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Abstract: Most Penman-Monteith-Leuning (PML) evapotranspiration (ET) modeling studies are
dominated by consideration of meteorological, energy, and land use information, etc., but the
dynamic coupling of soil moisture content (SM), especially in terms of improving accuracy through
assimilation, lacks sufficient attention. This paper proposes a research framework for the dynamic
coupling simulation of PML model and SM based on data assimilation, i.e., the remote sensing
monitored SM is combined with soil evaporation of PML to obtain high-precision time-continuous
SM data through data assimilation; simultaneously, dynamical soil evaporation coefficients are
generated based on the assimilated SM to improve the simulation accuracy of the PML model.
The new scheme was validated at a typical irrigation zone in north China and showed obvious
improvements in both SM and ET simulations. Moreover, the effect of the assimilation of SM on
the simulation accuracy of ET for different crop growth periods is further analyzed. This research
provides a new idea for the coupling simulation of the SM and PML models.

Keywords: evapotranspiration; soil water content; EnKF; assimilation

1. Introduction

Evapotranspiration (ET) is an important component of the regional water cycle [1],
and obtaining ET with high spatial and temporal resolution is of great significance for
agricultural water management research [2]. ET monitoring based on remote sensing
technology is an effective way to obtain ET [3], while soil moisture content (SM) affects the
heat exchange between the surface and the atmosphere [4]. So ET monitoring by remote
sensing needs to be tightly coupled with the dynamic changes of SM [5]. However, spatially
and temporally continuous SM at the field scale (better than 30 m) is not easily accessible [6],
which limits the high-resolution coupled simulations of ET with SM.

Data assimilation has been widely used in ET simulation because it can integrate
different model results [7] and couple multi-source data. Researchers have carried out dif-
ferent types of studies to improve the simulation accuracy of ET based on data assimilation.
Models driving assimilation processes include land surface process models [8,9], water
balance models [10], and hydrologic process models [11]. In general, the data assimilation
studies of ET are mostly focused on the coupling with hydrological processes, where the
focus was on the key parameters and important variables of the model. Moreover, the
spatial resolution of ET obtained from hydrological models was not fine enough. In terms
of coupling with SM from the perspective of the ET mechanism, Cui and Jia [6] proposed an
assimilation scheme of SM in the framework of SVET (soil-vegetation EvapoTranspiration).
However, the spatial resolution of SM data using ASCAT (advanced scatterometer) is low,
and the ET simulation results need to be further optimized for field-scale ET monitoring.
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In order to realize the coupled simulation of time-continuous SM and ET at the
field scale, based on SM (spatial resolution of 10 m) inverted from Sentinel-2 images and
driven by an SM change model, we achieve temporal continuity of remote sensing-based
SM through data assimilation, which was then coupled with an ET model. The remote
sensing-based Penman-Monteith model (PML) was selected for ET simulation, which
can fully utilize the remote sensing information, and the parameterization process had
a clear biophysical basis [12]. The PML model also can simulate canopy interception
evaporation (Ei) [13], soil evaporation (Es), and vegetation transpiration (Ec) separately,
and has achieved good simulation results in a variety of climate zones and at a variety of
scales [14,15]. In this paper, we coupled the Es output of the PML model with the process
of SM assimilation and fed the assimilated SM results back to the PML model to update
the calculation of ET. The approach used in this study not only strengthens the dynamic
coupling with SM during the ET simulation and improves the simulation accuracy, but also
creates conditions for obtaining high spatial and temporal resolution SM. The study can
provide a reference for realizing the coupled simulation of the PML model with SM data
derived from discrete remote sensing images.

2. Methods

This paper extends the coupled simulation with SM and the assimilation framework
based on the PML ET model. The overall research flowchart is shown in Figure 1. There are
two important parts of the research framework: (1) SM inversion with remote sensing data
and assimilation with the SM change model, which can provide time-continuous SM data;
(2) improvement of ET simulation by introducing a dynamic soil evaporation coefficient
( f ) parameterization scheme. The overall objective of this research framework is to obtain
high-precision surface SM series through data assimilation and to improve the simulation
accuracy of ET by coupling the SM data with the PML model.
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2.1. PML Model

In this paper, we use the PML model, which considers canopy interception evaporation
and divides surface ET into Ei, Es, and Ec. The main calculation form of the model is
as follows:

λE = Smax

[
1 − e−η Pcum

Smax

]
+

εAc +
(
ρaCp/γ

)
DaGa

ε + 1 + Ga/Gc
+

f εAs

ε + 1
(1)

in which λ is latent heat of vaporization; E is ET; Smax is retention capacity [13]; η is
calibration coefficient, both of which are functions of LAI; Pcum is daily precipitation; ε is
the slope of temperature-saturated water pressure curve; Ac is the energy absorbed by the
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canopy; ρa is the density of air; Cp is specific heat of air at constant pressure; γ is the wet
and dry table constants; Da is vapor pressure deficit of air; Ga is aerodynamic conductance;
Gc is canopy conductance; f is soil evaporation coefficient; As is the energy absorbed by
soil. The calculation of theses variables can be found in the work of reference [13].

Considering the effect of SM on Es, this paper parameterizes f according to the
following equation [16]:

f =
θ − θmin

θmax − θmin
(2)

in which θ is SM; θmax is the maximum SM for the study period; θmin is the minimum SM
for the study period. Overall, we used the PML model to calculate total daily ET and Es.
The output of Es was used in the simulation process of SM.

2.2. SM Change Model

This study focuses on coupling the surface SM based on remote sensing inversion
with f for the PML model. However, the model structure of PML does not stratify the
soil. Therefore, it is not appropriate to set f for soil layers of different depths. For the
convenience of calculation, the soil is divided into two parts, namely, the surface layer and
the subsurface layer. Among them, the depth of the surface soil was taken as 50 mm [17],
and the inversion of the Sentinel-2 images was used as the observation values of the surface
SM. The variation of SM in the topsoil layer can be described by the following equation [6]:

θ1
t = θ1

t−1 +
Q1

t − Q1,2
t − Es,t−1

D1 (3)

where θ1
t is the SM at the surface layer at the beginning of the tth day; Q1

t is the water flows
into the first layer; Q1,2

t is the water flow from the surface layer to the subsurface layer;
Es,t−1 is the Es at the beginning of (t − 1)th day; D1 is the depth of the surface soil layer.
The specific calculation methods for each parameter can be found in the work of Cui and
Jia [6]. Based on the SM change model, we obtained the daily SM data, which were called
by the PML model to update the calculation of f .

2.3. Data Assimilation Model

In order to improve the simulation accuracy of SM, this paper introduces the Ensemble
Kalman Filter (EnKF) algorithm to assimilate the process of SM change, which has been
widely used in the simulation of water cycle elements [18–21]. The EnKF includes two
steps: (1) forecast: all ensembles at moment t are brought into the SM change model, and
the predicted values of all state variables at moment t + 1 are obtained by propagating
forward the model; (2) update: if remote sensing observations are available at moment
t + 1, the observations are used to update the state for each ensemble.

In this paper, the coupled model of SM and PML is denoted as PML_SM. The model
forecast can be described as:

θ
f
i,t = PML_SM(θa

i,t−1) + ωi,t, ωi,t ∼ N(0, Qt) (4)

where θa
i,t−1 is the analyzed value of the state of the ith set at time t − 1; θ

f
i,t a is the predicted

value of the state at moment t; PML_SM is the coupled model; ωi,t is the model error,
which obeys a normal distribution with a mean of 0 and a variance of Qt.

The model update can be described as follows:

θa
i,t = θ

f
i,t + Kt

(
θo

rs,t − Htθ
f
i,t + vi,t

)
, vi,t ∼ N(0, Qt) (5)

where Kt is the gain matrix; θo
rs,t is the remote sensing-based SM observation at moment

t; Ht is the observation operator. The specific calculation methods for each variable can
be found in the work of reference [22]. In the PML_SM model, the EnKF assimilation
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algorithm is mainly used in the simulation of SM. The state of the SM change model is
corrected by assimilating the data on remote sensing monitoring days to improve the
accuracy of SM simulation.

2.4. Evaluation of the Assimilation Results

The performance of assimilation for estimating SM and ET were evaluated by com-
paring the outputs of the model against observations. Two statistics, namely the Pearson
correlation coefficient (r), and the root mean square error (RMSE), were used to evaluate
the simulated outputs. The indices can be calculated as follows:

r =
Cov(Esim, Eobs)

σEsim σEobs

(6)

RMSE =

√(
∑n

i=1(Esim,i − Eobs,i)
2
)

/n (7)

3. Study Area and Data
3.1. Study Area

The eddy covariance (EC) observation station used in this paper is located in the
Hetao irrigation district (Figure 2), which belongs to Bayannur City. The measurement
station is located in the irrigation area with sufficient heat and more than 3000 h of sunshine
throughout the year. The frost-free period in this area is 120–150 days, and the cropping
system is annual. The study area is located in an arid and semi-arid region, with annual
precipitation ranging from 130 to 250 mm and annual ET of 2000 to 2400 mm. The soil type
near the station is mainly sandy loam, and the main crops include cucurbit and corn.
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(b) Overview of the Wulanbuhe sub-irrigation district and the distribution of monitoring stations.

3.2. Gound Monitoring Data

Meteorological data were obtained from the TRM-ZS3 small weather station deployed
in the study area, including temperature, precipitation, humidity, wind speed, and other
elements. The monitoring frequency of meteorological elements was 15 min, and the aver-
age data for each day were obtained after statistics. Surface SM data were obtained from
automatic moisture stations deployed in the irrigation area, and the data were collected at
a frequency of 1 h. In this study, the monitoring results of the first layer were selected to
characterize the surface SM, and remote sensing inversions were performed accordingly.
The flux data were obtained from the SCIRGA open-circuit EC system observations de-
ployed in the irrigation area, and the data were collected at a frequency of 30 min. A test of
the energy balance showed that the energy closure of the observations was above 80% [23].
The check of the energy closure of the monitoring data at this site can be found in the work
of reference [24].
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3.3. Remote Sensing Data

ET calculations based on the PML model mainly use MODIS data for LAI (MCD15A2H)
and surface albedo (MCD43A3) (https://www.earthdata.nasa.gov/ (accessed on 7 January
2022)). The surface albedo was quality-controlled and interpolated to obtain daily scale
data. The Sentinel-2 images (https://dataspace.copernicus.eu/ (accessed on 26 November
2021)) were used to invert the surface SM. Since time-continuous SM monitoring is not
carried out at the location of the EC system, in this paper, the surface SM on the transit day
of the Sentinel-2 was obtained by constructing the relationship between the modified per-
pendicular drought index (MPDI) and the measured surface SM at the ground station [25].
Then, the simulated values of surface SM at the image where the EC system was located
were extracted as input data for coupling and assimilating with the PML model.

4. Results
4.1. Performance of the SM Model Driven by Remote Sensing Observations

The coupled model PML_SM and EnKF algorithm are integrated (denoted as
PML_SM_DA) to realize the time-continuous simulation of surface SM and ET at the
EC station. For the assimilation scheme, the process noise variance is taken as 0.005, and
the observation noise variance is taken as 0.03. Meanwhile, this paper utilizes the original
SM change model for the surface SM calculation (denoted as PML_SM_noDA) to analyze
the influence of the two schemes on the SM results. Considering the temporal completeness
of the observation data from the SM station, EC system, and meteorological station in the
irrigation area, the time period of the day of the year (DOY) for 2021, namely, from 199 to
275, was selected for simulation and assimilation. In the assimilation process, Es in the SM
change model was calculated by the original PML model. The SM at the new step was
called by PML and the f was updated according to Equation (2).

A comparison of the results of SM before and after assimilation is shown in Figure 3.
The comparison of the SM simulation process with rainfall shows that the surface SM
change model responds significantly to precipitation. For example, on dates with significant
rainfall such as days 206 and 258 in 2021, the SM increased significantly under both
scenarios. However, data assimilation further improved the simulation accuracy of surface
SM. The r of the simulated values of SM after assimilation to the observation values was
0.89, the RMSE was 0.02 cm3/cm3. Correspondingly, the r of the PML_SM_noDA scenario
was 0.06, the RMSE was 0.05 cm3/cm3. The results showed that the simulation process of
SM was closer to the remote sensing inversion values after data assimilation.
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4.2. ET Simulations Coupling with Different f

Figure 4 shows the ET estimates from the PML with a constant f , PML_SM_DA,
and the PML_SM_noDA models against the observed ET at the EC station. The overall
r and RSME of the PML_SM_DA are 0.90 and 0.98 mm/d, respectively (Figure 4a). The
PML_SM_DA scheme showed better accuracy than the PML_SM_noDA, which has r and
RMSE of 0.89 and 1.12 mm/d (Figure 4b). This is because, after data assimilation, the
assimilated values of SM are closer to the observed values. The SM becomes larger, the
higher f obtained based on the coupling method in this paper, and the higher the Es.
Therefore, although the r between simulated and observed values of ET does not change
significantly, the RMSE decreases by 0.14 mm/d. The PML model with a constant f showed
the worst performance with r 0.87 (Figure 4c). Although this scheme has a good RMSE, the
plots simulated and observed are more off the 1:1 line, especially on the dates with low ET.
Overall, the ET obtained by the PML_SM_DA scheme has the best accuracy among all the
three schemes.
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From the basic architecture of the PML model, it is clear that the calculation of each
component of ET is relatively independent. The coupling of SM and ET in this paper is
mainly used to improve the f and therefore mainly affects the results of Es calculations.
To ensure the accuracy of the simulation of ET on an annual scale, the optimal value of f
tends to be close to the upper bound of its physical meaning [26,27]. In this sense, if the f
is always large, the soil will always have a high evaporation capacity, and the simulation
results of ET will be biased high (Figure 4c). Es is obviously large for most of the growing
season (Figure 5) and correlated poorly with changes in SM, which is also inconsistent with
the physical mechanism of ET. Figure 4 suggests that dynamically coupling SM information
with the ET simulation process can improve the accuracy of ET simulation more than
assigning f a constant value. Further, the correction of the SM change process by data
assimilation can further reduce the uncertainty of the ET simulations while improving the
accuracy of SM. Overall, the PML_SM_DA model improved the total ET for the study area
compared to the PML_SM_noDA and PML model.
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4.3. Temporal Variability of ET Estimation

The seasonal variation of ET for the EC site is significant, as shown in Figure 6.
During the simulation and assimilation period of this paper, crops around the EC site were
dominated by corn and cucurbits. Cucurbits began to mature in late July, and in mid-to-late
September, both crops were gradually harvested. As a result, the ET around the EC station
showed a gradually decreasing trend during the study period. As can be seen in Figure 6,
the ET obtained from both scenarios (with or without SM assimilation) were both able to
portray the decreasing trend for ET.
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However, in general, the ET obtained from the simulation of both scenarios were lower
than the observed values, especially in August. As far as the observations are concerned,
the maximum value for August observations is 3.86 mm/d. However, the maximum
value for ET obtained by the PML_SM_DA scheme is 2.29 mm/d and the maximum value
obtained by the PML_SM_noDA scheme is 2.23 mm/d. The comparison of the simulations
of the two scenarios shows that the results of PML_SM_DA are generally larger than those
of PML_SM_noDA, and this phenomenon is more evident in the months from August to
September. Between August and September, the simulated results of PML_SM_DA were
on average 0.2 mm/d larger than those of the PML_SM_noDA scheme. The former scheme
was also closer to the observed values in terms of overall simulation accuracy.

5. Discussion
5.1. The Influence of SM Assimilation on Es

In this paper, we dynamically update the f of the PML model by coupling the results
of SM assimilation to achieve the optimized ET performance. Therefore, by assimilating
SM, the main objective is to optimize the Es component of the PML model. In order to
evaluate the effect of SM assimilation on Es, this paper simultaneously analyzed the scheme
of parameterizing f by using the simulation results of the PML_SM_noDA scheme. The
comparison of the calculated f under two schemes is shown in Figure 7. According to
the figure, it can be seen that under the PML_SM_noDA scheme, f has lower values on
more dates as the SM decays, whereas by assimilating the SM, the change of f under the
PML_SM_DA scheme is more consistent with the results of the remote sensing monitored
SM. Considering that f is used to represent the degree of wetness of the soil [28], the f
series obtained by assimilation scheme better reflect the physical meaning. It should be
noted that the f obtained here are not all within 1 [26] due to the parameterization scheme
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of f based on the maximum and minimum value of remote sensing monitored SM used in
this paper.
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Considering that the change in SM in the simulation framework of this paper mainly
affects the Es component of ET, this paper further analyzes the change in Es under different
simulation scenarios. Overall, Es obtained from both schemes increased with increasing SM.
However, Es under the PML_SM_DA scheme is higher than PML_SM_noDA, reflecting
the fact that the simulation of Es is enhanced with assimilation (Figure 8). At the same
time, changes in crop growth also have an impact on the amount and percentage of Es [24].
During the month of July, crop growth is dense and surface ET is dominated by crop
transpiration. The ratio of Es to total ET averaged 0.13 and 0.14 for the PML_SM_noDA and
PML_SM_DA schemes, respectively. However, from August to September, these indicators
changed to 0.37 and 0.49, respectively. This indicates that the ratio of Es gradually increases
as the crop reaches maturity. After data assimilation, the simulated values of SM were
closer to the observed values, and thus the proportion of Es became larger.
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5.2. Comparison with Other Studies in Hetao Irrigation District

Several approaches have been implemented to estimate ET in the Hetao district,
including the PML model [24], the SEBS model [29,30], the SEBAL model [31–33], and so on.
The correlation coefficient between ET and observations obtained under the PML_SM_DA
scheme in this paper is 0.9, which is generally better than or close to the previous studies.
For example, ref. [24] performed ET inversion only for satellite transit days with a r of
0.81, which was slightly lower than the accuracy of this paper. Reference [34] used the
SEBAL model to obtain a relative error of 14.6% for ET, and the RMSE was 0.53 mm/d,
which was slightly higher than the RMSE in this paper. However, the SEBAL model, as a
single-source model, can only simulate the total amount of ET and is unable to resolve the
various components of ET.

The features of this paper are more evident in the joint simulation of SM and ET.
Both the SEBAL and SEBS models mentioned above are based on energy balance for ET
inversion and lack dynamic interaction with SM in their calculations. The study in ref. [24]
considered the coupled simulation of remote sensing-based SM with the PML model, but it
could only be simulated for the satellite transit days because the model of SM change and
data assimilation were not introduced. Therefore, its simulation results were discontinuous
in time. The PML_SM_DA scheme constructed in this paper not only obtains high-precision
time-continuous SM and ET data but also strengthens the physical mechanism of the ET
simulation process through the joint simulation of the two water cycle elements.

5.3. Limitations of the Study

Because the structure of the PML model does not take into account the effect of
SM on ET, this paper only divides the soil layer into two layers when coupling vertical
changes in SM. In fact, SM changes in the root zone layer also can affect the process of crop
transpiration [35]. Due to data limitations, the interaction between root zone SM and Ec
was not considered for the time being in this paper when coupling SM for ET inversion.
Meanwhile, the resolution of MODIS used in this paper is coarser than that of remote
sensing monitoring, and this spatial heterogeneity limits the simulation accuracy of ET to
some extent [36].

In this paper, the coupled simulation and assimilation mechanism of the SM and
PML models are investigated by combining station monitoring data. The results show that
the coupled simulation and assimilation can further improve the accuracy and scientific
validity of the ET simulation. However, the method presented in this paper has only been
applied at the site scale. In the near future, we will further test the feasibility of the present
method on a regional scale in conjunction with remote sensing data.

6. Conclusions

By introducing land surface SM remote sensing inversion and assimilation into the
PML ET model, this research drove a coupled simulation of ET and SM in the Hetao
irrigation district for 2021. The comparison of EC sites and simulations showed that the SM
accuracy was improved with data assimilation (r = 0.89, RMSE = 0.02 cm3/cm3). Setting
dynamic f based on SM data showed further improvement in the simulation accuracy of
ET (r = 0.90, RMSE = 0.98 mm/d). This study may provide references for the coupled and
continuous estimation of the PML model and SM.

The effect of data assimilation of SM on Es also has a distinct seasonal character.
Assimilation of SM has little effect on the ratio of Es in the total ET during the peak crop
growing season, but this effect increased significantly after crop maturity. The analysis of
the assimilation response of ET to SM can help us to improve the understanding of the role
of the data assimilation technique in the coupled simulation of ET and SM.

Subsequent studies will further enhance the dynamic coupling between root zone
SM and Ec and further refine the SM movement model. On the other hand, more refined
remote sensing data will also be introduced into the research framework of this paper, and
the effectiveness of the present method will be further validated at a regional scale.
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