the KNN-based model was the closest to that of the ob-
served values. The prediction results of the models with better performances, such as
the PLS-, ENR-, and RF-based models, were generally smaller than the observed values.
The performances of the models for the next 10 min and the next 20 min were similar
to the performance for the next 5 min, but the effect deteriorated as the prediction time
increased. Compared to the prediction for the next 5 min, the ENR-, LASSO-, MLP-, PAR-,
and TWD-based models showed the most obvious decline in performance for the next
30 min (Figures 13 and 14). In general, the prediction performances of the different models
were roughly similar but decreased in the same time period. The aircraft bumpiness predic-
tion model for the next 5 min performed best on the ZLLL-ZLQY (Lanzhou–Qingyang),
ZPNL-ZPPP (Ninglang–Kunming), and ZLLL-ZBDT (Lanzhou–Datong) routes. As the
forecast time increased, in addition to ZLLL-ZBDT, the prediction model for the next 30 min
also performed better on the ZPZT-ZPJH (Zhaotong–Xishuangbanna) and ZPDQ-ZULS
(Diqing–Lhasa) routes.
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4. Discussion

For the monthly distribution, Jin et al. [47] pointed out that the occurrence frequency
of aircraft bumpiness is the highest in the winter and lowest in the summer. The reason for
this is that the summer jet is relatively weak, and radar and other equipment can predict the
thunderstorms that lead to aircraft bumpiness in the summer, in advance, so that this type
of weather can be avoided through flight adjustments and other means. This is different
from the increased summer aircraft bumpiness compared to that in January and February
observed in our study. This discrepancy could be due to the different research periods; the
previous scholars used data from 2016, while we used data from 2020 to 2021. Alternatively,
it could be related to the study area; the previous research focused on the Beijing region,
and we used more samples of airports and routes.

LASSO- and TWD-based models exhibit good performance in handling prediction
problems with high-dimensional features and/or nonlinear relationships. The LASSO-based
model uses a linear regression method with its main advantage being the ability to perform
feature selection. This can help reduce the impact of noise features and improve the pre-
dictive performance of the model when processing high-dimensional data. In addition,
LASSO-based models can also handle some features with multicollinearity, so it has certain
advantages when dealing with problems such as aircraft turbulence prediction. TWD-based
models are suitable for handling data with variance homogeneity issues. When dealing
with nonlinear relationships, TWD-based models can provide more accurate model fitting.
For example, in aircraft bumpiness prediction, the relationship between the speed of the
aircraft and the degree of bumpiness may not be a simple linear relationship but rather
a non-linear relationship. In this case, a TWD-based model may provide more accurate
predictions than traditional linear regression methods.

The ENR-based model performed well in the approach areas and routes, which seems
to be related to the fact that the features are all elements in the QAR data. If certain features
are related (multicollinearity), an ENR-based model is the best choice because it is unlikely
to set certain parameters to zero. The RF-based model can provide a helpful guide to
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initial predictor selection but can be biased and does not expose correlations between
variables. The RF-based model did show a better performance than the logistic regression
models for this problem, perhaps because it makes better use of predictors that are not
monotonically related to the prediction. It may be that some of the predictor variables could
be transformed or combined to make them more effective in a simpler model, which would
be preferable from the standpoint of computational intensity in a real-time system [22].

The areas where the models performed best in this study were concentrated in western
China, especially flight routes in the southwestern plateau region. Fang L. [48] pointed
out that the impact of aircraft bumpiness on China’s plateau routes is more severe, and
the frequency of aircraft bumpiness in the approach areas is higher. They found that the
summer aircraft bumpiness was induced by convection, while winter aircraft bumpiness
was induced by jet streams and mountain waves. Wang S. [49] found that aircraft bumpiness
is more likely to occur in areas with complex terrain, and the bumpiness in the approach
areas is even more severe. Xu et al. [50] also found that there is a high incidence area
of high-altitude turbulence in northern Sichuan and eastern Tibet. Li C. [51] identified
a certain connection between aircraft bumpiness characteristics and airport and route
traffic. For example, aircraft bumpiness often occurs in areas with high flight flow, dense
waypoints, and busy routes. At the same time, there are also frequent aircraft bumpiness
events near minor route distribution areas, indicating that there is a high possibility of
frequent weather events causing aircraft bumpiness in these areas. This needs to be further
analyzed in conjunction with the meteorological background in future studies.

5. Conclusions

In this study, the monthly and intra-day characteristics of different aircraft bumpiness
levels were analyzed, and aircraft bumpiness models were constructed based on 19 artificial
intelligence algorithms for 38 airport approach areas and 81 flight routes in China based on
the QAR data from the first half of 2020 and the first two months of 2021. The main results
are as follows:

i. Severe aircraft bumpiness over the airport approach areas occurred less frequently in
February and June 2020, especially in June. For mild aircraft bumpiness, the median
EDR from April to June 2020 was higher than in the other months.

ii. Aircraft bumpiness was mainly concentrated between 0:00 a.m. and 17:00 p.m. Se-
vere aircraft bumpiness occurred more frequently in the early morning of January,
especially between 5:00 a.m. and 6:00 a.m. The moderate bumpiness occurred from
3:00 a.m. to 11:00 a.m., especially in the early morning (4:00 a.m. to 7:00 a.m.) in April
and May 2020.

iii. The relationships between the left and right angles of attack and aircraft bumpiness
on the route were more symmetrical with a center at 0 degrees, unlike in the approach
areas where the hotspots were mainly concentrated in the range of −5 to 0 degrees.
Unlike in the approach areas, the larger the Mach, the more severe the bumpiness
was. On the routes, when the Mach number was slightly greater than 0.2, moderate
aircraft bumpiness occurred more frequently.

iv. The performances of the ARD-, PLS-, ENR-, CART-, PAR-, RF-, SGD-, and TWD-based
models were relatively good, while the performances of the HUB-, LAR-, PLN-,
and RR-based models were very poor. The aircraft bumpiness prediction mod-
els performed best over the approach areas of ZBDT in Datong, ZULS in Lhasa,
ZPPP in Kunming, and ZLQY in Qingyang. As the prediction time increased,
the prediction effect for ZULS decreased the most severely. The aircraft bumpi-
ness prediction model on flight routes for the next 5 min performed best for the
ZLLL-ZLQY (Lanzhou–Qingyang), ZPNL-ZPPP (Ninglang–Kunming), and ZLLL-
ZBDT (Lanzhou–Datong) routes. As the forecast time increased, in addition to
ZLLL-ZBDT, the prediction model for the next 30 min also performed better for
the ZPZT-ZPJH (Zhaotong–Xishuangbanna) and ZPDQ-ZULS (Diqing–Lhasa) routes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14111704/s1, Figure S1: Taylor diagram presents a comparison
of the every 5 s predicted and observed EDR for the next 10 min in the testing period over the approach
areas. The diagram shows the correlation (the arc coordinate) and ratio of the standard deviation
between the every 5 s predicted and observed (Abscissa and ordinate); Figure S2: Comparison of
the EDR observed and predicted for the next 10 min in the testing period over the approach areas;
Figure S3: Taylor diagram presents a comparison of the every 5 s predicted and observed EDR for
the next 10 min in the testing period on the flight routes. The diagram shows the correlation (the
arc coordinate) and ratio of the standard deviation between the every 5 s predicted and observed
(Abscissa and or-dinate); Figure S4: Comparison of the EDR observed and predicted for the next
10 min in the testing period on the flight routes; Figure S5: Same as Figure S3 except for the next
20 min on the flight routes; Figure S6: Same as Figure S4 except for the next 20 min on the flight routes.
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