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Abstract: The COVID-19 pandemic precipitated a unique period of social isolation, presenting an
unprecedented opportunity to scrutinize the influence of human activities on urban air quality. This
study employs ARIMA models to explore the impact of COVID-19 isolation measures on the PM10

and PM2.5 concentrations in a high-altitude Latin American megacity (Bogota, Colombia). Three
isolation scenarios were examined: strict (5 months), sectorized (1 months), and flexible (2 months).
Our findings indicate that strict isolation measures exert a more pronounced effect on the short-
term simulated concentrations of PM10 and PM2.5 (PM10: −47.3%; PM2.5: −54%) compared to the
long-term effects (PM10: −29.4%; PM2.5: −28.3%). The ARIMA models suggest that strict isolation
measures tend to diminish the persistence of the PM10 and PM2.5 concentrations over time, both in
the short and long term. In the short term, strict isolation measures appear to augment the variation in
the PM10 and PM2.5 concentrations, with a more substantial increase observed for PM2.5. Conversely,
in the long term, these measures seem to reduce the variations in the PM concentrations, indicating a
more stable behavior that is less susceptible to abrupt peaks. The differences in the reduction in the
PM10 and PM2.5 concentrations between the strict and flexible isolation scenarios were 23.8% and
12.8%, respectively. This research provides valuable insights into the potential for strategic isolation
measures to improve the air quality in urban environments.

Keywords: ARIMA; COVID-19; particulate matter; lockdown; air quality

1. Introduction

Air pollution, a global concern requiring urgent attention, imposes a significant eco-
nomic strain on public health systems [1]. In 2019, it was responsible for an estimated
4.2 million premature deaths, with 38% due to ischemic heart disease, 20% to heart attacks,
and 43% to chronic obstructive pulmonary disease [2]. Particulate Matter (PM), a key
air pollutant, has a significant impact on public health. PM, comprising small-diameter
particles of inorganic and organic substances, originates from coal combustion, thermal
power plants, and industrial activities [3]. The severe effects of PM on the pulmonary
and cardiac systems persist even at low exposure levels, particularly for particles with
diameters ≤ 10 µm (PM10) and ≤2.5 µm (PM2.5) [4]. The smallest particles (PM2.5) evidence
the greatest problems, because they can penetrate deep into the lungs and even reach
the bloodstream. This phenomenon increases their toxicity, because they can cause or
worsen respiratory and cardiovascular problems [5]. This issue is exacerbated in low- and
middle-income countries, where a large segment of the population is exposed to PM. As a
result, there is a significant economic burden due to the increased mortality and morbidity
rates arising from cardiovascular and respiratory diseases [1]. The main sources of PM10
and PM2.5 in urban environments are primary combustion, such as vehicle emissions, coal
combustion, biomass burning, secondary aerosol formation, industrial emissions, and dust
sources [6].
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The COVID-19 pandemic precipitated an acute respiratory disease, prompting the
global implementation of social isolation measures to curb the spread of this novel bio-
logical agent [7]. These unprecedented social restrictions profoundly influenced global
economic dynamics, social interactions, and urban environments [4]. This period of so-
cial isolation provided a unique opportunity to study the impact of human activities
on urban air quality. The behavior of pollution emission sources underwent significant
changes during the pandemic. Mobile sources (e.g., vehicles) [8,9], stationary sources (e.g.,
factories) [10,11], and fugitive sources (e.g., construction sites) [12,13] all responded to
the isolation measures imposed by COVID-19. Consequently, the urban concentrations
of PM10 and PM2.5 exhibited notable reductions [14,15]. These reductions were attributed
to measures such as limiting vehicular traffic, restricting public transportation mobility,
and curbing non-essential industrial production [16]. However, not all cities experienced
uniform air quality changes. Some reported increases in the PM10 and PM2.5 concentra-
tions [17,18]. The factors contributing to these increases included heightened household
utility usage (e.g., natural gas and electricity) and the economic reactivation following the
isolation period [19]. For instance, during the strict lockdowns in Indian cities like Chennai,
New Delhi, and Kolkata, the PM10 and PM2.5 concentrations decreased by approximately
65% and 73%, respectively [20]. In contrast, Saudi Arabia witnessed PM concentration
increases, likely due to regional phenomena like sandstorms and urban dust resuspen-
sion [17]. In the megacity of Bogota, Colombia, strict isolation measures led to a substantial
reduction in PM10, NO2, and PM2.5 concentrations—approximately 39%, 63%, and 34%,
respectively [7]. While meteorological conditions also played a role, historical observations
during this period suggest that changes in human behavior were the primary drivers of the
improved air quality [7,21].

The fluctuations in the PM concentrations within our study megacity during the
COVID-19 isolation provide a unique lens through which to examine this air pollutant’s
behavior under conditions of reduced anthropogenic activity. This analysis holds particular
significance given PM’s central role in the megacity’s air quality monitoring and control
efforts [22]. PM’s relevance in our megacity stems from its frequent exceedances of the
permissible limit values for both PM10 and PM2.5. While these elevated concentrations are
often associated with human activities, they may also result from the unfavorable meteoro-
logical conditions that hinder atmospheric dispersion. Factors such as persistent thermal
inversions, reduced precipitation, and wind patterns conducive to the influx of external
pollutants all contribute to these exceedances [23,24]. Moreover, regional events—such as
biomass burning in nearby crops—can introduce external air pollutants [25]. Therefore,
our investigation sheds light on the dynamics of PM in a megacity during a unique period
of reduced human activity, emphasizing the need for comprehensive air quality manage-
ment strategies. While there is some literature on air quality changes during COVID-19,
few studies have focused on high-altitude urban environments where the atmospheric
dynamics can differ significantly.

During efforts to prevent and mitigate air pollution events, governmental entities
and research centers have increasingly turned to modeling techniques to generate early
warnings of air quality deterioration [26]. These models serve as valuable tools for air
pollution control and management [27]. Simulation models such as Weather Research
and Forecasting (WRF) or the WRF-CMAQ require a substantial amount of air quality
data and meteorological information to achieve accurate predictions [26,28]. To address
this need, researchers have explored the individual modeling of air pollutants using time
series analysis—a statistical approach based on continuous observations of a variable of
interest over a specific time interval [29,30]. Among the time series analysis techniques,
Autoregressive, Integrated, and Moving Average (ARIMA) models play a prominent
role. ARIMA models allow for the study of air pollutants individually and over time by
analyzing correlations within the data series itself [31]. The ARIMA model comprises
three key components: (1) an Autoregressive (AR) component, which accounts for the
regressors of the time series and reflects the model’s memory [32,33]; (2) an Integrated (I)
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component, which is associated with the number of differences needed to make the time
series stationary (i.e., independent of time) [33]; and (3) a Moving Average (MA) component,
which addresses random shocks and inherent variability within the time series [33]. The
ARIMA structure facilitates the simulation of parameter behavior in the presence of external
variables by capturing linear trends within the time series [34]. By leveraging these models,
researchers can enhance our understanding of air pollutant dynamics and contribute to
effective pollution management strategies.

The application of ARIMA models in analyzing urban PM concentrations has garnered
attention across several studies [35,36]. Notably, the optimal ARIMA simulations of the
PM concentrations were observed at an hourly timescale, during short time intervals, and
in the urban areas characterized by low pollutant persistence (where the autoregressive
[AR] term was less than 4) [26,37]. Sensitivity analyses revealed that the ARIMA mod-
els performed well when dealing with a PM concentration series exhibiting substantial
temporal variability [38]. This variability in the PM concentrations was closely linked
to unfavorable meteorological conditions for air pollutant dispersion [31] and regional
particle transport phenomena [39]. Megacities provided an ideal testing ground, where
persistent PM10 (with AR terms exceeding 8) and variable PM10 (with moving average
[MA] terms exceeding 8) were observed in the areas dominated by impervious surfaces [40].
Furthermore, the ARIMA models were pitted against other modeling approaches (such as
Long Short-Term Memory [LSTM], Random Forest Regression [RFR], and Support Vector
Regression [SVR]) to explore the concentration behavior of PM during the COVID-19 isola-
tion. The ARIMA models demonstrated a satisfactory performance within this context [41].
Moreover, the historical PM2.5 concentration series were compared with those observed
during the COVID-19 isolation. The latter exhibited higher persistence and variability,
underscoring the unique impact of pandemic-related behavioral changes on urban air
quality [4].

The objective of this work is to investigate by means of ARIMA models the effect
of COVID-19 isolation measurements on the PM10 and PM2.5 concentrations in Bogota,
Colombia—a megacity located at a high altitude. Leveraging the ARIMA models, we
explore the following three distinct scenarios for the PM concentrations: (1) the historical
series, examining pre-pandemic data; (2) pre-isolation, assessing the PM concentrations
before the initial isolation measures; and (3) during isolation, analyzing the impact of
various social isolation strategies (strict, sectorized, and flexible) implemented by the city
administration. Our study holds practical significance in the field of urban pollution for the
following reasons. (1) The Evaluation of ARIMA Models: We assess the utility of ARIMA
models in studying urban air quality interventions. These models allow us to dissect the
temporal dynamics of the PM concentrations. (2) A High-Altitude Context: Bogota’s unique
high-altitude conditions introduce additional complexities. We investigate how COVID-19
isolation influenced the PM levels in this challenging environment. (3) Temporal Structure
Analysis: By examining different types of social isolation measures, we gain insights into
the temporal behavior captured by our ARIMA models. Lastly, this research contributes to
our understanding of the pandemic-induced changes in air quality and informs effective
pollution management strategies.

2. Materials and Methods
2.1. Study Site Description

The megacity under investigation is situated in Colombia (South America,
4◦35′53′′ N–74◦4′33′′ W). Bogota, the capital of Colombia, is positioned at an average
elevation of 2640 masl and is recognized as one of the most densely populated megac-
ities in Latin America, with a density of 272 inhabitants/Ha. This density surpasses
the Latin American average by a factor of 2.5 [42]. Owing to its proximity to the equa-
tor, this megacity does not experience distinct seasons and maintains an average annual
temperature ranging between 14 and 15 ◦C. Its elevated location results in hourly tem-
perature fluctuations reaching up to 17.9 ◦C within a single day. The annual precipita-
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tion pattern reveals two periods of increased precipitation: March–May and September–
November [43]. For the purpose of air quality monitoring, four stations were selected
(RMCAB, http://rmcab.ambientebogota.gov.co/home/map (accessed on 1 February 2022).
These stations are identified as follows (Figure 1): Centro de Alto Rendimiento—CAR,
Kennedy—KEN, Las Ferias—LAF, and Tunal—TUN. The selection criteria for these stations
included comprehensive coverage of the megacity and data availability exceeding 90% for
the PM10 and PM2.5 concentrations. The characteristics of these monitoring stations are
detailed in Table 1.
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Figure 1. Location of monitoring stations in the megacity of study (Bogota, Colombia).

Table 1. Characteristics of selected air quality monitoring stations.

Characteristic
Monitoring Stations

CAR KEN LAF TUN

Coordinates
4◦39′30.48′′ N 4◦37′30.18′′ N 4◦41′26.52′′ N 4◦34′34.41′′ N

74◦5′2.28′′ W 74◦9′40.80′′ W 74◦4′56.94′′ W 74◦7′51.44′′ W

Atmospheric pollutants PM10, PM2.5 PM10, PM2.5 PM10, PM2.5 PM10, PM2.5

Meteorological variables VV, DV, T, Pr, HR VV, DV, T, Pr, RS, HR, Ps VV, DV, T, Pr, HR, Ps VV, DV, T, Pr, RS, HR

Altitude (masl) 2577 2580 2552 2589

Height of sampling (m) 4.6 7.0 4.6 3.0

Type of monitoring station Background Background Traffic Background

http://rmcab.ambientebogota.gov.co/home/map
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Table 1. Cont.

Characteristic
Monitoring Stations

CAR KEN LAF TUN

Mean annual relative humidity (%) 67.6 63.1 63.2 62.6

Mean annual precipitation (mm) 1148 797 1147 980

Mean annual temperature (◦C) 14.9 15.8 14.4 14.9

Mean annual wind speed (m/s) 1.21 2.15 1.87 1.36

Predominant annual wind direction (◦) 204 (SSW) 196 (S) 140 (SE) 175 (S)

Land use (%)

R: 54.9 R: 38.4 R: 53.1 R: 41.9

I: 4.40 I: 5.80 I: 7.10 I: 0.60

D: 3.80 D: 37.1 D: 10.0 D: 8.90

C: 9.60 C: 18.4 C: 5.20 C: 31.3

P: 8.30 P: 0.20 P: 2.80 P: 17.0

Land category (%) Urban: 100
Urban: 93.5 Urban: 95.8 Urban: 71.5

Urban sprawl: 6.55 Urban sprawl: 4.14 Protection: 28.5

Population density (Inhabitants/Ha) 123 268 227 183

Note: VV—wind speed, DV—wind direction, T—temperature, Pr—precipitation, RS—solar radiation,
Ps—atmospheric pressure, R—residential, I—industrial, D—residential and services, C—commercial, and
P—protection.

2.2. Data Collection

The time series data procured from the monitoring stations provided hourly infor-
mation on the PM10 and PM2.5 concentrations, relative humidity (%), precipitation (mm),
temperature (◦C), wind speed (m/s), and wind direction (◦). This study spanned a period of
five years, from 1 January 2017 to 31 December 2021, a timeline chosen in accordance with
the occurrence of the COVID-19 isolation episodes within the megacity. The method em-
ployed for the collection of PM10 and PM2.5 samples, aimed at determining the presence of
inorganic compounds in the air, adhered to the guidelines established by U.S. EPA/625/R-
96/010a [44]. Furthermore, the monitoring system was designed in compliance with the
guidelines set forth in CFR 40, Part 50, Appendices J and L, for the automatic measurement
of PM10 (Met One Bam 1020) and PM2.5 (Thermo Scientific FH62C14-DHS, MA, USA) [45].
The system utilized Beta Ray Attenuation as the principle of measurement.

2.3. Data Analysis

The analysis of the data was conducted in three phases. In the first phase, an ex-
ploratory analysis of the hourly time series of atmospheric pollutants and meteorological
parameters was carried out. Initially, the non-normal distribution (p-value > 0.050) of the
time series was examined using a Kolmogorov–Smirnov test [46]. The correlation between
the variables considered was also studied using Spearman’s coefficient [47]. These correla-
tions between PM10 and PM2.5 and the meteorological parameters allowed for the study of
the influence of meteorological conditions and anthropogenic activity due to COVID-19
isolation. Three scenarios of human activity were considered: (1) pre-isolation, (2) isolation,
and (3) historical. Descriptive statistics (mean, median, and standard deviation) were
calculated for the time series under study. The IBM SPSS Statistics V.25.0 software [48] was
used in this study. Lastly, wind roses, pollution roses, and polar roses were developed for
the PM10 and PM2.5 concentrations at each of the monitoring stations using the OpenAir
package of the R software [12,15].

In the second phase, the missing data in the time series of atmospheric pollutants
and meteorological parameters were filled in. It was previously confirmed that all the
time series had more than 75% of the data. The random nature of the missing data was
detected using the Visualization and Imputation of Missing Values (VIM) package of the R
4.2.1 software [49]. The missing data were filled in using the Multivariate Imputation by
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Chained Equations (MICE) and Nonparametric Missing Value Imputation using Random
Forest (MissForest) packages of the R 4.2.1 software [50]. The MICE package used various
methods (Predictive Mean, Bayesian Linear Regression, and Logistic Regression) to fill
in the missing data [51]. The MissForest package filled in the missing data by creating
random forests with the observed data, then iterated again until the minimum error was
obtained [52].

In the third phase, the ARIMA models were developed for the PM10 and PM2.5
concentrations. The timescales considered were as follows: daily (24 h moving average),
weekly (120 h moving average), and monthly (720 h moving average). The development
of the ARIMA models also considered three scenarios: (1) before the first isolation (E1),
(2) during the different types of isolation (E2.1 = strict, E2.2 = sectorized, and E2.3 = flexible),
and (3) the historical trend (E3) (Table 2). The development of the ARIMA models was
based on the methodology reported by Box and Jenkins [53]. This methodology considered
the following stages: identification, parameter estimation, assumption verification, and
model use [53]. From the temporal length of the isolation scenarios considered (less than
5 months), it was assumed in this study that the weekly timescale was the most appropriate.
The ARIMA modeling of the PM10 and PM2.5 concentrations was performed using IBM
SPSS Statistics V.25.0 software [54].

During the development of the ARIMA models, the PM concentration time series
underwent differencing and transformation (square root and logarithmic) according to their
time structure. This process was performed to obtain a stationary series (independence).
Subsequently, the model identification and parameter estimation were carried out, leading
to the determination of the p, d, and q orders of the ARIMA models. The previous stages
were carried out using the IBM SPSS Statistics V.25.0 Expert Modeler Tool [54]. Once the
p, d, and q terms were identified, compliance with the Ljung–Box statistic (p-value > 0.05)
was verified in the model obtained. Compliance with the Ljung–Box test indicated that
the residuals of the model were equal or close to zero and that its variance was constant,
becoming white noise, confirming the development of a model that adequately described
the observed variable [33,55]. If the Ljung–Box statistic was not met, the p, d, and q terms
of the initial model were modified until a suitable ARIMA model was obtained. Once
the ARIMA model was identified, estimated, and verified, the goodness of fit coefficients
(RMSE: root mean square error, MAE: mean percentage error, MAPE: maximum mean
percentage error, and R2) were reviewed, with emphasis placed on the Bayesian Information
Criterion (BIC) [54]. This last statistic allowed the selection of the model with the highest
goodness of fit using the fewest possible terms [56]. All statistics were estimated with a
confidence level of 95%.

Table 2. ARIMA analysis scenarios for COVID-19 isolation.

Scenario Start Date End Date Characteristics

Pre-isolation
E1 1 January 2020 25 March 2020 Without any type of isolation. Usual behavior of

anthropic activities.

Isolation
E2

Strict
E2.1 25 March 2020 27 August 2020

Controlled outflow for primary activities (health,
services, and supply). 41% reduction in population

mobility [57]. 85–90% reduction in vehicular transport.
Staggered reduction in isolation (12 June 2023). 65–70%

reduction in vehicular transport [58].

Sectorized
E2.2 5 January 2021 2 February 2020

Weekly isolation by sector in the city. 63.3% of work
activity was remote. Access to closed spaces, stores, and

public areas continued to be restricted [59].

Flexible
E2.3 10 April 2020 7 June 2020

Reactivation of the economic sectors of manufacturing,
construction, restaurants, and educational centers.

Control of maximum capacity in transportation, public
places, and commercial establishments. By the end of

the scenario, general isolation was repealed [60].
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Table 2. Cont.

Scenario Start Date End Date Characteristics

Historical
E3

Strict
E3.1 25 March 2017–2019 27 August 2017–2019

Historical concentrations of atmospheric pollutants
for the same periods (without COVID-19). Three

previous years according to other authors’
considerations [14,61,62].

Sectorized
E3.2 5 January 2017–2019 2 February 2017–2019

Flexible
E3.3 10 April 2017–2019 7 June 2017–2019

Following the development of the ARIMA models, the time series simulated under
scenarios E1, E2, and E3 were examined. With this information on the PM10 and PM2.5
concentrations, the following analyses were performed: (1) A non-parametric comparison
(a Mann–Whitney U test) [63] was conducted on the simulated time series for scenarios
E2 and E3 (E2.1–E3.1, E2.2–E3.2, and E2.3–E3.3). This allowed for an evaluation of similar
behavior between the time series of the isolation period (with COVID-19) and the historical
period (without COVID-19). (2) The percentage changes were calculated for the simulated
weekly concentrations in the short and long term. The short-term percent changes were
obtained by comparing the weekly PM10 and PM2.5 concentrations between scenarios E1
(pre-isolation) and E2 (isolation): E1–E2.1, E1–E2.2, and E1–E2.3. The long-term percent
change was obtained by comparing the weekly PM10 and PM2.5 concentrations between
scenarios E2 (isolation) and E3 (historical): E2.1–E3.1, E2.2–E3.2, and E2.3–E3.3. The aim
was to quantify the change in the trends of the PM10 and PM2.5 concentrations during the
isolation scenarios [64]. (3) The behavior of the p, d, and q terms and the goodness of fit
statistics (BIC, RMSE, MAPE, and R2) of the ARIMA models developed for both the short
and long term were analyzed. With this, the occurrence of changes in the ARIMA temporal
structure of the weekly PM10 and PM2.5 concentrations during the COVID-19 isolation was
evaluated. This was done in relation to the other established analysis scenarios.

3. Results and Discussion
3.1. PM Concentrations

The results showed that the lowest PM concentrations at the monitoring stations were
observed during scenario E2.1 (strict isolation): CAR/PM10 = 15.7 µg/m3,
KEN/PM10 = 33.9 µg/m3, LAF/PM10 = 17.0 µg/m3, TUN/PM10 = 25.9 µg/m3,
CAR/PM2.5 = 9.38 µg/m3, KEN/PM2.5 = 16.9 µg/m3, LAF/PM2.5 = 9.40 µg/m3, and
TUN/PM2.5 =10.3 µg/m3 (Figure 2). This trend was possibly associated with the strict
isolation measures and temporary closure of non-primary economic activities observed
during this scenario. However, sudden increases in the PM concentrations were observed
between the months of March–April and June–July 2020, which were probably associated
with regional PM transport events (e.g., forest biomass burning) [25]. The above trend was
more evident in PM10 compared to PM2.5. During the E2.3 flexible isolation scenario, a
decrease in the PM concentrations was also observed, although this decrease was smaller
compared to the E2.1 scenario (PM10 = 6.92%; PM2.5 = 5.79%). This lower reduction in the
PM concentrations was possibly associated with the controlled reactivation of the economic
sectors of manufacturing, construction, restaurants, and educational centers, due to flexible
isolation (Table 2) [59].

The findings showed that the highest concentrations of PM at the monitoring sta-
tions were observed during the E1 scenario (pre-isolation): CAR/PM10 = 31.3 µg/m3,
KEN/PM10 = 47.8 µg/m3, LAF/PM10 = 36.8 µg/m3, TUN/PM10 = 49.9 µg/m3,
CAR/PM2.5 = 20.6 µg/m3, KEN/PM2.5 = 29.6 µg/m3, LAF/PM2.5 = 22.9 µg/m3, and
TUN/PM2.5 = 22.1 µg/m3 (Figure 2). During the E2.2 scenario of sectorized isolation, the
PM concentrations also tended to increase, although this increase was smaller compared
to the E1 scenario (PM10 = 23.9%; PM2.5 = 45.3%). The E2.2 scenario showed a different
behavior in relation to the other isolation scenarios (E2), as increases in the PM concen-
trations were observed (Table 2). This trend was similar to that observed during the E3.2



Atmosphere 2024, 15, 683 8 of 21

scenario of historical behavior, although the increases in the PM concentrations were lower
(PM10 = 21.3%; PM2.5 = 23.0%). The results suggested that this trend was related to the
period of occurrence of these two scenarios (E2.2 and E3.2). That is, the two scenarios devel-
oped during the first three months of each year, a period of time in which it was common
to detect episodes of regional PM transport (e.g., forest fires and Saharan dust) and meteo-
rological conditions where there was a decrease in precipitation and wind speed [23,25].
These meteorological conditions probably did not favor the dispersion of pollutants, which
facilitated the formation and accumulation of PM in the urban atmosphere. This behavior
has also been reported in cities under similar meteorological conditions [65].
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The findings showed strong positive correlations between the PM10 and PM2.5 con-
centrations (Spearman rs between 0.71 and 0.89) at all the monitoring stations during the
E3 scenario (historical scenario). This trend suggested a similar historical behavior in the
formation and transport of PM10 (the coarse fraction) and PM2.5 (the fine fraction), which
has also been reported in other studies [66]. However, during the isolation scenarios (E2), a
decrease in the Spearman correlation coefficients (rs between 0.50 and 0.76) was evidenced.
The previous trend suggested a change in the activity of PM10 and PM2.5 pollution sources
during the isolation scenarios. On average, there was a 20% decrease in the magnitude
of the Spearman correlation coefficients during the isolation scenarios (E2). This decrease
in the correlation between the PM10 and PM2.5 concentrations was possibly associated
with the intervention of external factors during the formation and transport of PM. There
were studies that associated this trend with the following external factors: (1) differential
meteorological conditions that increased the concentrations of a specific PM fraction [48,67];
(2) regional PM transport events, which increased PM concentrations [68,69]; and
(3) changes in the baseline level of atmospheric emissions [11,70]. Therefore, the results
suggested that the possible changes in the PM concentrations during the isolation scenarios
(E2) could not be attributed exclusively to the implemented restrictions (Table 2).
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3.2. Meteorological Analysis

The results showed that the lowest relative humidity occurred during the E2.2 scenario
of sectorized isolation (CAR = 64.7%, KEN = 59.9%, LAF = 60.2%, and
TUN = 57.8%). This scenario also showed the least precipitation (CAR = 15.1 mm,
KEN = 20.5 mm, LAF = 10.3 mm, and TUN = 9.20 mm). The E2.2 scenario of sector-
ized isolation showed a different behavior in the PM concentrations compared to the other
isolation scenarios (E2). That is, an increase in the PM concentrations was observed, pos-
sibly associated with the decrease in precipitation and relative humidity, which probably
led to less favorable conditions for the vertical dispersion of this air pollutant, similar
conditions to those reported in Milan (Italy) [60] and Sao Paulo (Brazil) [64] during the
COVID-19 isolation. This trend was also similar to that observed during the E3.2 scenario
of historical behavior, although the increases in the PM concentrations were lower in the
E2.2 scenario (PM10 = 21.3%; PM2.5 = 23.0%). On the other hand, the findings showed
that the highest relative humidity occurred during the E2.1 (CAR = 67.2%, KEN = 63.0%,
LAF = 62.6%, and TUN = 62.7%) and E2.3 (CAR = 67.6%, KEN = 63.9%, LAF = 64.3%,
and TUN = 63.9%) scenarios of strict and flexible isolation, respectively. These two scenarios
were also the ones that showed the highest precipitation (351/233 mm,
983/370 mm, 202/293 mm, and 376/264 mm, respectively). The results suggested that
during the E2.1 scenarios of strict isolation and E2.3 of flexible isolation, the decrease in
the PM concentrations were, in part, influenced by the observed meteorological conditions,
which favored the washing of the pollutants in the atmosphere [17]. However, the effect on
the PM concentrations of the restrictions established during these two isolation scenarios
(Table 2) should not be forgotten.

On average, the findings showed that wind speeds tended to be slightly higher (4.74%)
during the isolation scenarios (E2) compared to the historical scenarios (E3). However,
a Mann–Whitney U test allowed the visualization of the non-existence of significant dif-
ferences (p-value > 0.050) in the wind speed between these two scenarios. In relation to
the wind direction, the results showed a predominance from the SE at all study stations.
Nevertheless, as there were isolation scenarios less than five months, the predominant
wind direction tended to change during these periods (SSE, SSW, S, and NE). The findings
showed that during the scenario of the lower concentrations of PM10 and PM2.5 (E2.1—strict
isolation) the predominant wind direction at the monitoring stations was between SSE
and SE. During the E2.3 scenario (flexible isolation), a decrease in the PM concentrations
was also observed, as was a predominance in the wind direction between SSE and E. In
general, the results suggested that during the scenarios of lower PM concentrations (E2.1
and E2.3) the wind tended to come from the east. In contrast, during the scenario of higher
PM concentrations (E1—pre-isolation) the predominant wind direction at the monitoring
stations tended to be between WNW and SW. During the E2.2 scenario, the PM concentra-
tions tended to increase. Under this scenario, the predominant wind direction tended to be
between SSW and WNW. This trend was similar to that observed during the E3.2 scenario
of historical behavior, in which an increase in the PM concentrations was evidenced. In
general, the findings suggested that during the scenarios of increasing PM concentrations
(E1, E2.2, and E3.2) the wind tended to come from the west. This trend was more evident
for PM2.5 than for PM10 (Figure 3). Lastly, the results suggested that the E2.2 scenario of
sectorized isolation (where there was an increase in the PM concentration) could have
been influenced by the regional transport of PM (with the forest biomass burning). Other
authors have also reported scenarios where urban PM concentrations were influenced by
adverse weather conditions that caused the dispersion of air pollutants [67,70].

The results showed that the meteorological variable that best correlated with the PM10
(rs ≤ 0.32) and PM2.5 (rs ≤ 0.32) concentrations during the historical scenario (E3) was wind
direction. Significant positive correlations from weak to medium (rs for PM10 up to 0.32
and rs for PM2.5 up to 0.32) were observed with this variable. However, during the isolation
scenarios (E2), these correlations tended to increase. This increase in correlations was
greater for PM2.5 compared to PM10. Significant positive correlations for PM10 and PM2.5
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up to 0.40 and 0.52 (around medium), respectively, were evidenced. The results suggested
that during the isolation scenario (E2) there was possibly an external contribution of PM
(due to regional transport) in the megacity under study, especially for the concentrations
in the southwest (KEN) and south (TUN) of the megacity. From the observed increase
in the correlations, the external contribution of PM2.5 was possibly greater compared to
the contribution of PM10. Borhani et al. [66] reported a similar scenario in Tehran (Iran),
where during the isolation, regional transport contributed increases in suspended particles,
especially for PM2.5, which came from industrial and stationary emission sources. The
findings also suggested that the increase in the PM concentrations during the E2.2 scenario
(sectorized isolation) compared to the other isolation scenarios (E2.1 and E2.3) could be
related to the episodes of regional PM transport and increases in the PM emission levels in
the sectors of the megacity that had no restrictions (Table 2). Lastly, this study showed very
weak or non-significant correlations of the PM concentrations with precipitation, relative
humidity, wind speed, and temperature during the isolation scenarios considered.
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3.3. Short- and Long-Term Analysis

ARIMA models were developed for each of the considered scenarios (E1, E2, and E3).
The models were developed under a weekly timeframe (168 h moving average; Table 3).
The results, based on a Kolmogorov–Smirnov test, showed that all the variables exhibited a
non-normal distribution (p-value < 0.05).

Table 3. ARIMA models developed for PM10 and PM2.5 concentrations during the scenarios considered.

Station AR (p) I (d) MA (q) Transformation R2 MAE RMSE MAPE Q’ p-Value DF BIC

E1

CAR
PM10 6 1 2 Square root 0.999 0.043 0.057 0.151 18.099 0.053 10 −5.689

PM2.5 11 2 1 None 0.999 0.039 0.055 0.219 11.461 0.075 6 −5.762

KEN
PM10 2 2 1 None 0.999 0.056 0.079 0.121 20.683 0.147 15 −5.060

PM2.5 2 1 1 None 0.999 0.059 0.078 0.213 11.037 0.750 15 −5.086

LAF
PM10 3 2 7 None 0.999 0.069 0.099 0.193 14.380 0.072 8 −4.584

PM2.5 0 2 7 Square root 0.999 0.055 0.073 0.271 17.432 0.096 11 −5.207

TUN
PM10 2 1 1 None 0.999 0.095 0.132 0.199 16.991 0.319 15 −4.027

PM2.5 2 1 1 None 0.999 0.046 0.067 0.244 19.117 0.208 15 −5.381

E2.1

CAR
PM10 1 1 3 Natural logarithm 0.999 0.028 0.040 0.199 21.192 0.097 14 −6.440

PM2.5 1 1 8 Natural logarithm 0.999 0.026 0.038 0.347 14.635 0.101 9 −6.525

KEN
PM10 1 2 3 Natural logarithm 0.999 0.042 0.056 0.130 16.815 0.266 14 −5.764

PM2.5 0 2 6 None 0.999 0.046 0.059 0.296 7.864 0.796 12 −5.628

LAF
PM10 1 2 4 Natural logarithm 0.999 0.030 0.044 0.197 10.617 0.643 13 −6.243

PM2.5 0 2 6 None 0.999 0.024 0.034 0.316 12.118 0.436 12 −6.746

TUN
PM10 1 1 5 Square root 0.999 0.064 0.092 0.267 17.624 0.128 12 −4.755

PM2.5 0 2 12 None 0.999 0.033 0.046 0.385 4.195 0.650 6 −6.107

E3.1

CAR
PM10 2 1 1 None 0.999 0.040 0.053 0.183 17.074 0.314 15 −5.869

PM2.5 1 2 13 Square root 0.999 0.024 0.032 0.225 1.909 0.752 4 −6.854

KEN
PM10 7 1 1 Natural logarithm 0.999 0.046 0.062 0.106 14.788 0.140 10 −5.533

PM2.5 1 1 13 Natural logarithm 0.999 0.032 0.042 0.146 6.420 0.170 4 −6.318

LAF
PM10 1 1 12 None 0.999 0.043 0.058 0.172 9.572 0.088 5 −5.664

PM2.5 0 2 15 None 0.999 0.027 0.036 0.257 1.841 0.606 3 −6.598

TUN
PM10 4 1 1 Natural logarithm 0.999 0.052 0.070 0.168 16.950 0.202 13 −5.293

PM2.5 1 1 5 Natural logarithm 0.999 0.035 0.047 0.233 12.616 0.398 12 −6.115

E2.2

CAR
PM10 0 2 9 Natural logarithm 0.999 0.061 0.083 0.237 10.085 0.344 9 −4.844

PM2.5 1 2 1 None 0.999 0.033 0.046 0.254 24.188 0.085 16 −6.108

KEN
PM10 0 2 1 None 0.999 0.054 0.075 0.118 25.517 0.084 17 −5.172

PM2.5 0 2 3 None 0.999 0.056 0.073 0.258 12.180 0.665 15 −5.192

LAF
PM10 1 2 4 Natural logarithm 0.999 0.054 0.075 0.216 17.942 0.160 13 −5.112

PM2.5 0 2 7 Natural logarithm 0.999 0.047 0.061 0.297 18.559 0.069 11 −5.485

TUN
PM10 4 2 1 Natural logarithm 0.999 0.087 0.125 0.229 6.561 0.087 3 −3.959

PM2.5 1 1 1 None 0.999 0.043 0.060 0.316 10.774 0.823 16 −5.596

E3.2

CAR
PM10 1 2 1 Square root 0.999 0.040 0.054 0.129 7.891 0.952 16 −5.790

PM2.5 0 2 2 None 0.999 0.026 0.035 0.157 25.930 0.055 16 −6.676

KEN
PM10 1 1 0 Natural logarithm 0.999 0.053 0.071 0.108 14.318 0.644 17 −5.261

PM2.5 2 1 1 Natural logarithm 0.999 0.035 0.046 0.141 10.817 0.765 15 −6.094

LAF
PM10 0 2 6 Natural logarithm 0.999 0.052 0.069 0.144 20.223 0.063 12 −5.247

PM2.5 1 1 8 Natural logarithm 0.999 0.030 0.038 0.186 14.734 0.098 9 −6.403
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Table 3. Cont.

Station AR (p) I (d) MA (q) Transformation R2 MAE RMSE MAPE Q’ p-Value DF BIC

E3.2

TUN
PM10 1 1 0 None 0.998 0.058 0.077 0.148 24.639 0.103 17 −5.116

PM2.5 1 1 7 Natural logarithm 0.999 0.038 0.052 0.184 8.940 0.538 10 −5.809

E2.3

CAR
PM10 1 2 4 None 0.999 0.050 0.074 0.300 20.424 0.085 13 −5.179

PM2.5 1 1 2 Square root 0.999 0.028 0.039 0.303 18.976 0.215 15 −6.487

KEN
PM10 0 2 14 Square root 0.999 0.053 0.073 0.142 8.073 0.089 4 −5.136

PM2.5 1 2 1 None 0.999 0.052 0.068 0.316 12.971 0.675 16 −5.369

LAF
PM10 8 2 8 Natural logarithm 0.999 0.037 0.054 0.216 5.448 0.066 2 −5.741

PM2.5 2 2 2 None 0.999 0.028 0.039 0.394 13.060 0.522 14 −6.440

TUN
PM10 1 1 12 Natural logarithm 0.999 0.075 0.107 0.303 5.307 0.380 5 −4.394

PM2.5 1 1 15 Square root 0.999 0.034 0.049 0.450 2.709 0.258 2 −5.921

E3.3

CAR
PM10 1 1 4 None 0.999 0.044 0.057 0.172 15.500 0.277 13 −5.694

PM2.5 2 1 1 None 0.999 0.028 0.035 0.207 18.587 0.233 15 −6.656

KEN
PM10 1 1 1 None 0.999 0.051 0.067 0.110 19.092 0.264 16 −5.375

PM2.5 1 1 7 Natural logarithm 0.999 0.035 0.046 0.150 8.840 0.547 10 −6.114

LAF
PM10 1 1 12 None 0.999 0.046 0.061 0.159 5.433 0.365 5 −5.514

PM2.5 2 1 7 None 0.999 0.030 0.039 0.227 16.431 0.058 9 −6.441

TUN
PM10 1 1 11 Natural logarithm 0.999 0.057 0.074 0.164 7.041 0.317 6 −5.128

PM2.5 1 1 8 Natural logarithm 0.999 0.038 0.050 0.219 8.781 0.458 9 −5.921

Note: AR—autoregressive, I—integrated, MA—moving average, RMSE—root mean square error, MAE—mean
percentage error, MAPE—maximum mean percentage error, R2—determination coefficient, Q’—Ljung–Box
statistic, p-value—p-value, DF—degrees of freedom, and BIC—Bayesian Information Criterion.

The results showed that, during scenario 2.1 of strict isolation, the greatest short-
term reduction (compared to E1) was observed in the simulated concentrations of PM10
and PM2.5. On average, the short-term reductions in the PM10 and PM2.5 concentrations
for the LAF, CAR, TUN, and KEN stations were as follows: 55.7/60.6%, 51.9/56.5%,
49.9/54.8%, and 31.6/44.1%, respectively (Figure 4). In relation to the long-term trend
(compared to E3.1), the findings showed a smaller reduction in the simulated concentrations
of PM10 and PM2.5 during scenario E2.1. On average, the long-term reductions in the PM10
and PM2.5 concentrations for the CAR, LAF, KEN, and TUN stations were as follows:
34.2/24.7%, 37.3/25.3%, 24.4/25.2%, and 21.7/37.9%, respectively. The findings confirmed
that there was a short- and long-term reduction in the PM concentrations during scenario
E2.1 of strict isolation. Indeed, this trend was primarily related to the strict isolation
measures implemented due to COVID-19. A Mann–Whitney U test indicated the existence
of significant differences (p-value > 0.050) between the simulated PM concentrations for
scenarios E2.1 and E3.1. This behavior possibly confirmed the incidence of the implemented
strict isolation measures. However, the influence of factors such as the regional transport of
PM from hotspots and the emissions from industrial activities external to the megacity was
not ruled out [14,71].

The findings showed that the greatest short-term reductions in the simulated PM
concentrations during the E2.1 scenario of strict isolation tended to occur for PM2.5 com-
pared to PM10. On average, the short-term reductions (compared to E1) in the PM2.5
and PM10 concentrations during the E2.1 scenario were as follows (significant differences,
p-value < 0.050): 54/47.3%, respectively (Figure 4). Indeed, this short-term trend in the
PM2.5 concentrations was possibly related to the established strict isolation restrictions. In
other words, the strict isolation measures had a greater short-term effect on PM2.5 compared
to PM10. In the long term (compared to E3.1), the reduction in the PM2.5 and PM10 concen-
trations was similar (no significant differences, p-value = 0.235): 28.3/29.4%, respectively.
The results suggested that this long-term trend was possibly more associated with those
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regional PM transport processes that typically occurred during the months of March–April
and June–July [21]. These regional transport processes possibly tended to increase the PM2.5
concentrations, which made the decrease in the PM2.5 and PM10 concentrations similar.
Short-term measures were important for assessing immediate exposure and health risks,
while long-term measures were essential for understanding trends and the cumulative
effects of air pollution over time [64].
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In the E2.2 scenario of sectorized isolation, the results revealed a short-term re-
duction (compared to E1) in the simulated PM concentrations (significant differences,
p-value < 0.050). The reduction in the PM10 and PM2.5 concentrations for the LAF, TUN,
and CAR stations were as follows: 29.4/28.0%, 19.3/32.6%, and 13.3/28.5%, respectively.
On the other hand, the KEN station did not show a short-term reduction (no significant
difference, p-value = 0.670) in the PM10 concentrations (0.01%), although it did experience
a reduction in the PM2.5 concentrations (21.8%). In general, in the long term (compared to
E3.2), the PM10 concentrations also tended to decrease during the E2.2 scenario of sector-
ized isolation (significant differences, p-value < 0.050). The decrease in the concentrations
for the LAF, CAR, and KEN stations were as follows: 27.6%, 13.8%, and 3.11%, respectively.
At the TUN station, no reduction was observed (no significant difference, p-value = 0.753)
in the PM10 concentration; that is, a slight increase of 1.50% in the PM10 concentration was
evidenced. In relation to the PM2.5 concentrations, the results showed reductions of 29.4%,
14.9%, and 9.79% in the concentrations for the TUN, CAR, and KEN stations, respectively.
At the LAF station, no reduction was observed (no significant difference, p-value = 0.510)
in the PM2.5 concentration; that is, a slight increase of 0.55% was evidenced.

Therefore, the results revealed that the greatest short-term reductions (compared to E1)
in the simulated PM concentrations during the E2.2 scenario of sectorized isolation tended
to occur for PM2.5 rather than PM10. On average, the short-term reductions in the PM2.5
and PM10 concentrations during the E2.2 scenario were as follows: 29.7/20.7%, respectively
(Figure 4). However, at the KEN station, no significant short-term reduction was observed
in the PM10 concentrations, but for the PM2.5 concentrations this reduction was significant
during the E2.2 scenario of sectorized isolation. In the long term (compared to E3.2), the
reduction in the PM2.5 and PM10 concentrations were as follows: 18.0/14.8%, respectively.
However, at the TUN and LAF stations, no reductions were observed in the PM10 and PM2.5
concentrations. These short- and long-term trends in the reduction in the concentrations
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during the E2.2 scenario were possibly related to the established sectorized isolation
measures (Table 2). In other words, under this scenario of sectorized isolation, the short-
and long-term reductions in the PM2.5 (45/36.4%) and PM10 (56.2/49.7%) concentrations
were smaller compared to the E2.1 scenario of strict isolation.

Additionally, it was observed during the E2.2 scenario of sectorized isolation that in
the central (CAR), western (LAF), and southern (TUN) zones of the megacity, reductions
in the PM concentrations occurred both in the short and long term. In the southwestern
zone (KEN), the smallest reductions in the PM concentrations were observed. Thus, the
results suggested that in the center, west, and south of the megacity, the restrictions due to
sectorized isolation had a greater effect compared to the southwestern zone. This spatial
trend was possibly related to the influence of the sectorized isolation measures and land
use [40,72]. Moreover, during this scenario, climatic conditions possibly also influenced
the smaller reduction in the PM concentrations. That is, a higher occurrence of low wind
speeds (<1m/s), a decrease in precipitation, the development of thermal inversions, and
the regional transport of PM were reported [7,73,74].

In the E2.3 flexible isolation scenario, the results evidenced a short-term reduction
(compared to E1) in the simulated PM concentrations (significant differences,
p-value < 0.050). The average reduction in the PM10 and PM2.5 concentrations for the
LAF, TUN, CAR, and KEN stations were as follows: 50.9/62.2%, 48.6/60.3%, 42.9/50.6%,
and 21.5/40.8%, respectively. In the long term (compared to E3.3), the findings also showed
a reduction in the simulated PM10 and PM2.5 concentrations during the E2.3 scenario. On
average, the reductions in the PM10 and PM2.5 concentrations for the TUN, LAF, CAR,
and KEN stations were as follows: 26.4/51.4%, 38.3/36.8%, 31.6/26.6%, and 18.4/25.7%,
respectively. The findings suggested that there was a short- and long-term reduction in
the PM concentrations during the E2.3 flexible isolation scenario. A Mann–Whitney U test
suggested the existence of significant differences (p-value > 0.050) between the simulated
PM concentrations for the E2.3 and E3.3 scenarios. Indeed, this trend was mainly related
to the flexible isolation measures implemented as a result of COVID-19. For example,
it was reported that 63.3% of the population worked remotely [60]. However, meteorol-
ogy possibly also influenced the reduction in the PM concentrations during this flexible
isolation scenario.

The results revealed that the greatest short-term reductions (compared to E1) in the
simulated PM concentrations during the E2.3 flexible isolation scenario tended to occur
for PM2.5 compared to PM10. On average, the short-term reductions in the PM2.5 and
PM10 concentrations during the E2.3 flexible isolation scenario were as follows: 53.5/41%,
respectively (Figure 3). In the long term (compared to E3.3), the reduction in the PM2.5
and PM10 concentrations were as follows: 35.1/28.7%, respectively. Indeed, these short-
and long-term trends in the reduction in the concentrations during the E2.3 scenario were
possibly related to the established flexible isolation measures (Table 2), the observed climatic
conditions, and the regional contribution of PM. Under this flexible isolation scenario, the
short- and long-term reductions in the PM2.5 (1.01 times lower and 1.24 times higher)
and PM10 (1.15 times lower and 1.02 times lower) concentrations were similar or greater
comparatively with the E2.1 strict isolation scenario.

3.4. ARIMA Models

The analysis scenarios considered were comparatively evaluated based on variations
in the autoregressive (AR), difference (I), and moving averages (MA) terms of the developed
ARIMA models.

In relation to the E2.1 strict isolation scenario, the results showed AR = 1 in the ARIMA
models developed for the PM10 concentrations. In the short term (E1), the findings showed
AR terms between 2 and 6 for the PM10 concentrations (Table 3). The results suggested that,
in the short term, strict isolation measures tended to decrease the magnitude of the AR
term (phenomenon memory). In other words, strict isolation measures tended to reduce the
persistence over time of the PM10 concentrations. Persistence in an ARIMA model refers
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to the model’s ability to capture and predict the temporal relationship between the past
and present values of a time series [31]. High persistence could indicate a time series with
a trend or pattern that persisted over time, while low persistence could indicate a more
volatile time series or with more abrupt changes [75]. In relation to the PM2.5 concentrations,
the results showed AR terms between 0 and 1 during the E2.1 strict isolation scenario. In
the short term, the AR terms varied between 0 and 11. The results suggested that, in
the short term, strict isolation measures tended to reduce the persistence over time of
the PM2.5 concentrations. Thus, it was suggested that, in the short term, strict isolation
measures generated a greater reduction in the persistence of PM2.5 compared to PM10. This
lower persistence in the finer fraction (PM2.5) possibly decreased the toxic effects of PM on
human health.

Additionally, in the long term, the results showed AR terms between 1 and 7 in the
ARIMA models developed for the PM10 concentrations (Table 3). The results suggested
that, in the long term, strict isolation measures tended to reduce the persistence over time
of the PM10 concentrations. In relation to the PM2.5 concentrations, in the long term, the
findings showed that the AR terms varied between 0 and 1. Thus, it was suggested that,
in the long term, the strict isolation measures implemented possibly did not significantly
change the persistence over time of the PM2.5 concentrations. The long-term persistence
of the PM2.5 concentrations could have been influenced by the following complex factors:
regional PM transport patterns and meteorological conditions [76].

The results showed that during the E2.1 strict isolation scenario, the I term in the
ARIMA models varied between 1 and 2 for the PM10 and PM2.5 concentrations, respectively.
In the short term (E1), a similar trend was observed for the PM10 and PM2.5 concentrations
(Table 3). The results suggested that the strict isolation measures implemented did not
comparatively change the decreasing trend in the PM10 and PM2.5 concentrations observed
in the short term (Figure 2). In the long term (E3.1), the ARIMA models showed I terms
= 1 and between 1 and 2 for the PM10 and PM2.5 concentrations, respectively. The results
suggested that, in the long term, the strict isolation measures implemented probably had a
greater effect on the PM10 concentrations compared to the PM2.5 concentrations. Namely,
during the strict isolation scenario, a greater decreasing trend was suggested for the PM10
concentrations compared to the PM2.5 concentrations.

In relation to the MA term of the ARIMA models developed during the E2.1 strict
isolation scenario, the findings evidenced a variation in its magnitude between 3 and 5
and between 6 and 12 for the PM10 and PM2.5 concentrations, respectively (Table 3). In the
short term (E1), a variation in the MA term was observed between 1 and 7 for the PM10
and PM2.5 concentrations, respectively. In general, the results suggested that, in the short
term, strict isolation measures tended to increase the variations in the PM10 and PM2.5
concentrations. This increase in the variation of the concentrations was greater for PM2.5
compared to PM10. The increase in the variations of the PM10 and PM2.5 concentrations
did not indicate an increase in the PM concentrations in the short term [77]. The variations
in the concentrations in the short term were probably related to factors such as climatic
effects and specific external events that were reported in the previous sections. In the long
term (E3.1), a variation in the MA term was observed between 1 and 12 and between 5 and
15 for the PM10 and PM2.5 concentrations, respectively. In general, the findings suggested
that, in the long term, strict isolation measures (E2.1) tended to decrease the variations in
the PM10 and PM2.5 concentrations. It is probable that the PM concentrations were more
stable and less prone to sudden peaks during this strict isolation scenario.

During the E2.2 sectorized isolation scenario, the results showed AR terms between
0 and 4 and between 0 and 1 in the ARIMA models developed for the PM10 and PM2.5
concentrations, respectively. In the short term (E1), the findings showed AR terms between
2 and 6 and between 0 and 11 for the PM10 and PM2.5 concentrations, respectively (Table 3).
The results suggested that, in the short term, sectorized isolation measures tended to
decrease the magnitude of the AR term. That is, sectorized isolation measures tended
to reduce the persistence over time of the PM10 and PM2.5 concentrations. It was also
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suggested that, in the short term, sectorized isolation measures comparatively generated a
greater reduction in the persistence of PM2.5 compared to PM10. In the long term (E3.2),
the results showed AR terms between 0 and 1 and between 0 and 2 for the PM10 and
PM2.5 concentrations, respectively. The results suggested that, in the long term, sectorized
isolation measures tended to reduce the persistence over time of the PM10 concentrations. In
relation to the PM2.5 concentrations, in the long term, the findings suggested that sectorized
isolation measures did not considerably change their persistence over time. The long-term
persistence of the PM2.5 concentrations may have been influenced by complex factors such
as regional PM transport patterns and the meteorological conditions observed [78]. The
results showed that there were changes in the wind patterns during the sectorized isolation
scenario, which likely influenced the dispersion and accumulation of PM2.5. This behavior
could have affected its long-term persistence. Moreover, the long-term persistence in the PM
concentrations possibly depended on factors such as the duration and intensity of isolation
measures, the composition of PM sources, and the subsequent economic recovery [79].

The results showed that during the E2.2 sectorized isolation scenario, the I term
in the ARIMA models was equal to 2 for the PM10 and PM2.5 concentrations. In the
short term (E1), it was observed that the I term varied between 1 and 2 for the PM10 and
PM2.5 concentrations (Table 3). Comparatively, the results suggested that the sectorized
isolation measures implemented did not considerably change the increasing trend in the
PM2.5 concentrations observed in the short term (Figure 2). However, with the I terms
= 1 in the short term (E1) in some ARIMA models, a lesser increasing trend in the PM2.5
concentrations was suggested during this scenario. In relation to PM10, the interpretation
required further analysis. Namely, in the CAR and LAF stations, an increasing trend (+) was
observed, and, in the KEN and TUN stations, a decreasing trend (−) was observed in the
concentrations. Therefore, the results suggested that the ARIMA models indicated with the
I term the magnitude of the trend in the PM10 concentrations but did not indicate whether
the trend was increasing (+) or decreasing (−). In the long term (E3.2), the ARIMA models
showed I terms between 1 and 2 for the PM10 and PM2.5 concentrations. These ARIMA
findings could initially suggest that, in the long term, sectorized isolation measures possibly
did not change the trend in the PM10 and PM2.5 concentrations. However, in general, during
the sectorized isolation scenario (E2.2), a decreasing trend (−) was observed, and, in the
long term, an increasing trend (+) was observed in the PM10 and PM2.5 concentrations.

In relation to the MA term of the ARIMA models for the E2.2 sectorized isolation
scenario, the findings evidenced a variation between 1 and 9 and between 1 and 7 for the
PM10 and PM2.5 concentrations, respectively (Table 3). In the short term (E1), a variation
in the MA term was observed between 1 and 7 for the PM10 and PM2.5 concentrations. In
general, the results suggested that, in the short term, sectorized isolation measures did
not tend to considerably influence the variations in the PM10 and PM2.5 concentrations.
However, for the PM10 concentrations a slight increase in the variation of their concentra-
tions was observed during the E2.2 sectorized isolation scenario. In the long term (E3.2),
a variation in the MA term was observed between 0 and 6 and between 1 and 8 for the
PM10 and PM2.5 concentrations, respectively. In general, the findings suggested that, in the
long term, sectorized isolation measures (E2.2) tended to slightly increase and decrease the
variations in the PM10 and PM2.5 concentrations, respectively. In other words, during this
sectorized isolation scenario, the PM2.5 concentrations were slightly more stable compared
to the PM10 concentrations.

During the E2.3 flexible isolation scenario, the results showed AR terms between
0 and 8 and between 1 and 2 in the ARIMA models developed for the PM10 and PM2.5
concentrations, respectively (Table 3). In the short term (E1), the findings showed AR
terms between 2 and 6 and between 0 and 11 for the PM10 and PM2.5 concentrations,
respectively. The results suggested that, in the short term, flexible isolation measures
tended to increase and decrease the magnitude of the AR term for the PM10 and PM2.5
concentrations, respectively. Namely, flexible isolation measures tended to increase and
reduce the persistence over time of the PM10 and PM2.5 concentrations, respectively. Under
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this E2.3 flexible isolation scenario, a greater difference in the persistence of the PM10 and
PM2.5 concentrations was hinted at. It was also suggested that, in the short term, flexible
isolation measures comparatively generated a greater reduction in the persistence of PM2.5
compared to PM10. In the long term (E3.3), the results showed AR terms = 1 and between 1
and 2 for the PM10 and PM2.5 concentrations, respectively. The results hinted that, in the
long term, flexible isolation measures tended to increase the persistence over time of the
PM10 concentrations. In relation to the PM2.5 concentrations in the long term, the findings
hinted that flexible isolation measures did not change their persistence over time. Indeed,
the long-term persistence in the PM concentrations probably depended on factors such as
the duration and intensity of isolation measures, the composition of PM sources, and the
subsequent economic recovery [80].

The results showed that, during the E2.3 flexible isolation scenario, the I term in
the ARIMA models was equal to 1 for the PM10 and PM2.5 concentrations. In the short
term (E1), it was observed that the I term varied between 1 and 2 for the PM10 and PM2.5
concentrations (Table 3). Initially, the results could suggest that flexible isolation measures
did not considerably change the increasing trend in the PM2.5 concentrations observed
in the short term. However, the trend observed in the PM10 and PM2.5 concentrations
during the E2.3 flexible isolation scenario was decreasing (Figure 2). In other words, the
trends in magnitude were similar, but in the short term it was increasing (+) and during the
E2.3 flexible isolation scenario it was decreasing (−). In the long term (E3.3), the ARIMA
models showed I terms = 1 for the PM10 and PM2.5 concentrations. These ARIMA findings
suggested that, in the long term, flexible isolation measures possibly did not change the
decreasing trend in the PM10 and PM2.5 concentrations.

In relation to the MA term of the ARIMA models for the E2.3 flexible isolation scenario,
the findings evidenced a variation between 4 and 14 and between 1 and 15 for the PM10
and PM2.5 concentrations, respectively (Table 3). In the short term (E1), a variation in the
MA term between 1 and 7 was observed for the PM10 and PM2.5 concentrations. The results
suggested that, in the short term, flexible isolation measures tended to considerably influ-
ence the variations in the PM10 and PM2.5 concentrations. Namely, these flexible isolation
measures possibly generated a greater variation in the PM10 and PM2.5 concentrations in
the short term. In the long term (E3.3), a variation in the MA term between 1 and 11 and
between 1 and 8 was observed for the PM10 and PM2.5 concentrations, respectively. The
findings suggested that, in the long term, flexible isolation measures tended to increase
the variations in the PM10 and PM2.5 concentrations, respectively. This influence on the
variation of the concentrations was more evident for PM2.5 compared to PM10.

4. Conclusions

The findings of this study allowed for the following conclusions to be drawn from the
sequentially established COVID-19 isolation scenarios (strict, sectorized, and flexible) in the
high-altitude megacity under study. This is based on the analysis of the PM concentrations
using ARIMA models.

The results suggest an average order in the observed concentrations of PM10 and
PM2.5 according to the considered isolation scenarios (compared to the historical trend):
sectorized (−28.9% and −31.7%) > strict (−29.4% and −28.3%) > flexible (−8.52% and
−12.4%). The change in the sequence between the isolation scenarios is likely related to
the occurrence of particular weather conditions (wind direction and precipitation) and
regional PM transport episodes (forest fires and Sahara dust) during the sectorized isolation
scenario. The differences in the reduction in the PM10 and PM2.5 concentrations between
the strict and flexible isolation scenarios were 23.8% and 12.8%, respectively.

The findings reveal that strict isolation measures have a greater effect on the simulated
concentrations of PM10 and PM2.5 in the short term (PM10: −47.3% and PM2.5: −54%) than
in the long term (PM10: −29.4% and PM2.5: −28.3%). In the short term, these isolation
measures have a greater effect on the PM2.5 concentrations compared to the PM10 concen-
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trations. In the long term, the effects of these strict isolation measures on the PM10 and
PM2.5 concentrations are similar.

The ARIMA models suggest that strict isolation measures tend to decrease the per-
sistence over time of the PM10 and PM2.5 concentrations both in the short and long term.
The models also suggest that these isolation measures do not significantly modify the
decreasing trend of the PM10 and PM2.5 concentrations in the short term. However, in
the long term, these isolation measures have a greater effect on the PM10 concentrations
compared to the PM2.5 concentrations, suggesting a greater downward trend of the PM10
concentrations. Lastly, the ARIMA models reveal that, in the short term, strict isolation
measures tend to increase the variation in the PM10 and PM2.5 concentrations, with a greater
increase in the case of PM2.5. Conversely, in the long term, these isolation measures tend to
decrease the variations in the PM concentrations, suggesting a more stable behavior that is
less prone to sudden peaks.

The ARIMA analysis suggests that flexible isolation measures tend to increase the
persistence over time of the PM10 concentrations in the short term, while they tend to
decrease the persistence of the PM2.5 concentrations. In the long term, an increase in the
persistence of the PM10 concentrations is suggested, while no changes in the persistence
of PM2.5 are hinted at. Lastly, the ARIMA models reveal that flexible isolation measures
tend to increase the variation in the PM10 and PM2.5 concentrations both in the short and
long term.

Finally, this study is relevant because it highlights the effectiveness of isolation mea-
sures to reduce urban PM10 and PM2.5 concentrations. Strict measures produce significant
short-term reductions, while flexible measures affect the persistence of PM over time. These
findings are significant for visualizing the air quality management strategies in megacities.
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