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Abstract: Severe air pollution problems continue to increase because of accelerated industrialization
and urbanization. Specifically, fine particulate matter (PM2.5) causes respiratory and cardiovascular
diseases, and according to the World Health Organization (WHO), millions of premature deaths and
significant health burdens annually. Therefore, PM2.5 concentration forecasting is essential. This
study proposed a method to forecast PM2.5 concentrations one hour after using Sequence-to-Sequence
Attention (Seq2Seq-attention). The proposed method selects neighboring stations using minimum
redundancy maximum relevance (mRMR) and integrates their data using a convolutional neural
network (CNN). The proposed attention score and Seq2Seq are used on the integrated data to forecast
PM2.5 concentration after one hour. The performance of the proposed method is validated through
two case studies. The first comparison evaluated the performance of the conventional attention score
against the proposed attention scores. The second comparison evaluated the forecasting results with
and without considering neighboring stations. The first study showed that the proposed attention
score improved the performance index (Root Mean Square Error (RMSE): 3.48%p, Mean Absolute
Error (MAE): 8.60%p, R2: 0.49%p, relative Root Mean Square Error (rRMSE): 3.64%p, Percent Bias
(PBIAS): 59.29%p). The second case study showed that considering neighboring stations’ data can
be more effective in forecasting than considering that of a standalone station (RMSE: 5.49%p, MAE:
0.51%p, R2: 0.67%p, rRMSE: 5.44%p, PBIAS: 46.56%p). This confirmed that the proposed method can
effectively forecast the PM2.5 concentration after one hour.

Keywords: PM2.5 concentration forecasting; minimum redundancy maximum relevance; Sequence-
to-Sequence; attention method

1. Introduction

With accelerating industrialization and urbanization, air pollution continues to be an
increasing environmental problem worldwide [1–3]. Air pollution directly and indirectly
affects health, the ecosystem, and climate change. In particular, fine particulate matter
(PM2.5) is considered a serious threat. PM2.5 are fine particles with a diameter of 2.5 µm
or less, which can long remain airborne and be easily inhaled. Consequently, PM2.5
can penetrate deep into the lungs, causing respiratory and cardiovascular diseases, and
even premature death [4–7]. According to the World Health Organization (WHO), the
disease burden caused by PM2.5 causes millions of deaths annually, mainly affecting weak
groups such as the elderly, children, and those with chronic diseases [8]. In addition to
health problems, PM2.5 causes economic losses such as deterioration of urban appearance,
damage to buildings, and decreased agricultural productivity. In particular, high PM2.5
concentration problems are recognized as a severe social problem in major cities worldwide,
in addition to rapidly industrializing countries, e.g., China and India [9,10]. Accordingly,
many countries are making policy efforts to manage air quality and reduce particulate
matter. For this, the accurate forecasting of PM2.5 concentrations and the development of
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real-time monitoring technology are emerging as important research topics. This study
proposes a forecasting model that utilizes spatiotemporal data. Its goal is to improve
forecasting accuracy and support effective air quality management.

The changing concentrations of PM2.5 are determined by various atmospheric and
other influences. A combination of complex factors such as meteorological conditions,
geographical characteristics, traffic volume, and industrial activities hamper accurate
forecasting [11,12]. In particular, PM2.5 concentrations are temporally and spatially ex-
tremely variable, and the concentration appears differently depending on diverse regional
characteristics. Therefore, a forecasting method that considers both temporal and spatial
characteristics is needed [13].

Traditional forecasting methods that consider temporal characteristics include physics-
based and statistical models [14]. Physics-based models mathematically model atmospheric
dynamics and chemical reactions to forecast the transport and diffusion of PM2.5 concen-
trations [15–17]. Statistical models analyze patterns based on past data to forecast PM2.5
concentrations [18–21]. However, these traditional models cannot accurately reflect the
interactions of various complex variables, such as meteorological conditions, anthropogenic
factors, and geographical factors. In addition, their performance may deteriorate when
data are insufficient or when dealing with complex nonlinear relationships [13,14].

More recently, machine- and deep learning-based models have been introduced to
solve the problems in forecasting PM2.5 concentrations [14]. Machine learning models
produce forecasts by learning from data and have strengths in learning nonlinear and
complex patterns. Furthermore, deep learning has attracted particular attention in the
field of air quality forecasting due to its ability to process and learn from large amounts of
data [22–30]. Compared with statistical models, deep learning models can extract useful
features from multidimensional data and learn nonlinear relationships more accurately,
often resulting in significantly improved performance [14].

Among deep learning models, the Recurrent Neural Network (RNN) structure that
processes time-series data is suitable for sequential data processing and is widely used in
PM2.5 concentration forecasting [31–33]. RNN is advantageous for time-series data because
it can reflect past information in current forecasts but has limitations in processing long-
term dependencies. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)
were developed to overcome these shortcomings. LSTM processes long-term dependencies
more effectively through cell states and gate structures, and GRUs have more compact
structures while providing similar functions [34,35]. These models enable forecasting that
considers pattern changes over time, improving PM2.5 concentration forecasting accuracy.
The Sequence-to-Sequence (Seq2Seq) structure is being used for sophisticated time-series
forecasting. The Seq2Seq model was initially developed for tasks like machine translation
and speech recognition. Recently, it has also attracted interest in time-series forecasting for
its ability to transform input sequences into output sequences [36]. Forecasting models uti-
lizing the Seq2Seq structure can learn complex data patterns with a more flexible structure
than simple time-series models.

In addition, attention mechanisms have become widely used in time-series data fore-
casting. An attention mechanism is a method in which the model gives more weight to
important information under the premise that not all input data have the same impor-
tance [37]. Since data at a specific time point can significantly impact the overall forecasting,
many forecasting studies have used the attention mechanism [38,39].

The method that considers spatial characteristics is relatively more complex than the
method that considers temporal characteristics [11]. In prior studies, forecasting methods
mainly focused on neighboring stations when considering spatial characteristics [40–45].
These methods are challenging to implement because they involve selecting neighboring
stations for forecasting. In particular, excluding the target station and selecting too many
stations increases the complexity of the model, which may actually deteriorate its perfor-
mance. Therefore, it is crucial to select appropriate stations from many stations. Methods
that consider neighboring stations include distance-based methods, statistical methods, and
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data-based methods. Distance-based methods consider the distance between the target and
neighboring stations. This intuitive and simple method is limited in reflecting the character-
istics of the data because it only considers the distance between stations. Statistical methods
better represent data characteristics than distance-based methods by considering spatial
correlations between neighboring stations. However, they face challenges in addressing
nonlinear relationships between the target and neighboring stations. Data-driven methods
can model nonlinear relationships by learning the connections between the target and
neighboring stations. However, their black-box characteristics make them difficult to inter-
pret. Significant advancements have been made in employing hybrid methods to forecast
PM2.5 concentrations by simultaneously accounting for temporal and spatial information.
These methods combine two or more models to capitalize on their strengths, improving
forecasting accuracy. For example, hybrid approaches often integrate deep learning models
with statistical techniques or utilize convolutional neural networks (CNNs) for spatial
pattern recognition alongside RNNs or LSTM networks to address temporal dependencies.
Such approaches are particularly effective in capturing the intricate dynamics of air quality
variations and managing the heterogeneous nature of environmental data.

The challenges in effectively incorporating spatial characteristics into forecasting mod-
els highlight the importance of selecting appropriate neighboring stations and accurately
modeling their relationships with the target station. While distance-based, statistical, and data-
driven methods have strengths, their limitations in capturing complex, nonlinear relationships
underscore the need for advanced approaches that balance interpretability and performance.

To address these challenges, this study employs a combination of minimum redun-
dancy maximum relevance (mRMR) and a CNN. By selecting relevant neighboring stations
based on correlations between the target station and its neighbors and among the selected
stations, mRMR minimizes redundancy in the input data, ensuring that only the most
informative stations are considered. Additionally, CNNs effectively capture the nonlinear
relationships between the target station and its neighbors, providing a robust framework for
integrating spatial information into forecasting models. This combined approach enhances
forecasting accuracy and mitigates the shortcomings of previous spatial modeling methods.

This study proposed a method to forecast PM2.5 concentration after one hour by
considering spatiotemporal aspects using mRMR and a CNN and using Seq2Seq combined
with improved attention.The contributions of this study can be outlined as follows:

1. In conventional attention mechanisms, weights are calculated using the dot product,
which assigns high weights to inputs with high similarity. This approach affects vec-
tors with high similarity but not those with low similarity. The proposed attention
score calculates similarity using both the dot product and the inverse of Euclidean
distance, allowing the model to consider both similarity and dissimilarity. Therefore,
the proposed attention score enables consideration of both similarity and dissimilarity.
This enhancement directly addresses the shortcomings of previous attention mecha-
nisms, enabling better performance in scenarios where dissimilar inputs significantly
impact the forecast. By reducing redundancy and accurately modeling nonlinear
relationships, the proposed method is expected to outperform traditional and hybrid
approaches, as evidenced in the experimental results.

2. When considering neighboring stations, prior studies have usually selected the dis-
tance between the target and neighboring stations to consider spatial characteristics
or the correlation between stations. However, when using mRMR and a CNN, one
can reduce redundancy in the influence of neighboring stations and the nonlinear
relationship between the target and neighboring stations can be considered.

The remainder of this paper is organized as follows. Section 2 introduces the related
work forecasting on PM2.5 concentrations. Section 3 provides a detailed description of the
study site, the data used in this study, and the proposed PM2.5 concentration forecasting
method. Section 4 presents the verification experiments along with the experimental results
and performance indices. Finally, Section 5 discusses the experimental results and the
conclusions drawn from the study.
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2. Related Work

Many studies have been conducted on forecasting PM2.5 concentrations to protect
human health. The traditional physical method [15–17] is a PM2.5 concentration disper-
sion model based on atmospheric chemistry and aerodynamic theory. This method is
heavily dependent on theoretical assumptions, restricting its applicability to specific re-
gions. Furthermore, its substantial computational requirements limit its feasibility for
real-time forecasting. In contrast, statistical and data-driven methods are more suitable for
real-time applications.

Statistical methods define the relationship between pollutant concentrations, meteoro-
logical variables, and air pollution data. Several studies have applied statistical methods to
forecast PM2.5 concentrations. Zhang et al. [19], Badicu et al. [18], and Wang et al. [21] uti-
lized the Auto Regression Int1egrated Moving Average (ARIMA) model to forecast PM2.5
concentrations in Fuzhou, China, Bucharest, Romania, and California, USA, respectively.
Similarly, Amnuaylojaroen [20] employed a Multivariate Linear Regression (MLR) model
to forecast PM2.5 concentrations in Chiang Mai, Lampang, and Nan, Thailand. Although
these statistical methods are effective in modeling linear relationships, they are limited
in their ability to adequately represent the nonlinear interactions between meteorological
conditions and air pollution.

To overcome the limitations of statistical methods, data-driven models have emerged
as a promising approach for PM2.5 forecasting. These models are particularly effective in
capturing the nonlinear relationships between inputs and outputs. Among them, Artificial
Neural Networks (ANNs) have been widely utilized to improve forecasting accuracy. Chen
et al. [46] applied an ANN to analyze meteorological factors such as temperature, humidity,
and wind speed, successfully forecasting PM2.5 concentrations in Fuling, Chongqing, China.
Similarly, Lightstone et al. [47] employed an ANN to foreacst PM2.5 concentrations in New
York, USA, demonstrating its superiority over the Community Multiscale Air Quality
(CMAQ) model. Additionally, Bera et al. [48] demonstrated that the ANN outperformed
the MLR statistical model in forecasting PM2.5 concentrations. Collectively, these studies
underscore the potential of ANNs to model the nonlinear interactions between meteoro-
logical conditions and air pollution, effectively addressing the shortcomings of traditional
statistical approaches.

Due to the rapid improvement in computing performance, deep learning models
capable of processing large amounts of data simultaneously have become available, with
many studies conducted on forecasting PM2.5 concentrations using deep learning models.
In particular, the RNN, a deep learning model, is widely used for forecasting PM2.5 concen-
trations because it considers historical information. M. Oprea et al. [31] performed a PM2.5
concentration forecast around Munich, Germany to compare the performance of an ANN
and an RNN. They confirmed that the RNN, which considers the past, produced superior
performance. However, despite its strengths, the RNN faces challenges such as long-term
dependency issues and gradient vanishing problems [34]. To solve this problem, a study
was recently conducted on forecasting using LSTM, a model that modifies RNN cells. Y.T.
Tsai et al. [49] used LSTM to forecast the PM2.5 concentration one hour in advance after
measuring meteorological and air pollution data at 20 monitoring stations in Taiwan for the
preceding 72 h. Zhao et al. [50] used an ANN to define the relationship with neighboring
stations and forecasted PM2.5 concentration in Beijing, China, using LSTM. Ayturan Y.A. et
al. [51] used GRU, a modified LSTM model, to forecast PM2.5 concentration in Keçiören
district, Ankara, Turkey, 1∼3 h in advance.

In addition to these RNN-based models, studies have also been conducted that utilize
Seq2Seq models while maintaining the cell structure of the RNN series. Seq2Seq efficiently
compresses information in long sequences. It is effective for time-series forecasts as it
generates necessary sequences from the compressed data. Wang et al. [52] applied an LSTM-
based Seq2Seq model to forecast PM2.5 and roadside CO concentrations in Shanghai, China.
The model used PM2.5 and CO concentration data from the past seven days, previous-day
meteorological and air pollution data, and same-day PM2.5 and CO concentrations. Yan
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et al. [53] forecasted PM2.5 concentrations in Tianjin, China, using a GRU-based Seq2Seq
model. The model utilized 72 h of previous air pollution and meteorological data as inputs.
It showed superior performance compared to ANN and GRU models.

However, the Seq2Seq model faces limitations in equally processing the significance
of all time points in the information compression process. Recent studies have successfully
applied the attention mechanism to improve this by assigning weights according to the
importance of specific time points in time-series data. This is gaining recognition as an
especially effective method for forecasting PM2.5 concentrations. Liu et al. [38] forecasted
the PM2.5 concentration 24 h in advance at the Olympic Center and Dongsi Observatory
in Beijing, China, using a Seq2Seq model applying an attention mechanism. Bai et al. [39]
forecasted the PM2.5 concentration in Beijing by combining the attention mechanism with a
GRU-based Seq2Seq model.

In addition to methods considering temporal characteristics, many forecast methods
considering spatial characteristics have also been developed. Vargas-Campos et al. [54]
used Inverse Distance Weight (IDW) to forecast PM2.5 concentration considering spatial
characteristics in Beijing, China, and Yang et al. [55] used the k-Nearest Neighbor (kNN)
algorithm. Yeo et al. [56] forecasted PM2.5 concentration in Seoul considering correlation
with neighboring stations. By considering neighboring stations, using a convolutional neu-
ral network (CNN), and correlation, Zhang et al. [57] forecasted the PM2.5 concentrations
in densely populated urban areas in the Yangtze River Delta, China.

Related studies have extensively studied temporal and spatial factors for forecasting
PM2.5 concentrations. However, effectively integrating temporal and spatial dimensions
to forecast remains a challenge. Temporal forecasting methods, particularly those using
Seq2Seq models with attention mechanisms, have significantly improved by capturing
the relative importance of specific time points [38,39]. Similarly, spatial methods utilizing
correlations with neighboring stations and advanced deep learning techniques, such as
CNNs, have enhanced the ability to model spatial relationships [56,57]. Despite these
advancements, many studies treat temporal and spatial characteristics independently,
which limits their ability to fully capture the complex dynamics of air pollution.

This paper overcomes these limitations by introducing an integrated approach that
considers temporal and spatial dimensions simultaneously. Unlike related studies, this
method uses mRMR to select neighboring stations. It reduces redundant data and includes
only the most relevant spatial information. CNN also integrates data from neighboring
stations and models nonlinear relationships between neighboring stations. Temporal
information is enhanced through a Seq2Seq model combined with an improved attention
mechanism. By integrating the dot product and inverse Euclidean distance, the proposed
attention mechanism accounts for both similarity and dissimilarity, addressing a critical
gap in the previous attention-based models.

3. Materials and Method

Figure 1 presents a flowchart of the proposed method for forecasting PM2.5 concentra-
tion. The process is divided into two main steps: the preprocessing step, denoted by red
dotted lines, and the forecasting step, denoted by blue dotted lines.

The preprocessing steps include outlier detection and elimination, data interpolation,
data normalization, data separation between the main station and neighbor stations, and
the selection of neighbor stations. Missing values are handled through linear interpolation.
Min-max normalization is applied to the data, scaling the values to a range between−1 and
1. Neighbor stations are selected based on their relevance using the mRMR method.The
forecast step uses the processed data to forecast the PM2.5 concentration one hour ahead.
The data from neighbor stations are first integrated through the CNN. Subsequently, the
Seq2Seq-attention mechanism is applied to the integrated data, along with data from the
main station, to forecast the PM2.5 concentration one hour ahead.
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Figure 1. Flowcharts for PM2.5 concentration forecasting models.

3.1. Dataset

Due to rapid industrialization and urbanization, the PM2.5 concentration in Bei-
jing has increased [58,59]. As a result, numerous studies have focused on forecasting
PM2.5 concentrations in this region to mitigate the adverse health and environmental
impacts [38,39,50,54]. The severity of air pollution in Beijing, combined with the grow-
ing body of research, makes it a crucial area for studying and developing more accurate
forecasting models. For these reasons, this study has chosen Beijing as the target region
to explore advanced forecasting techniques for PM2.5 concentrations. In this study, we
used data provided by the Microsoft Research Urban Computing Team to forecast PM2.5
concentrations in the Beijing area. The data were provided the Microsoft Research Urban
Computing Team [60]. The data were recorded every hour from 1 May 2014, to 30 April
2015. These data comprise six air pollution categories(PM2.5, PM10, sulfur dioxide (SO2),
ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO)) along with six categories
of meteorological data (temperature, pressure, humidity, wind speed, wind direction, and
weather). Meteorological data are provided at the district level, whereas air pollution data
are available as monitoring data from individual observation stations. Due to the inherent
redundancy associated with district-level meteorological data, this study excludes their use
to mitigate potential redundancy issues. Instead, the forecasting used only air pollution
data collected from monitoring stations. This approach ensures finer spatial resolution and
enhances the accuracy and relevance of the forecasting model. Table 1 provides the units
and formats of the data utilized for forecasting.

Figure 2 shows the locations of the stations on the map, while Table 2 lists the coor-
dinates for each station. Figure 3 displays the missing ratio of air pollution data for each
station, where the x-axis represents the station ID and the y-axis denotes the percentage
of missing data. Blue, orange, green, red, purple, and brown correspond to PM2.5, PM10,
NO2, CO, O3, and SO2, respectively. The bars represent the missing ratio for each pollutant,
while the line indicates the mean missing ratio across all pollutants. As shown in Figure 3,
PM2.5 exhibits the lowest missing rate, whereas PM10 shows the highest. Furthermore,
Station 1022 has the highest missing rate across all pollutants except for PM2.5. As a result,
this study excludes Station 1022 and utilizes data from the remaining stations. For these
stations, missing data were interpolated and used in the forecast.

Figure 2. Locations of air pollution monitoring stations: (a) Beijing’s location within China. (b) Air
pollution monitoring station locations in Beijing.
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Table 1. Sampling time and units for data variables.

Variable Type Variable Name Data Type Unit Sampling Time

Air pollution

PM10 Numerical µg/m3 1 h
PM2.5 Numerical µg/m3 1 h

O3 Numerical µg/m3 1 h
SO2 Numerical µg/m3 1 h
NO2 Numerical µg/m3 1 h
CO Numerical µg/m3 1 h

Figure 3. Missing data rate by monitoring stations.

Table 2. Information of air pollution monitoring stations.

Station ID Latitude Longitude Station ID Latitude Longitude

1001 40.090679 116.173553 1019 39.885241 116.664162
1002 40.00395 116.20531 1020 39.886491 116.407355
1003 39.914409 116.184239 1021 39.899135 116.395383
1004 39.815128 116.17115 1022 39.920993 116.443448
1005 39.742767 116.136045 1023 40.127 116.655
1006 39.987313 116.287451 1024 40.216999 116.23
1007 39.982053 116.3974 1025 39.936999 116.105999
1008 39.954047 116.348991 1026 40.143 117.099999
1009 39.878193 116.351974 1027 40.328 116.628
1010 39.876184 116.394009 1028 40.369999 116.831999
1011 39.855958 116.36781 1029 40.453 115.971999
1012 39.937119 116.460742 1030 40.292 116.22
1013 39.929287 116.416883 1031 40.365 115.988
1014 39.939554 116.483746 1032 40.499 116.911
1015 39.929302 116.351029 1033 40.1 117.12
1016 39.86347 116.279082 1034 39.712 116.783
1017 39.718147 116.406155 1035 39.52 116.3
1018 39.794491 116.506319 1036 39.579999 116
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3.2. Minimum Redundancy Maximum Relevance

PM2.5 concentration exhibits a strong spatial correlation with the pollution levels of
neighboring stations, as well as temporal variation [61,62]. Forecasting PM2.5 concentration
using data from a main station alone results in lower performance. In contrast, incorpo-
rating data from neighboring stations improves forecasting accuracy [63]. Therefore, it is
essential to consider the influence of neighboring stations when forecasting PM2.5 concen-
tration. In this study, the mRMR method was employed to select relevant neighboring
stations. The mRMR algorithm evaluates the correlations between the standalone station
and neighboring stations, effectively reducing redundancy and simplifying the model [64].
Algorithm 1 outlines the process for calculating mRMR. In this algorithm, I( fk|Y∗) repre-
sents the correlation coefficient between the k-th neighboring station and the main station.
Equation (1) defines the correlation coefficient between two variables, where COV( fk, Y∗)
is the covariance between the PM2.5 concentrations of the k-th neighboring station and the
main station, and σfk

and σY∗ represent the variances of the PM2.5 concentrations at the
k-th station and the main station, respectively. In Algorithm 1, the number of subsets of
neighboring stations is defined by the user. In this paper, mRMR scores were calculated to
two decimal places. After selecting the stations according to the scores, we performed a
forecasting experiment to select the optimal number of stations.

Algorithm 1: minimum Redundancy Maximum Relevance (mRMR)
Input: The training dataset D with the neighbor monitoring station’s PM2.5

concentration set F = { f1, f2, . . . , fn}, main monitoring station PM2.5
concentration Y∗, and the required number of neighboring stations T.

Output: The selected neighbor monitoring station subset ST and mRMR score set
ρT .

ST ← ∅;
ρT ← ∅;
for fi in F do

MIi = I( fi; Y∗);
end
f ← arg max(MI);
ST ← ST ∪ { f };
ρT ← ρT ∪max(MI);
F ← F− { f };
for i← 2 to T do

for each fi in F do
J( fi) = I( fi|Y∗)− 1

|ST | ∑ f j∈ST
I( f j; fi);

end
Select fs from J( fi) with the largest value;
ST ← ST ∪ { fs};
ρT ← ρT ∪ J( fi);
F ← F− { fs};

end
return ST , ρT

I( fk|Y∗) =
COV( fk, Y∗)

σfk
σY∗

. (1)

3.3. Proposed Network Architecture

This study used the CNN-Seq2Seq-attention model to forecast the main station con-
sidering the selected neighboring stations. Figure 4 shows the structure of the proposed
network. The proposed network consists of CNN and Seq2Seq-attention. The CNN in-
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tegrates the selected neighbor station data using mRMR. The Seq2Seq-attention model
forecasts the PM2.5 concentration one hour ahead using the data of the main station and
the neighbor station data integrated through the CNN.

Figure 4. The proposed network architecture.

A CNN was used to integrate the data from neighboring stations selected through
the mRMR method. A 1 × 1 filter was utilized in the CNN to process air pollution data
commonly collected at stations. The use of 1 × 1 filters allows for the flexible adjustment
of the number of data channels, which can be either increased or reduced based on the
number of filters applied. This approach enables the model to be effectively deepened
through the addition of layers [65–67]. In this study, two convolutional layers were used
for data integration. In the first convolutional layer, the number of filters exceeded the
number of selected neighboring stations, allowing for an expansion of the station data. In
the second convolutional layer, the number of filters was reduced to one. This compression
integrated the expanded information from the previous layer and combined the data from
neighboring stations. Algorithm 2 presents the pseudocode for integrating data from
neighboring stations using a CNN.
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Algorithm 2: Data Integration with CNN for Selected Neighboring Stations

Input: Air pollution data from selected neighboring stations Din ∈ RT×n, where T
is the time dimension and n is the number of selected stations.

Output: Integrated neighboring station data Dout ∈ RT×1.
Step 1: Apply the first 1×1 convolution layer
Set the number of filters f1 > n to expand the feature dimension.
Dconv1 ← Conv1D(Din, kernel size = 1, filters = f1);
Dconv1 ← ReLU(Dconv1);
Step 2: Apply the second 1×1 convolution layer
Set the number of filters f2 = 1 to compress and integrate the features.
Dconv2 ← Conv1D(Dconv1, kernel size = 1, filters = f2);
Dconv2 ← ReLU(Dconv2);
Step 3: Output the integrated data
Dout ← Dconv2;
return Dout

To forecast the PM2.5 concentration at the main station using the integrated data from
neighboring stations and the data from the main station, the Seq2Seq-attention model
was applied. In the Seq2Seq-attention model, the proposed attention score was applied.
In the conventional attention score, the dot product is used to compare the similarity
between the encoder output and the decoder output. The decoder output is weighted
according to the compared similarity to influence the decoder output. However, this
method can emphasize similarity but fails to penalize dissimilar outputs. To overcome
this limitation, this paper proposes a method containing the inverse Euclidean distance
to simultaneously consider both similarity and dissimilarity. This approach emphasizes
both aspects, enabling the model to maintain accurate forecasting performance while
also accounting for dissimilar outputs. The pseudocode for the Seq2Seq-attention model
proposed in this study is presented in Algorithm 3. In Algorithm 3, the Seq2Seq component
of the Seq2Seq-attention model was implemented using Bidirectional-LSTM (Bi-LSTM).
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Algorithm 3: Seq2Seq-attention Mechanism

Input: Input sequence Xenc = [x1, x2, . . . , xT ], decoder input sequence
Xdec = [xdec

1 , xdec
2 , . . . , xdec

T ].
Output: Forecasted PM2.5 concentration sequence Ŷ = [ŷ1, ŷ2, . . . , ŷT ].
Step 1: Encoder Bi-LSTM
Initialize encoder hidden states henc and cell states cenc for forward and backward
LSTM.

for t← 1 to T do
−−→
henc

t ,
−→
cenc

t ← −−−→LSTM(xt,
−−→
henc

t−1,
−−→
cenc

t−1);←−−
henc

t ,
←−
cenc

t ←←−−−LSTM(xt,
←−−
henc

t+1,
←−−
cenc

t+1);
end
Concatenate the final hidden and cell states:
z = [

−−→
henc

T ,
−→
cenc

T ,
←−−
henc

1 ,
←−
cenc

1 ];
Step 2: Decoder with Bi-LSTM and Attention
Initialize decoder hidden states hdec and cell states cdec using z.
for t← 1 to T do

Step 2.1: Attention Mechanism
Compute similarity scores for each encoder hidden state:
et

n ← (henc
n · hdec

t ), ∀n ∈ [1, T];
Compute dissimilarity scores (inverse Euclidean distance):
dt

n ← 1√
l

∑
i=1

(henc
n,i −hdec

t,i )
2

, ∀n ∈ [1, T];

Combine similarity and dissimilarity:
bt

n ← et
n ⊙ dt

n, ∀n ∈ [1, T];
Normalize to compute attention weights:

αt
n ←

bt
n

T
∑

i=1
bt

i

, ∀n ∈ [1, T];

Compute the attention vector:

αt ←
T
∑

n=1
αt

n · henc
n ;

Step 2.2: Decoder LSTM
Update decoder hidden state using Bi-LSTM:
−→
hdec

t ,
−→
cdec

t ← −−−→LSTM(xdec
t ,
−−→
hdec

t−1,
−−→
cdec

t−1);←−
hdec

t ,
←−
cdec

t ←←−−−LSTM(xdec
t ,
←−−
hdec

t+1,
←−−
cdec

t+1);
Combine forward and backward decoder states:
hdec

t ← [
−→
hdec

t ;
←−
hdec

t ];
Step 2.3: Generate Output
Concatenate attention vector and decoder hidden state:
vt ← [αt; hdec

t ];
Integrate attention distribution and decoder hidden state through weights:
s̃t ← tanh(wc · vt);
Compute weighted output by applying a fully connected layer:
ŷt ← wo · s̃t;
Append output ŷt to the result sequence Ŷ.

end
return Ŷ

4. Experiments and Results

In this section, we perform two case studies to validate the performance of our pro-
posed model. The first case involved comparing the implemented attention score, which
integrates both similarity and dissimilarity, with the conventional attention mechanism
introduced by Bahdanau et al. [37]. The second case evaluated the forecasting performance
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by contrasting a standalone model that excludes neighboring station data with a model
that incorporates neighboring stations selected through mRMR.

4.1. Experimental Settings

In this paper, we selected four stations (1013, 1018, 1005, 1023) to verify the proposed
method. The data were divided into training and testing periods at an 8:2 ratio by month to
ensure accurate model evaluation. This strategy can prevent the loss of seasonal characteristics.

Table 3 presents the statistical parameters for data of each station. Despite similar
overall data values, each station exhibits unique characteristics. Station 1013 shows high
variability in PM10 and PM2.5 levels. Station 1018 displays distinct patterns in O3 and SO2
concentrations. Station 1005, with elevated PM10 and PM2.5 values, represents areas with
higher pollution. Lastly, Station 1023, with lower pollutant levels, reflects regions with
cleaner air. These varying features make the selected stations ideal for comprehensive
testing of the model.

Table 3. Statistical parameters of applied data for each station.

Station Variable min
(Train/Test)

max
(Train/Test)

mean
(Train/Test)

skew
(Train/Test)

kurt
(Train/Test)

std
(Train/Test)

1013

Train: 7032

Test: 1728

PM10 5/5 1000/1000 123.69/152.33 1.78/2.23 8.75/11.48 103.68/126.47
PM2.5 3/3 461/446 81.24/89.15 1.52/0.94 5.27/3.91 80.04/70.88

O3 2/2 262/302 55.81/61.84 1.28/1.15 4.42/3.77 51.41/58.49
SO2 2/2 253/149 17.81/18.88 2.17/2.34 9.99/10.69 19.92/19.04
NO2 2/6 237/163 54.45/55.08 0.91/0.65 4.01/2.59 33.3/31.86
CO 0.1/0.2 7.5/5.8 1.3/1.39 2/1.53 8.06/5.13 1.08/1.03

1018

Train: 7032

Test: 1728

PM10 5/6.7 1000/1000 131.16/161.48 1.92/1.88 9.99/9.9 105.01/123.86
PM2.5 3/3 732/545 95.04/109.52 1.79/1.62 7.2/6.61 89.61/90.36

O3 2/2 340.5/271.4 60.8/65.98 1.22/1.01 4.34/3.26 56.4/60.52
SO2 2/2 298.8/154 19.48/19.9 2.45/2.6 11.46/10.28 26.82/25.03
NO2 3/5.8 244.5/211.2 53.42/55.34 1.03/1.14 4.47/4.01 34.22/37.95
CO 0.1/0.2 8.5/9 1.33/1.48 2.19/2.31 8.67/9.38 1.22/1.29

1005

Train: 7032

Test: 1728

PM10 5/5 1000/1000 140.57/175.36 1.9/1.82 9.78/8.52 107.56/130.83
PM2.5 3/3 730/582 90.78/107.99 1.76/1.8 6.95/7.32 86.23/96.13

O3 2/2 500/348.7 47.17/53 1.42/1.55 5.79/5.68 46.12/55.84
SO2 2/2 295.4/146.9 16.75/14.96 4.82/2.53 42.71/11.48 26.12/17.91
NO2 2/2 219.4/210.8 56.59/60.2 0.87/1.02 3.81/4.13 33.89/35.58
CO 0.1/0.1 10.5/12.5 1.42/1.59 2.22/2.54 9.03/10.99 1.33/1.55

1023

Train: 7032

Test: 1728

PM10 5/5 1000/1000 109.74/138.65 2.8/2.49 19.82/16.76 94.62/105.17
PM2.5 3/3 641/331 77.08/83.64 1.75/0.82 7.54/3.4 74.47/64.39

O3 2/2 330/328.1 58.92/64.56 1.48/1.44 5.22/4.8 57.13/64.81
SO2 2/2 161/102 12.33/13.21 2.73/1.98 12.4/6.98 17.3/15.6
NO2 2/3.1 193.9/204 43.67/44.34 0.96/1.01 3.7/4.36 29.87/29.5
CO 0.1/0.1 8.9/8 1.09/1.19 2.2/1.94 10/9.14 0.98/0.97

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R2, relative Root
Mean Squared Error (rRMSE), and Percent Bias (PBIAS) were used to evaluate the performance
of the proposed method in forecasting [68–72]. These performance indices evaluate the
accuracy and reliability of the model forecast. RMSE means the average magnitude of
the error between the forecasted and actual values. A lower RMSE indicates better model
performance. MAE calculates the average of the absolute errors, providing an understanding
of the overall magnitude of the forecast error. R2 represents the proportion of the variance
in the actual values that the model successfully captures in its forecast. A higher R2 value
suggests a better fit of the model. rRMSE normalizes the RMSE by the range or mean of the
observed data, making it interpretable across different datasets. PBIAS calculates the overall
bias in the forecasts. A negative PBIAS indicates under-forecasting, while a positive value
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suggests over-forecasting. In Equations (2)–(6), yt and ŷt represent the actual value and the
forecasted value at time t. ȳ represents the average of the actual values.

RMSE =

√
1
n

n

∑
i=1

(yt − ŷt)2. (2)

MAE =
1
n

n

∑
i=1

(|yt − ŷt|). (3)

R2 = 1−

n
∑

t=1
(yt − ŷt)2

n
∑

t=1
(yt − ȳ)2

. (4)

rRMSE =

√
1
n

n
∑

t=1
(yt − ŷt)2

1
n

n
∑

t=1
yt

. (5)

PBIAS =

n
∑

t=1
(yt − ŷt)

n
∑

t=1
yt

. (6)

4.2. Case Study 1: Compare Forecasting Result Based on Conventional and Proposed Attention Scores

In Case Study 1, we compared the results of forecasting PM2.5 concentrations according
to attention scores. Figures 5 and 6 show the PM2.5 concentration forecasting results for
stations 1013, 1018, 1005, and 1023. The x-axis represents time, and the y-axis represents
PM2.5 concentration. The black line shows the actual observed values. The blue dotted line
represents the conventional attention score forecast. The red dashed line represents the
proposed attention score forecast. Figures 5 and 6 (a,d) present the forecasting results for
the test data period. Subfigures (b,e) show enlarged views of periods with average PM2.5
concentrations below 100, where frequent changes occur. Similarly, (c,f) focus on periods
with PM2.5 concentrations above 100, which also exhibit frequent changes.

Both methods produced forecast errors at Station 1013. In Figure 5b, the proposed
method shows lower error than the conventional method due to over-forecasting. Specifi-
cally, the proposed method exhibits lower error during the increasing periods (40–68). In
Figure 5c, both methods show errors caused by over-forecasting.

At Station 1018, the proposed method mainly under-forecasts when the PM2.5 concen-
tration is less than 100. This leads to many errors. Conversely, the conventional method
over-forecasts and causes errors, as shown in Figure 5. In the 1140–1170 periods, the error
from the proposed method is lower than the error from the conventional method. In
Figure 5, where the PM2.5 concentration exceeds 100, both methods cause over-forecasting
errors. However, the proposed method results in lower errors.

In the case of PM2.5 at Station 1005, Figure 6a shows that both the proposed method
and the conventional method produced errors mainly due to over-forecasting. Figure 6b
confirms that the conventional method produced a larger error due to over-forecasting
compared to the proposed method. During the period 48–68, where the PM2.5 concentration
gradually increases, the conventional method exhibited a more significant over-forecasting
error than the proposed method. In Figure 6c, both methods caused errors due to under-
forecasting. However, in the 1050–1060 period, where the PM2.5 concentration exceeded
400, the proposed method produced a smaller under-forecasting error than the conven-
tional method.

In the case of Station 1023, the error mainly occurs due to under-forecasting, unlike
the other stations. In the periods 230–246 of Figure 6e, the proposed method shows a lower
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error due to under-forecasting compared to the conventional method. In Figure 6f, the
error caused by the proposed method’s under-forecasting is also lower than that of the
conventional method.

Table 4 shows the forecasting results for Case Study 1 as performance indices. Bold
in the table indicates better performance. The PBIAS does not indicate the magnitude
based on its sign; therefore, the average of PBIAS is calculated by converting each value
to its absolute value and then computing the mean of those absolute values. The RMSE
decreased by about 2.01% from 17.2571 to 16.9103 at Station 1013 and approximately 4.25%
from 22.4380 to 21.4842 at Station 1018. It decreased by 3.22% from 22.8176 to 22.0825
at Station 1005 and 4.30% from 17.0031 to 16.2714 at Station 1023. The forecast error
decreased as the average of all stations decreased by about 3.48% from 19.8789 to 19.1871
based on RMSE. The improved performance can also be seen in the MAE. It decreased
by approximately 3.09% from 10.5938 to 10.2671 at Station 1013 and improved by 12.51%
from 14.0076 to 12.2573 at Station 1018. It decreased by 9.16% from 14.2673 to 12.9601 at
Station 1005 and 8.25% from 10.9377 to 10.0363 at Station 1023. On average, it decreased
by 8.60% from 12.4516 to 11.3802, resulting in a lower overall forecast error. The R2 shows
an improvement in explanatory power with a slight increase in value at each station. It
increased by 0.27% from 0.9376 to 0.9401 at Station 1013 and by 0.60% from 0.9324 to
0.9380 at Station 1018. In addition, it increased by 0.44% from 0.9350 to 0.9391 at Station
1005 and by 0.66% from 0.9275 to 0.9336 at Station 1023, confirming that the model better
explains variations in the data. The R2 indicator increased by an average of 0.49% from
0.9331 to 0.9377, confirming that the model’s explanatory power for explaining the data
variances has improved. The rRMSE decreased at some stations, indicating improved
performance. At Station 1013, it decreased by approximately 2.04% from 0.2059 to 0.2017;
at Station 1023, it decreased by approximately 4.26% from 0.2251 to 0.2155. In addition, at
Stations 1018 and 1005, rRMSE decreased by 0.0075 and 0.0092, respectively, showing about
3.24% and 4.30% decreases. On average, it decreased by approximately 3.64% from 0.2192
of the conventional model to 0.2115 of the proposed model, confirming that the forecast
performance improved overall. The PBIAS index showed varying results across stations,
indicating differences in forecasting bias. At Station 1013, the PBIAS improved from
−6.0629 to 1.3573, reflecting a shift from over-forecasting to under-forecasting. At Station
1018, PBIAS improved from −4.0316 to 2.6637, showing a similar change. At Station 1005,
the conventional method had a PBIAS of −0.7858, which improved to −0.0378 with the
proposed method, indicating a reduction in bias. At Station 1023, the conventional method’s
PBIAS of 4.2174 decreased to 2.1168 with the proposed method, showing a reduction in
under-forecasting. On average, PBIAS decreased from 3.7744 for the conventional method
to 1.5364 for the proposed method, indicating an overall improvement in forecast accuracy
and a reduction in forecast bias.

Table 4. Performance Indices of PM2.5 Concentration Forecasting for Case Study 1.

Station ID
RMSE MAE R2 rRMSE PBIAS

Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv. Prop.

1013 17.2571 16.9103 10.5938 10.2671 0.9376 0.9401 0.2059 0.2017 −6.0629 1.3573
1018 22.4380 21.4842 14.0076 12.2573 0.9324 0.9380 0.2251 0.2155 −4.0316 2.6637
1005 22.8176 22.0825 14.2673 12.9601 0.9350 0.9391 0.2318 0.2243 −0.7858 −0.0378
1023 17.0031 16.2714 10.9377 10.0363 0.9275 0.9336 0.2138 0.2046 4.2174 2.1168

Average 19.8789 19.1871 12.4516 11.3802 0.9331 0.9377 0.2192 0.2115 3.7744 1.5364

Conv.: conventional method, Prop.: proposed method, Bold values indicate better performance.
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Figure 5. Results of PM2.5 concentration forecast for Station 1013: (a) Forecasting results for the test
data period. (b) Forecasting results for periods with PM2.5 concentrations of 100 or less. (c) Forecasting
results for periods with PM2.5 concentrations exceeding 100. Result of PM2.5 concentration forecast
for Station 1018: (d) Forecasting results for the test data period. (e) Forecasting results for periods
with PM2.5 concentrations of 100 or less. (f) Forecasting results for periods with PM2.5 concentrations
exceeding 100.
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Figure 6. Result of PM2.5 concentration forecast for Station 1005: (a) Forecasting results for the test
data period. (b) Forecasting results for periods with PM2.5 concentrations of 100 or less. (c) Forecasting
results for periods with PM2.5 concentrations exceeding 100. Result of PM2.5 concentration forecast
for Station 1023: (d) Forecasting results for the test data period. (e) Forecasting results for periods
with PM2.5 concentrations of 100 or less. (f) Forecasting results for periods with PM2.5 concentrations
exceeding 100.
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4.3. Case Study 2: Comparison of Forecasting Using Neighboring Stations vs. Standalone Station

In Case Study 2, we experimented with comparing the performance of a model using
a standalone station with a model that considers neighboring stations. The model used in
Case Study 2 has the same structure as the model implemented in Case Study 1, utilizing
the proposed attention score. Table 5 presents the RMSE values based on the mRMR score
for considering neighboring stations. The first row of the table lists the station ID, with
bold text highlighting the selected mRMR score, the number of neighboring stations, and
the RMSE for each station. Except for Station 1023, fewer than 10 neighboring stations
were selected.

Table 5. RMSE by mRMR score by station.

1013 1018 1005 1023

mRMR
Score

Number
of

Station
RMSE mRMR

Score

Number
of

Station
RMSE mRMR

Score

Number
of

Station
RMSE mRMR

Score

Number
of

Station
RMSE

0.96 1 16.5196 0.94 1 20.8046 0.93 1 22.9925 0.89 1 17.2837
0.13 2 16.3046 0.07 2 20.0653 0.07 2 21.7751 0.08 2 15.7653
0.12 3 16.5344 0.06 3 19.8194 0.06 3 24.0116 0.07 3 17.1782
0.09 4 16.3244 0.05 6 20.9996 0.05 4 24.1725 0.06 4 16.9708
0.07 5 16.3560 0.04 8 20.1663 0.04 7 24.2891 0.04 7 15.6276
0.06 6 16.1756 0.03 12 20.5897 0.03 15 25.2465 0.03 9 16.7848
0.05 7 16.5681 0.02 17 20.8992 0.02 19 25.2250 0.02 10 17.0142
0.04 10 17.2918 0.01 19 22.1383 0.01 23 25.2691 0.01 11 16.4986
0.03 13 17.2950 0 23 23.9987 0 25 25.4812 0 15 15.3535
0.02 18 16.3739 −0.01 25 24.0091 −0.01 29 27.3180 −0.01 17 16.3688
0.01 27 17.7325 −0.02 26 25.0417 −0.02 30 27.4363 −0.02 22 17.2486

0 31 18.5435 −0.03 29 25.0799 −0.03 31 27.2852 −0.03 28 19.7211
−0.01 34 17.4558 −0.04 30 24.5889 −0.04 33 27.6138 −0.04 33 18.3389

−0.05 33 25.3252 −0.06 34 24.8485 −0.06 34 18.3402
−0.06 34 27.0870

Bold values indicate better performance.

Figures 7 and 8 show the results of forecasting PM2.5 concentration by station. In
Figures 7 and 8 (a,d), the results of forecasting PM2.5 concentration for the test data period
are shown. In (b,e), the focus is on the periods where the average PM2.5 concentration is
below 100 and changes frequently, while in (c,f), the focus is on the periods where the PM2.5
concentration is above 100 and changes frequently.

Figure 7a–c shows the forecasting results for the PM2.5 concentration at Station 1013.
In Figure 7b, it can be seen that both the standalone method and the method considering
neighboring stations have errors due to over-forecasting. In periods 36–40, both methods
are over-forecasting, but the error is smaller when neighboring stations are considered.
When the PM2.5 concentration decreases to approximately 40, the forecast is more accurate
when neighboring stations are considered. As shown in Figure 7c, the over-forecasting
error is smaller when neighboring stations are considered, particularly during the periods
830–848, where the error is reduced.

The forecast results of PM2.5 concentration at Station 1018 are shown in Figure 7d–f.
In Figure 7e, during the periods from 1116 to 1130, the forecast method using neighboring
stations has a lower error than the method using a standalone station. In Figure 7f, the
method using a standalone station mainly under-forecasts, while the method using neigh-
boring stations tends to over-forecast. Specifically, for the periods between 847 and 870, the
forecast considering neighboring stations has a lower error. During the periods from 885
to 911, both methods generally under-forecast, but the method considering neighboring
stations produces a smaller error.
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Figure 7. Result of PM2.5 concentration forecasting for Station 1013: (a) Forecasting results for the test
data period. (b) Forecasting results for periods with PM2.5 concentrations of 100 or less. (c) Forecasting
results for periods with PM2.5 concentrations exceeding 100. Result of PM2.5 concentration forecasting
for Station 1018: (d) Forecasting results for the test data period. (e) Forecasting results for periods
with PM2.5 concentrations of 100 or less. (f) Forecasting results for periods with PM2.5 concentrations
exceeding 100.
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Figure 8. Result of PM2.5 concentration forecasting for Station 1005: (a) Forecasting results for the test
data period. (b) Forecasting results for periods with PM2.5 concentrations of 100 or less. (c) Forecasting
results for periods with PM2.5 concentrations exceeding 100. Result of PM2.5 concentration forecasting
for Station 1023: (d) Forecasting results for the test data period. (e) Forecasting results for periods
with PM2.5 concentrations of 100 or less. (f) Forecasting results for periods with PM2.5 concentrations
exceeding 100.
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In Figure 8, when the PM2.5 concentration was forecasted by considering the neighbors
of Station 1005, the error due to over-forecasting was lower than the result forecasted by
considering a standalone station. In particular, in Figure 8b, in the 48–68 periods where
the PM2.5 concentration gradually increases from 20 to 75, the forecasting performance
improved when the neighboring stations were considered. In Figure 8c, both methods
incur errors due to under-forecasting. When considering the neighboring stations in the
periods 1050–1065, the PM2.5 concentration forecasting performance is superior.

As Figure 8d shows, the method considering neighboring stations at Station 1023
and the method considering a standalone station have errors due to under-forecasting. In
Figure 8e, both methods are under-forecasting in all periods except for the 220–225 periods.
The method considering neighboring stations forecasts higher PM2.5 concentrations than a
standalone station. Therefore, the under-forecasting error is lower than the forecast consid-
ering a standalone station. In Figure 8f, both methods under-forecast and the forecasting
error considering neighboring stations is lower than that of the forecast considering a
standalone station.

Table 6 shows the PM2.5 concentration forecast results of Case Study 2 as a performance
indicator. The values in bold indicate cases where the performance exceeds that of the
other models.

Table 6. Performance Indices of PM2.5 Concentration Forecasting for Case Study 2.

Station ID
RMSE MAE R2 rRMSE PBIAS

Standalone Neighbor Standalone Neighbor Standalone Neighbor Standalone Neighbor Standalone Neighbor

1013 16.9103 16.1756 10.2671 9.8101 0.9401 0.9452 0.2017 0.1930 1.3573 0.3105
1018 21.4842 19.6820 12.2573 12.7890 0.9380 0.9480 0.2155 0.1974 2.6337 −0.5673
1005 22.0825 21.3221 12.9601 12.8822 0.9391 0.9433 0.2243 0.2166 −0.0378 −1.9433
1023 16.2714 15.3535 10.0363 9.8057 0.9336 0.9409 0.2046 0.1931 2.1168 0.4267

Average 19.1871 18.1333 11.3802 11.3217 0.9377 0.9444 0.2115 0.2000 1.5364 −0.8120

Bold values indicate better performance.

Regarding the RMSE, the forecast error decreased at all stations. The RMSE of Station
1013 decreased by approximately 4.34% from 16.9103 to 16.1756 when forecasting con-
sidered the neighboring stations, compared to when forecasting considered a standalone
station, and that of Station 1018 decreased by approximately 8.39% from 21.4842 to 19.6820.
In addition, that of Station 1005 decreased by approximately 3.44% from 22.0825 to 21.3221,
and that of Station 1023 decreased by approximately 5.64% from 16.2714 to 15.3535. The
average RMSE of all stations decreased by approximately 5.49% from 19.1871 to 18.1333
when considering the neighboring stations, confirming that the performance improved
overall. There are also some improvements in the MAE. The MAE of Station 1013 decreased
by approximately 4.45% from 10.2671 to 9.8101, and there were also slight decreases in
MAE at Stations 1005 and 1023. However, the MAE at Station 1018 increased slightly from
12.2573 to 12.7890; overall, the average MAE decreased slightly from 11.3802 to 11.3217,
showing a decrease in forecasting error. The R2 shows that the overall explanatory power of
the model is improved by considering neighboring stations. Station 1018 showed the most
considerable improvement, increasing from 0.9380 to 0.9480, and Station 1023 also increased
from 0.9336 to 0.9409. The average R2 of all stations increased by approximately 0.67% from
0.9377 to 0.9444, indicating that the model better explains data variation. The rRMSE also
decreased at most stations, indicating an improved forecasting performance. It decreased
from 0.2017 to 0.1930 at Station 1013, from 0.2155 to 0.1974 at Station 1018, and from 0.2046
to 0.1931 at Station 1023. The overall average decreased by approximately 5.44% from
0.2115 for the conventional model to 0.2000 for the proposed model, which can be evaluated
as an improvement in model performance. Finally, The PBIAS exhibited variations across
stations, reflecting differences in forecasting bias. At Station 1013, the PBIAS improved
significantly from 1.3573 to 0.3105, indicating a notable reduction in over-forecasting bias.
At Station 1018, the PBIAS shifted from 2.6337 to −0.5673, demonstrating a transition from
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over-forecasting to under-forecasting with reduced bias. At Station 1005, the standalone
station had a PBIAS of −1.0378, which changed to −1.9433 with the neighbor stations,
suggesting an increase in under-forecasting bias. Similarly, at Station 1023, the PBIAS de-
creased from 2.1168 to 0.4267, highlighting a reduction in forecasting bias. On average, the
PBIAS improved from 1.5364 with the conventional method to −1.8120 with the proposed
method, confirming a reduction in overall forecast bias and improved accuracy.

Multiple visualization techniques were employed to comprehensively analyze the
experimental results of Case Studies 1–2. Figure 9 shows the results for Cases Studies
1–2 as boxplots. Tables 7 and 8 present the boxplot parameters for PM2.5 concentration
forecasting results from each station. In Figure 9 and Tables 7 and 8, “Conv.” refers to
the conventional attention method model used in Case Study 1. “Standalone” represents
the standalone stations model employing the proposed attention method in Case Study 2.
“Neighbor” denotes the neighbor-integrated stations model utilizing the proposed attention
method in Case Study 2. The tables include the minimum, first quartile (Q1), median (Q2),
third quartile (Q3), and maximum values, comparing the target values with the forecasting
results made by the models (Conv., Standalone, and Neighbor). For Station 1013, the
Neighbor model provided the closest forecasting results to the target values, showing
similar results in Q1 and Q2. The Conv. and Standalone models tended to over-forecast,
with the minimum value for the Neighbor model being the only one below the target,
indicating some under-forecasting. At Station 1018, the Neighbor model again yielded the
closest forecasting results, with the Conv. model showing slightly higher values than the
target. In Q1 and Q2, the Neighbor model’s forecasting results were closer to the target,
while the other models showed higher values. For Station 1005, the Neighbor model also
performed better, with forecasting results close to the target in Q1 and Q2. Both Conv. and
Standalone models had a wider range of forecasting results, with the maximum values
showing significant discrepancies from the target. At Station 1023, the range of forecasting
results was narrower compared to the other stations, and the Neighbor model once again
provided forecasting results closest to the target. In Q1, Q2, and Q3, all models showed
similar results to the target, but the Conv. model tended to slightly underestimate the values.
In conclusion, across all stations, the Neighbor model generally provided forecasting results
closer to the target values compared to the Conv. and Standalone models. The Neighbor
model showed more consistent and accurate results in Q1, Q2, and Q3, indicating that
incorporating neighboring station data improves forecasting accuracy. Meanwhile, the
Conv. and Standalone models exhibited larger variability in their forecasting results, often
over-forecasting or under-forecasting the target values.

Table 7. Boxplot Parameters of PM2.5 Concentration Forecasting for Stations 1013 and 1018.

Station 1013 1018

Statistics Target Conv. Standalone Neighbor Target Conv. Standalone Neighbor

Minimum 3 0 0 −0.35 3 0 0 3.55
Q1 125 131.86 123.6 126.18 132 133.09 127.51 132.47

Q2 (Median) 72 76.19 67.09 70.21 84 87.44 79.92 82.47
Q3 22 26.26 19.85 22.27 33 40.82 32.97 35.89

Maximum 334 326.96 329.77 324.21 545 497.86 505.58 494.02
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Table 8. Boxplot Parameters of PM2.5 Concentration Forecasting for Stations 1005 and 1023.

Station 1005 1023

Statistics Target Conv. Standalone Neighbor Target Conv. Standalone Neighbor

Minimum 3 0 0 9.62 3 0 0 0
Q1 129 126.64 126.02 130.6 123 115.18 120.18 120.67

Q2 (Median) 78 81.66 78.93 79.77 66 64.25 65.94 67.29
Q3 35 41.92 39.87 38.88 23 25.22 23.65 23.72

Maximum 582 493.93 525.78 524.64 331 315.85 322.48 354.19

Figure 9. Boxplot of PM2.5 concentration forecasting result for Station: (a) 1013. (b) 1018. (c) 1005. (d) 1023.

Figure 10 shows the results for Case Studies 1–2 as Taylor diagrams. The Tables 9 and 10
present the Taylor diagram parameters for PM2.5 concentration forecasting results from each
station. Figure 10 and Tables 9 and 10 present that the Neighbor model provides the most
accurate PM2.5 concentration forecasts. Its standard deviation (STD) and root mean square
difference (RMSD) are closest to the target values across all stations. All models achieved high
correlation coefficients of 0.97, showing a strong relationship with the target data. However,
the Neighbor model consistently minimized forecast errors more effectively. At Station 1013,
the Neighbor model’s STD was 68.02, closely matching the target of 69.07. Its RMSD was
the lowest at 16.17. In comparison, the Conv. and Standalone models had STDs of 69.65
and 71.11 and RMSDs of 16.45 and 16.82. At Station 1018, the Neighbor model showed an
STD of 83.67 and an RMSD of 19.67, outperforming the Conv. model (STD: 82, RMSD: 22.07)
and the Standalone model (STD: 83.97, RMSD: 21.31). For Station 1005, the Neighbor model
showed the closest STD to the target, with a value of 85.27 compared to the target of 89.51.
It also had the lowest RMSD of 21.24. The Conv. and Standalone models showed larger
deviations, with STDs of 79.92 and 83.14 and RMSDs of 22.80 and 22.08. At Station 1023, the
Neighbor model recorded an STD of 62.75 and an RMSD of 15.35, which are better than the
Conv. model (STD: 58.29, RMSD: 16.66) and the Standalone model (STD: 61.17, RMSD: 16.12).
The Neighbor model is close to the target values, reducing forecast errors and variability.
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It outperforms the Conv. and Standalone models. This demonstrates that incorporating
neighboring station data improves forecasting accuracy for PM2.5 concentrations.

Figure 10. Taylor Diagram of PM2.5 Concentration Forecasting Result for Station: (a) 1013. (b) 1018.
(c) 1005. (d) 1023.

Table 9. Taylor Diagram Parameters of PM2.5 Concentration Forecasting for Stations 1013 and 1018.

Station 1013 1018

Statistics Target Conv. Standalone Neighbor Target Conv. Standalone Neighbor

STD 69.07 69.65 71.11 68.02 86.29 82 83.97 83.67
RMSD 0 16.45 16.82 16.17 0 22.07 21.31 19.67

Correlation 1 0.97 0.97 0.97 1 0.97 0.97 0.97

Table 10. Taylor Diagram Parameters of PM2.5 Concentration Forecasting for Stations 1005 and 1023.

Station 1013 1018

Statistics Target Conv. Standalone Neighbor Target Conv. Standalone Neighbor

STD 89.51 79.92 83.14 85.27 63.15 58.29 61.17 62.75
RMSD 0 22.80 22.08 21.24 0 16.66 16.12 15.35

Correlation 1 0.97 0.97 0.97 1 0.97 0.97 0.97

Figure 11 shows the results for Case Studies 1–2 as radar charts. RMSE, MAE, and
rRMSE are performance indices representing the magnitude of forecasting errors, with
smaller values indicating better model performance. On the other hand, the better the
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performance of the model matches the actual data, the higher R2 increases. Additionally,
PBIAS values closer to zero indicate smaller discrepancies between the forecasted and actual
values. Because of these differences, using all these performance indices simultaneously
in a radar chart could lead to interpretational confusion. Therefore, only RMSE, MAE,
and rRMSE are used in the radar chart to provide an intuitive and consistent performance
evaluation. The results from the models applied to each station, as reflected in the radar
chart, demonstrate that the Neighbor model consistently outperforms the Conv. and
Standalone models in terms of RMSE and rRMSE across all stations. At Station 1013, the
Neighbor model showed the lowest RMSE (16.1756), MAE (9.8101), and rRMSE (0.1930),
indicating that it provides the most accurate forecasting with the smallest errors. A similar
trend was observed at Station 1018, where the Neighbor model outperformed the Conv.
model in RMSE (19.682) and rRMSE (0.1974), but the Standalone model showed the best
MAE (12.2573). At Station 1005, the Neighbor model had the lowest RMSE (21.3221) and
rRMSE (0.2166), while the Standalone model showed the best MAE (12.9601), demonstrating
the variability of the models’ performance across different metrics. Finally, at Station 1023,
the Neighbor model exhibited the best performance with the lowest RMSE (15.3535),
MAE (9.8057), and rRMSE (0.1931). These results consistently show that incorporating
neighboring station data leads to more accurate and reliable PM2.5 concentration forecasting
across different stations, especially in terms of RMSE and rRMSE.

Figure 11. Radar chart of PM2.5 concentration forecasting result for Station: (a) 1013. (b) 1018. (c) 1005.
(d) 1023.

Figure 12 shows the results for Case Studies 1–2 as scatter plots. In Figure 12, the red
line represents the R2 line. R2 represents the linear regression fit, showing the relationship
between the forecast and actual values. The Neighbor model achieved the highest R2 value
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of 0.9723 at Station 1013, slightly surpassing the Conv. model (0.9719) and the Standalone
model (0.9716). All three models demonstrated a strong linear correlation with the actual
values, indicating reliable forecast accuracy. However, the Neighbor model showed the
closest alignment with the observed values. For Station 1018, the Neighbor model exhibited
superior performance, achieving an R2 value of 0.9737. This result outperformed both
the Conv. model (0.9669) and the Standalone model (0.969). These findings highlight
that integrating data from neighboring stations improves forecasting accuracy and better
matches actual data. At Station 1005, the Neighbor model recorded an R2 value of 0.9716,
narrowly exceeding the Conv. model (0.9701) and the Standalone model (0.97). Although
the performance differences among the three models were small, the Neighbor model
demonstrated a distinct advantage in capturing the underlying patterns in the data. Station
1023 also saw the Neighbor model achieving the best R2 value of 0.9703, outperforming the
Standalone (0.9669) and Conv. (0.9655) models. This consistent performance across stations
underscores the effectiveness of incorporating spatial data for more accurate forecasting.

Figure 12. Scatter Plot of PM2.5 Concentration Forecasting Result for Station: (a) 1013. (b) 1018.
(c) 1005. (d) 1023.

Zhang et al.’s [63] study addressed a similar challenge in forecasting PM2.5 concen-
trations. Table 11 presents the forecasting results for each monitoring station reported
in [63]. The proposed model shows superior forecasting performance compared to the
previous study across stations. At Station 1023, the proposed model reduced the RMSE
from 23.741 to 15.3535. Similarly, the MAE decreased from 14.037 to 9.8057. The R2 value
also improved from 0.931 to 0.9409. These results indicate a better alignment between the
forecasted and actual values. For Station 1005, the proposed model exhibited slightly better
performance. It achieved an RMSE of 21.3221 compared to 18.055 in the previous study.
The MAE was marginally lower, with values of 12.8822 versus 10.977. Additionally, the R2

value increased from 0.938 to 0.9433, demonstrating improved correlation with the actual
values. The proposed model demonstrated notable improvements over the previous study
at Station 1018. It achieved an RMSE of 19.682, which is markedly lower than the 22.742
reported previously. The MAE also showed a notable reduction, decreasing from 13.979
to 12.789. Additionally, the R2 value increased from 0.939 to 0.9480, indicating enhanced
precision in forecasting PM2.5 concentrations. This comparison shows that the proposed
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method achieves superior accuracy. It eliminates redundancy and effectively uses data from
neighboring stations. Consequently, the enhanced performance of the proposed method
validates its advantage over previous studies.

Table 11. Forecast Results from Related Studies

Station ID RMSE MAE R2

1023 23.741 14.037 0.931
1005 18.055 10.977 0.938
1018 22.742 13.979 0.939

4.4. Discussion

Accurately forecasting PM2.5 concentrations is critical to mitigating the severe impacts
of air pollution on human health and the environment. Providing reliable forecasting sup-
ports effective air quality management and informed policy decisions. This study introduces
a novel approach to improving PM2.5 forecasting accuracy by leveraging spatiotemporal data
from neighboring monitoring stations. The proposed method integrates multiple advance-
ments: selecting relevant neighboring stations using the mRMR algorithm, modeling nonlinear
interactions with a CNN, and enhancing attention mechanisms with a refined scoring strategy.

Two case studies conducted at four monitoring stations in Beijing, China, demon-
strated the effectiveness of the proposed method. When compared to conventional attention
mechanisms, the enhanced attention score improved RMSE by 3.48%p, MAE by 8.60%p, R2

by 0.49%p, rRMSE by 3.64%p, and PBIAS by 59.29%p. Furthermore, when data from neigh-
boring stations are considered, we see even greater improvements, with RMSE decreasing
by 5.49%p, MAE increasing by 0.51%p, R2 increasing by 0.67%p, rRMSE improving by
5.44%p, and PBIAS improving by 46.56%p.

5. Conclusions

To mitigate the long-term adverse health effects of PM2.5, this study forecasts PM2.5
concentrations one hour ahead by incorporating both temporal and spatial information.
The forecasting process consists of two steps. In the first step, mRMR is used to select neigh-
boring stations, which incorporates spatial information, and a CNN integrates the data
from these stations. In the second step, Seq2Seq-attention is used to forecast PM2.5 concen-
trations based on the integrated data. Previous studies have used correlation coefficients to
account for neighboring stations or have forecasted by considering all neighboring stations.
These methods increase model complexity, potentially degrading forecast performance. In
contrast, mRMR was chosen in this study because it enhances the correlation between the
main and neighboring stations while reducing redundancy. This reduces model complexity
and ensures that only relevant station data are used. Data integration is performed with
a CNN to account for the nonlinearity in the selected data. Finally, Seq2Seq-attention
is used for forecasting PM2.5 concentrations, with the attention score emphasizing both
similarity and dissimilarity. Two case studies were conducted to evaluate the performance
of the proposed method. Case Study 1 (Section 4.2) compared forecasting performance
with attention score improvement, while Case Study 2 (Section 4.3) evaluated forecasting
performance based on whether or not data from neighboring stations were considered.
The experimental results showed that the improved attention score led to better forecast
performance by accounting for dissimilarity. Furthermore, incorporating both spatial and
temporal information from neighboring stations significantly improved performance com-
pared to the standalone station model. This study adopts a comprehensive approach to air
quality forecasting. It combines advanced feature selection, nonlinear data integration, and
refined attention mechanisms to address spatial and temporal complexities effectively. The
results suggest that considering spatiotemporal information from neighboring stations can
improve forecasting performance compared to conventional methods. However, the model
has certain limitations. It forecasts PM2.5 concentrations only one hour ahead. Addition-
ally, it considers data from neighboring stations to be static, not accounting for potential
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dynamic changes in station relationships over time. This static approach may not fully
capture the evolving nature of air quality patterns. Future work will improve the accuracy
and applicability of the model in real-time air quality management by considering dynamic
relationships between stations and extending the forecast range.
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