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Abstract: In the paper, several theoretical approaches to the determination of the reduced absorption
and emission coefficients under local thermodynamic equilibrium conditions were exposed and
discussed. The full quantum-mechanical procedure based on the Fourier grid Hamiltonian method
was numerically robust but time consuming. In that method, all transitions between the bound,
free, and quasi-bound states were treated as bound–bound transitions. The semi-classical method
assumed continuous energies of ro-vibrational states, so it did not give the ro-vibrational structure
of the molecular bands. That approach neglected the effects of turning points but agreed with the
averaged-out quantum-mechanical spectra and it was computer time efficient. In the semi-quantum
approximation, summing over the rotational quantum number J was done analytically using the
classical Franck–Condon principle and the stationary–phase approximation and its consumption of
computer time was lower by a few orders of magnitude than the case of the full quantum-mechanical
approach. The approximation described well the vibrational but not the rotational structure of the
molecular bands. All the above methods were compared and discussed in the case of a visible and
near infrared spectrum of LiHe, Li2, and Cs2 molecules in the high temperature range.

Keywords: diatomic molecules; optical spectra; thermodynamic equilibrium; quantum-mechanical
calculation; semi-classical approximation

1. Introduction

Numerical simulations of the absorption and emission spectra of diatomic molecules provide
efficient tools for checking the accuracy of molecular electronic structure calculations and diagnostics
of vapors at high temperatures. To obtain valuable theoretical knowledge of the molecular spectra and
pressure broadened atomic line profiles, one needs the precise molecular potential curves and transition
dipole moments, as well as a correct and time-efficient theoretical spectral simulation method.

Theoretical spectra as functions of temperature and density enable interpretations of the observed
spectra of gases in laboratory conditions, and the Earth or stellar atmosphere enables their temperature
and number density determination. To do that in the theoretical spectra, simulation temperature and
number density are changing as parameters in an iterative procedure to obtain the best agreement
with the experimental spectra. Such a procedure for temperature and number density determination is
time consuming. That is why we paid special attention in this paper to the numerical time-efficiency
of the theoretical approaches described.

This article is organized as follows. The basic expressions for the reduced absorption and emission
coefficients and their mutual relationship at the thermodynamic equilibrium are defined in Section 2.
Several methods of spectral profile calculation are explained in Section 3. In Section 3.1, we discussed
the semi-classical approach where the motion of atoms in a molecule is described by classical trajectory
and the energies of bound and free ro-vibrational states are continuous. Here we suggested a new
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form of the generalized uniform Airy approximation of spectra (relations in Equations (22) and (23))
it was suitable for numerical evaluation. In Section 3.2, methods are explained, founded on full a
quantum-mechanical calculation on the Fourier Hamiltonian grid, where free molecular states are
represented with “bound” states in the box defined by the grid. We introduced an approximation
of the full quantum calculation, suitable for the case where summation over many rotational states
is needed (relation in Equation (28)). In Section 4, the reduced absorption coefficients of LiHe, Li2,
and Cs2 molecules are shown for some electronic transitions at temperatures T = 500, 1000, 2000 K
calculated using different approaches. In Section 5, we compared the different theoretical approaches,
discussed their numerical efficiency and physical reliability, and suggested their applicability in
different situations.

2. Theoretical Background

The thermally averaged absorption or emission spectra comprise of contributions from the
transitions between all ro-vibrational states of a lower Λ′′ and the upper Λ′ electronic state (Λ is
the axial component of the electronic angular momentum). In each electronic state Λ, there is a
finite number of bound and quasi-bound states with unity-normalized wave functions ϕvJΛ (v is a
vibrational quantum number and J is a rotational quantum number), and an infinite continuum of free
ro-vibrational states with energy-normalized wave functions φεJΛ.

According to Lam et al. [1] and Chung et al. [2], the absorption cross section from a ro-vibrational
state of the lower electronic state (v′′ , J ′′ , Λ′′ ) to the ro-vibrational state of the upper electronic state
(v′, J′, Λ′) is given by

σv′ J′Λ′

v′′ J′′Λ′′ (ν) =
8π3ν

3hc
wΛ′′

SJ′Λ′

J′′Λ′′

2J ′′ + 1

∣∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′ J′Λ′
〉∣∣∣2g(ν− νtr). (1)

D(R) is the electronic transition dipole moment, µ is the molecular reduced mass, g(ν− νtr) is

the line-shape function, hυtr = Ev′, J, Λ′ − Ev′′ ,J, Λ′′ is the transition energy, and wΛ =
2−δ0, Λ′ +Λ′′

2−δ0, Λ
is the

statistical factor dependent on the symmetry of electronic states. SJ′Λ′
J′′Λ′′ are Hönl-London factors.

The energies Ev, J, Λ and radial wave functions ϕvJΛ can be obtained from the Schrödinger equation(
EvJΛ −VΛ(R)− }2

2µ

J(J + 1)−Λ2

R2 +
}2

2µ

d2

dR2

)
ϕvJΛ(R) = 0, (2)

where VΛ(R) is the potential of the electronic state Λ. The same equation gives the energies EεJΛ and
energy normalized wave functions φεJΛ of the free states.

The absorption coefficient K(ν) is obtained by averaging over the initial ro-vibrational levels with
weighting factors ρ(v′′ , J ′′ , Λ′′ ) and summing over all the transitions, multiplied by the number density
of molecules in the lower state NΛ′′ .

K(ν) = NΛ′′
1

ZΛ′′
∑

v′′ v′ J′′ J′
ρ(v′′ , J ′′ , Λ′′ )σv′ J′Λ′

v′′ J′′Λ′′ (ν), (3)

where ZΛ = ∑
v,J

ρ(v, J, Λ) is the partition function of the molecular state Λ. Here, it is understood that

the formal summation comprises both, the summation over bound states and the integration over
free states.

Assuming thermodynamic equilibrium, the weighting factor is ρ(v, J, Λ) =

ωJ(2J + 1) exp
(
−DΛ+EvJΛ−EΛ

kBT

)
, where ωJ is a statistical factor equal to one for heteronuclear

molecules and dependent on atomic nuclear spin I and parity of molecular angular momentum J for
homonuclear molecules. DΛ is the dissociation energy of the state Λ, and EΛ = VΛ(R→ ∞) .
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In the case of non-LTE plasma, there is no general expression for the weighting factor. In the
simplest case, where the statistical ensemble can be described with two temperatures Tv and
TR (vibrational and rotational temperature, respectively), the weighting factor has a simple form

ρ(v, J, Λ) = ωJ(2J + 1) exp
(
−DΛ+Ev

vJΛ−EΛ
kBTV

− ER
vJΛ

kBTR

)
, where Ev

vJΛ is the vibrational part and ER
vJΛ is the

rotational part of the ro-vibrational state energy.
At thermodynamic equilibrium, the number density of molecules in the electronic states NMΛ′′

and number densities of atoms in the electronic states nAΛ and nBΛ, in which molecules dissociate,
are related according to the mass action law [2,3]

NMΛ

nAΛnBΛ
=

(2S + 1)(2Λ + 1)
(2SA + 1)(2LA + 1)(2SB + 1)(2LB + 1)

(2πµkT)−3/2 exp
(

De

kT

)
ZΛ, (4)

SA,B is spin and LA,B the angular momentum of the atom A, B. The absorption coefficient K(v, T) is:

K(ν, T) = NANBC(Λ′′ , T)P(ν, T), (5)

where: C(Λ′′ , T) = 8π3

3hc wΛ′′
(2S+1)(2Λ′′+1)

(2SA+1)(2LA+1)(2SB+1)(2LB+1) (2πµkT)−3/2 and P(ν, T) is the molecular
transition profile:

P(ν, T) = ν ∑
v′′ v′ J′′ J′

ωJ′′ e
−

E
v′′ J′′ Λ′′

kBT SJ′Λ′
J′′Λ′′

∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′ J′Λ′
〉∣∣2g(ν− νij). (6)

The reduced absorption coefficient k(ν, T) is:

k(ν, T) =
K(ν, T)

nAΛ′′ nBΛ′′
= C(Λ′′ , T)P(ν, T). (7)

The thermal emission from a uniform layer of thickness L is related to the absorption coefficient K
(v, T) by Kirchhoff’s law of thermal radiation [4]. Spectral radiance I(ν, T) can be written as

I(v, T) =
2hν3

c2
1− exp[−LK(v, T)(1− exp(−hv/kBT))]

exp(hv/kBT)− 1
. (8)

If hv/kBT >> 1 and the medium is optically thin, LK(v, T) << 1, the spectral radiance is

I(v, T) ≈ nAΛ′′ nBΛ′′ Le−
hv

kBT 2hν3

c2 k(ν, T). Let a molecule in the excited electronic state Λ′ dissociate in
free atoms, where the electronic populations are nAΛ′ and nBΛ′ . At thermal conditions, it holds that
nAΛ′′ nBΛ′′
nAΛ′nBΛ′

= exp
(

E
Λ′−E

Λ′′
kBT

)
, so we can write I(v, T) ≈ nAΛ′nBΛ′L

2hν3

c2 exp
(
−

hν−E
Λ′+E

Λ′′
kBT

)
k(ν, T) and

define the reduced emission coefficient

ε(v, T) = I(v, T)
nAΛ′nBΛ′ L

= 2hν3

c2 exp
(
−

hν−E
Λ′+E

Λ′′
kBT

)
k(ν, T)

= C(Λ′′ , T) 2hν3

c2 exp
(
−

hν−E
Λ′+E

Λ′′
kBT

)
P(ν, T)

(9)

As in the case of a reduced absorption coefficient, to determine a reduced emission coefficient
it is necessary to calculate the transition profile P(ν, T), which is the main object of investigation in
this article.
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3. Methods

3.1. Semi-Classical Approximation (SCA)

Turning a unity-normalized wave function of the bound and quasi bound state ϕvJ∆ into an

energy-normalized wave function ΨεJΛ = φvJΛ/
√∣∣∂Evj∆/∂v

∣∣, replacing sums over the discrete

quantum numbers with integrals ∑
v
→

∞∫
εmin

∂v
∂ε dε and ∑

J
(2J + 1)→

∞∫
0

dY , where Y = J(J + 1),

approximating the line shape function with the Dirac delta function g(v− vtr) = δ(v− vtr), the spectral
profile in Q-branch approximation (J′ = J ′′ = J) can be written as:

P(ν, T) ≈ hν
∞∫

ε′′min

dε′′ exp(− ε′′
kBT )

∞∫
0

dY
∣∣∣〈Ψε′′ ,Y,Λ′′ |D(R)|Ψε′′+hν,Y,Λ′

〉∣∣∣2Θ(ε′′ + hν− ε′min). (10)

ε′′min and ε′min are the minimal values of VΛ′′ (R) and VΛ′(R), respectively, and θ is the Heaviside step
function. Using WKB wave functions and neglecting the rapidly oscillating phase, one obtains the
transition dipole matrix element in the form:〈

ϕε,Y, Λ′′ |D(R)| ϕε+hν, Y, Λ′
〉

=
√

2m
π}

Rmax∫
Rmin

D(R)
4
√

(ε−VΛ′′ (R, y))(ε+hν−VΛ′ (R, y))
cos(φ(ν, ε, R))dR where

VΛ(R, Y) = VΛ(R)− }2Y
2µR2 , φ(ν, ε, R) =

√
2m
}

(
R∫

Rt
′′

√
ε−VΛ′′′ (R′, y)dR′ −

R∫
Rt ′

√
ε + hν−VΛ′(R′, y)dR′

)
.

R′′ t and R′t are classical turning points in electronic states Λ′′ and Λ′, respectively. Rmin and Rmax

determine the classically allowed interval of interatomic distances, where ε − VΛ′′ (R, Y) and
ε + hν − VΛ′′ (R, Y) are positive. If we assume the classical radial movement of atoms R = R(t),
integration over interatomic distances R can be replaced by integration over time t using the

transformation dR = dR
dt dt = v(R)dt. We chose v(R) =

√
2
m

4
√
(ε−VΛ′′ (R, Y))(ε + hν−VΛ′′ (R, Y))

and v(R) = 1
2

√
2
m

(√
ε−VΛ′′ (R, Y) +

√
ε + hν−VΛ′′ (R, Y

)
in the main and phase integral,

respectively. Matrix element of the transition dipole moment is now described as the
transition amplitude of the perturbed classical oscillator:

〈
ϕε,Y, Λ′′ |D(R)| ϕε+hν, Y, Λ′

〉
=

2
π}

tmax∫
tmin

dtD(R(t)) cos

(
1
}

t∫
tmin

(∆(R(t′))− hν) dt′
)

, where Rmin = R(tmin), Rmax = R(tmax) and

∆(R(t)) is the difference potential ∆(R(t)) = VΛ′(R(t)) − VΛ′′ (R(t)). Choosing tmin = 0 and
tmax = ∞ relation (10) gets the form:

P(ν, T) =
4ν

h

∞∫
ε′′min

dε′′ exp(− ε′′

kBT
)

∞∫
0

dY

∣∣∣∣∣∣
∞∫
−∞

dtD(t)e
1
}

t∫
0
(∆(t′)−hν) dt′

∣∣∣∣∣∣
2

. (11)

All transitions are between the continuous states and transition probabilities were given classically.
The time-dependent integral in Equation (11) had the form of a Fourier integral and may be solved
numerically using Fast Fourier algorithms [5,6]. Another way to solve this integral would be a
stationary phase approximation which provided the benefit of an analytical solution.

3.1.1. Quasi-Static Approximation

Using the first order stationary phase approximation to calculate the time-dependent integral in
Equation (11) partial integration over Y, and neglecting the rapidly oscillating terms, one obtains a
non-coherent quasi-static formula for the spectral profile:

P(ν, T) =
√

π(2µkBT)3/2

}2 ν
n

∑
i=1

R2
iνD(Riν)

2

|∆′(Riν)|
exp(−VΛ′′ (Riν)

kBT
), (12)
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where ∆′(R) = d
dR ∆ (R). Summation is over all the real Condon points Riν, satisfying the classical

Franck-Condon condition ∆(Riν) = hν.
Although the semi-classical approach treats all types of transitions (bound–bound, bound–free,

free–bound, and free–free) on the same footing, it is possible to estimate the single-type contribution
to the total spectral profile [7]. The population distribution in the free and bound molecular states is
given by the classical canonical equilibrium distribution. The relative contribution of molecules having
a internuclear distance R and kinetic energy of relative motion Ek ≤W(R) is:

n(T, R) =
2√
π

γ

(
3
2

,
W(R)
kBT

)
(13)

where γ is the lower incomplete gamma function.
According to the classical Franck-Condon principle, molecules with kinetic energy EK ≤

Wbb(R) = min[(EΛ′ −VΛ′′ (R))Θ(EΛ′′ −VΛ′′ (R)), (EΛ′ −VΛ′(R))Θ(EΛ′′ −VΛ′′ (R))] participate in a
bound–bound transition with relative contribution:

nbb(T, R) =
2√
π

γ

(
3
2

,
Wbb(R)

kBT

)
. (14)

Similarly, in the free–free transition, molecules with kinetic energy EK ≥ W f f (R) =

max[(EΛ′ −VΛ′′ (R))Θ(EΛ′′ −VΛ′′ (R)), (EΛ′ −VΛ′(R))Θ(EΛ′′ −VΛ′′ (R))] participate with relative
contribution:

n f f (T, R) = 1− 2√
π

γ

(
3
2

,
W f f (R)

kBT

)
. (15)

All other transitions (bound–free or free–bound) have relative contributions:

nb f (T, R) = 1− nbb(T, R)− n f f (T, R) =
2√
π

[
γ

(
3
2

,
W f f (R)

kBT

)
− γ

(
3
2

,
Wbb(R)

kBT

)]
. (16)

Now one can describe the different types of transition using the quasi-static formula:

Pxx(ν, T) =
√

π(2µkBT)3/2

}2 ν
n

∑
i=1

R2
iνD(Riν)

2

|∆′(Riν)|
nxx(T, Riν) exp(−VΛ′′ (Riν)

kBT
), (17)

where index xx is (bb, bf, ff ) and denotes the bound–bound, bound–free or free–bound, and free–free
transitions, respectively.

3.1.2. Uniform Airy Approximation

The quasi-static formula generally gives a good description of the absorption coefficient, but it
diverges in the difference potential extremes (classical singularities). This divergence can be removed by
mapping the phase of the semi-classical canonic integral, into the characteristic form of the elementary
catastrophes [8]. In the case where the difference potential has one extreme point Re∆(Re) = hνe

and two Condon points, Connor et al. [9] suggested mapping of the phase on the form of the
elementary “fold” catastrophe, with a parameter of mapping dependent on the Condon points phase
difference. Following these concepts Beuc et al. [10] defined the coherent uniform Airy approximation
of the spectral profile, which showed that for frequencies where two real Condon points R1ν and
R2ν(R1ν ≤ Re ≤ R2ν) exist:

P(ν, T) =
√

π(2µkBT)3/2

}2 ν


[

R2
1D(R1)

2

|∆′(R1)|
exp(−VΛ′′ (R1)

kBT ) +
R2

2D(R2)
2

|∆′(R2)|
exp(−VΛ′′ (R2)

kBT )

]
3
√

π(
√

ζL(z) + 1√
ζ

H(z))+

+2 R1
2D(R1)D(R2)√
|∆′(R1)| |∆′(R2)|

exp(−VΛ′′ (R1)

kBT )3
√

π(
√

ζL(z)− 1√
ζ

H(z))

. (18)
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Functions L(z) =
∞∫
0

dx Ai[−zx]2

x2 exp
(
−1/x3) and H(z) =

∞∫
0

dx Ai′[−zx]2

x3 exp
(
−1/x3) are integrals

of the square of the Airy function and its first derivative, respectively. Mapping parameter z is

defined by the Condon point phase difference z = z(ν, T) =
(

µ
2kBT

) 1
3

(
3sgn[∆′′ (Re)]

4}

R2v∫
R1ν

dR(∆(R)− hν

) 2
3

.

Vicharelli et al. [11] derived a similar form of profile using a mapping parameter zc =

1
2

(
µ

}2kBT

) 1
3 ∆′(Rc)

2

|∆′′ (Rc)|
4
3

locally defined in each Condon point. The same mapping parameter was used in

the non-coherent uniform Airy approximation by Szudy and Baylis [12].
After introducing the functions N(z) = 6

√
πL(z) and M(z) = 6

√
π(H(z)− zL(z)) the relation

in Equation (18) can be reorganized in following form:

P(ν, T) =
√

π(2µkBT)3/2

}2 ν


[

R2
1D(R1)

2

|∆′(R1)|
exp(−VΛ′′ (R1)

kBT ) +
R2

2D(R2)
2

|∆′(R2)|
exp(−VΛ′′ (R2)

kBT )

]√
zN(z)+

+

[
R2

1D(R1)
2

|∆′(R1)|
exp(−VΛ′′ (R1)

kBT )− 2 R1
2D(R1)D(R2)√
|∆′(R1)| |∆′(R2)|

exp(−VΛ′′ (R1)

kBT ) +
R2

2D(R2)
2

|∆′(R2)|
exp(−VΛ′′ (R2)

kBT )

]
1

2
√

z M(z)

. (19)

If parameter z is larger z > 10 than
√

zN(z)→ 1 and M(z)→ 0 (Figure 1), so it is important
to the analyzed profile in the neighborhood of the extreme. The transition dipole moment can be
approximated with a linear expansion D(R) = D(Re) + D′(Re)(R− Re) and a difference potential
with cubic expansion ∆(R) = hνe +

1
2 ∆′′ (Re)(R− Re)

2 + 1
6 ∆′′′ (Re)(R− Re)

3. Mapping parameter z in
this region has a simple form as described in Reference [13]:

z = ze = ze(v, T) =
(

4π2hµ

kBT|∆′′ (Re)|

) 1
3

sgn[∆′′ (Re)](νe − ν). (20)

The transitional approximation of the spectral profile in the neighborhood of the extreme gives:

P(ν, T) =
√

π(2µkBT)3/2

}2 ν
(

µ

8}2kBT

) 1
6 R2

e

|∆′′ (Re)|2/3 e−
V(Re)
kBT

D(Re)
2N(ze) +

(
8}2kBT

µ

) 1
3

[
D′(Re)−D(Re)

∆′′′ (Re)
6∆′′ (Re)

]2

|∆′′ (Re)|
2
3

M(ze)

. (21)

First part in Equation (21) is the contribution of the Condon points pair, and it can be used as an
analytical continuation in the classically forbidden region, where ze ≤ 0. The second part contains
the interference contribution of the neighboring Condon points and depends on two parameters:
D′(Re) and ∆′′′ (Re)/∆′′ (Re). The first parameter is important in the case of a strongly varying
transition dipole moment as pointed out in Reference [9]. The second parameter, defined by the
anharmonicity of the difference potential in the neighborhood of the extreme, was extensively discussed
in Reference [14]. Even in the case when the dipole moment at the extreme goes through zero [15],
there is a non-vanishing contribution to the spectral profile given by the second part in Equation (21).
Behavior of the functions

√
zN(z), N(z), and M(z) suggest that it is most important to know the

function z(v, T) in the neighborhood of the extreme, so we approximated this function in a whole
range of frequencies with z(ν, T) = ze(v, T). Using the same reasoning, we approximated the last part
in the parenthesis of Equation (19) by the corresponding contribution of the transitional approximation
in Equation (21). The spectral profile can be written as:

P(ν, T) =
√

π(2µkBT)3/2

}2 ν


2
∑

i=1

R2
i D(Ri)

2

|∆′(Ri)|
exp(−VΛ′′ (Ri)

kBT )
√

zeN(zi)Θ(ze) +
(

µ

8}2kBT

) 1
6 R2

e D(Re)
2

|∆′′ (Re)|2/3 e−
V(Re)
kBT N(ze)Θ(−ze)

+
(

8}2kBT
µ

) 1
6

R2
e

[
D′(Re)−D(Re)

∆′′′ (Re)
6∆′′ (Re)

]2

|∆′′ (Re)|4/3 e−
V(Re)
kBT M(ze)

. (22)

The first part in Equation (22) describes the contribution of the Condon points in the classically
allowed region, the second part contribution of the Condon points pair in the classically forbidden
region, and the third part, its interference in the whole region of frequencies.
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and the contribution of the Condon points Ri and Ri+1 to the spectral profile is given by the relation in
Equation (22). If extremes are well separated, by analogy to Equation (22), a generalized uniform Airy
approximation can be written as:

P(ν, T) =
√

π(2µkBT)3/2
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
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(
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kBT N(zei)Θ(−zei)+

+
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∑
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ei
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|∆′′ (Rei)|4/3 e−
V(Re)
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
. (23)

If two extremes exist, a problem strictly belongs to the class of higher elementary “cusp”
catastrophes. The uniform Airy approximation can be applied with the following choice of functions z.
For the first Condon point (R1 ≤ Re1), the choice is z1 = ze1, and for the last one (R3 ≥ Re2) z3 = ze2.
For the middle Condon point (Re1 ≤ R2 ≤ Re2), in the neighborhood of the first extreme, the correct
choice is z2 = ze1, and the near second extreme z2 = ze2, and we suggest that in the whole real range
of the Condon point R2, the approximation z2 = min(ze1, ze2). Similarly, in the case of three extremes
(swallowtail catastrophe), we suggest z1 = ze1,z2 = min(ze1, ze2), z3 = min(ze2, ze3)z4 = ze3. For a
larger number of extremes, what is not a common physical case, the use of the relation in Equation (22)
may be very questionable.

As in the case of a quasi-static formula one can the estimate contributions of bound–bound,
bound–free, and transition in Equations (22) and (23) by a simple substitution of the statistical weight

factor nxx(T, R)R2 exp(−VΛ′′ (R)
kBT ) instead of R2 exp(−VΛ′′ (R)

kBT ) for each Condon and extreme point.
Numerical values of the function L(z) are given in Reference [12], and we gave a table with the

numerical values of the functions N(z) and M(z) as Supplementary data in Table S1.
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3.2. Quantum Calculation on the Fourier Grid

To calculate the energies and wavefunctions of the ro-vibrational states, the FGH method (Fourier
grid Hamiltonian) was used as a special case of Discrete Variable Representation, where functions were
represented on a finite number of grid points Ri (i = 1 . . . N) [16,17]. Grid of uniformly spaced points
was used ∆R = Ri+1− Ri and the energies and wave functions could be determined by diagonalization
of N × N Hamiltonian matrix:

HΛJ =


}2

2µ∆R2

(
π2

3 −
1

2i2

)
+ VΛ(Ri) +

}2

2µ
J(J+1)−Λ2

Ri
2 i = j

(−1)i−j }2

2µ∆R2
8ij

(i2−j2)2 i 6= j

. (24)

Solving the Schrödinger equation in the matrix form HΛJΦΛJ = EΛJΦΛJ , one obtains a column
matrix EΛJ containing N energies EvJΛ and an N × N matrix ΦΛJ , where the columns contain values
of wave functions at grid points ϕvJΛ(Ri). All transition matrix elements of the electronic transition

dipole moment D(R) can be calculated by a matrix multiplication
〈

ϕv′′ ,J′′ ,Λ′′ |D(R)|ϕv′ ,J′ ,Λ′
〉

=[
ΦΛ′′ J′′ DGΦT

Λ′ J′

]
v′′ v′

, where DG is the diagonal matrix with diagonal containing values of transition

dipole moments at grid points D(Ri). Transition frequencies can be also calculated using a simple
matrix operation νtr =

(
Ev′ J′Λ′ − Ev′′ J′′Λ′′

)
/h =

[
(U · EJ′Λ′)

T −U · EJ′′Λ′′
]

v′v′′
/h, where U is the N

× N matrix with all elements equal to 1.
The method yields only a discrete set of continuum energies, but in the range spanned by

the grid, the corresponding unity-normalized wave functions represent the states of a continuum.
The continuum of free states is represented by a discrete set of unity-normalized wave functions having
a node at the outer grid boundary RN = N∆R. Space between the neighboring grid point ∆R is done
using the relation ∆R = 2π}

nB
√

2µEmax
, where nB is the number of grid points per de Broglie wavelength

(we obtained satisfactory results choosing nB > 2) at a maximal expected kinetic energy Emax. Let ET =
3
2 kBTM be the energy at the maximal temperature which occured in the calculation. Choosing Emax =

5ETM and nB = 2π√
5
= 2.8 one obtains ∆R = }√

2µET
. The end grid point RN was chosen to allow the

energy VΛ(RN) to get closer to the molecular dissociation energy. Approximating the free state energies
in FGH with energies in the infinite square well potential of length RN one obtains En = π2}2

2µR2
N

n2 and

EN = π2ET ≈ 10ET . Given the temperature T, a population of the molecular states with energy
lower than EN can be approximated (using the analogy with the relation in Equation (14)) with
n(T) = 2√

π
γ
(

3
2 , EN)

kBT

)
. For the maximal expected temperature n(TM) = 2√

π
γ
( 3

2 , 15
)
= 0.999999,

we concluded that the molecular states on the grid completely represented all the free states for
temperatures T ≤ TM. It can be written that En = 10ET

( n
N
)2, and concluded that the increasing

number of grid points increased the number of free states, but the highest energy EN remained
unchanged. It is important to keep in mind that the evaluation of the Hamiltonian matrix eigenvalues
consumes time in a manner proportional with N

5
2 , so increasing the number of grid points N can

drastically increase the computational time.

3.2.1. Full Quantum Calculation

Solving the radial Schrödinger equation on the grid, one obtains a set of discrete states effectively
describing a confined molecule, “a molecule in a box,” and the entire spectrum is of the bound–bound
type [18]:

P(ν, T) = ν
JM
∑

J′′=Λ′′
ωJ′′ (2J ′′ + 1)

N,N
∑

v′′=0,v′=0
e−

E
v′′ J′′ Λ′′

kBT
1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1)

∣∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′ (J′′−∆J)Λ′
〉∣∣∣2g(ν− νtr∆J). (25)

The maximal JM value in the sum is determined as the J ′′ -value for which the repulsive rotational
term at the end grid point RN is equal to the energy ET , which follows JM ≈ RN

}
√

2µET and JM = N.
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The last sum in the relation in Equation (25) contains contributions to the P, Q, R branches of
the spectra for ∆J = −1, 0, 1, respectively. For each J ′′ value in Equation (25), there are N energies
and wave functions in the lower Λ′′ and upper Λ′ electronic states, and consequently, N2 transitions
between the ro-vibrational states of the lower and upper electronic state. Each transition “i” is defined
by numbers (v′′ i, v′ i, J ′′ i, ∆Ji) and the number of transitions is M = 3N3, where factor 3 is because of
the P, Q, R branching.

Using the first order perturbation approach, one gets
∣∣∣ϕv′(J′′+∆J)Λ′

〉
≈
∣∣∣ϕv′ J′′Λ′

〉
, Ev′(J′′+∆J)Λ′ ≈

Ev′ J′′Λ′ + hcBv′ J′′Λ′(2J ′′ + ∆J + 1)∆J where Bv′ J′′Λ′ =
}2

2µhc

〈
ϕv′ J′′Λ′

∣∣∣ 1
R2

∣∣∣ ϕv′ J′′Λ′
〉

. We can write that:

1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1)

∣∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′ (J′′−∆J)Λ′
〉∣∣∣2g(ν− νtr∆) ≈

∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′ J′′Λ′
〉∣∣2 1

∑
∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1) g(ν− νtr∆), (26)

where transition frequency is νtr∆J = νtr0 + cBv′ J′′Λ′(2J ′′ + ∆J + 1)∆J. If the splitting between the
branches is not resolved by the spectrometer, the Q-branch or ∆J = 0 approximation can be applied:

1

∑
∆J=−1

S(J′′−∆J)Λ′

J′′Λ′′

(2J ′′ + 1)
g(ν− νtr∆) ≈ g(ν− νtr∆J=0) (27)

In the case of a low spectral resolution, using the Q-branch approximation, summation over J ′′

can be replaced with the summation over the kM intervals of J ′′ values, where the number of intervals
kM is the nearest integer of N

n . Using the relation in Equation (A2) it follows that:

P(ν, T, n) = ω J′′ ν
N,N

∑
v′′=0,v′=0

kM

∑
k=0

n[2(kn + Λ) + n]e−
E

v′′ JkΛ′′
kBT

∣∣∣〈ϕv′′ JkΛ′′ |D(R)| ϕv′ JkΛ′
〉∣∣∣2g(ν− νtrk ), (28)

where ω J is the averaged factor ωJ equal to 1 for heteronuclear and 1/2 for homonuclear molecules and
Jk(Jk + 1) = (kn + Λ)(kn + Λ + n) + 1

2 (n
2 − 1). The number of transitions (v′′ i, v′ i, k) is M = kM N2.

Furthermore, the abbreviation QC will be used to represent the reduced absorption coefficient
obtained with the equation P(ν, T, 1) and QCn with the equation P(ν, T, n).

3.2.2. Vibration Band Approximation (VBA)

The relation in Equation (25) can be written as:

P(ν, T) = ν
N,N
∑

v′′=0,v′=0
exp

(
− Ev′′ Λ′′ Λ′′

kBT

) N
∑

J′′=Λ′′
ωJ′′ (2J ′′ + 1) exp

(
−

Ev′′ J′′ Λ′′ −Ev′′ Λ′′ Λ′′
kBT

)
1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1)

∣∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′(J′′−∆J)Λ′
〉∣∣∣2g(ν− νtr∆). (29)

An interesting task was imposed to calculate the vibrational transition profile (sum over J ′′

and ∆J). Using the first order perturbation approach one obtains:∣∣ϕvJΛ
〉
≈ |ϕv0Λ〉,

〈
ϕv′′ J′′Λ′′ |D(R)| ϕv′ J′Λ′

〉
≈ 〈ϕv′′Λ′′Λ′′ |D(R)| ϕv′Λ′′Λ′〉, EvJΛ ≈ Ev0Λ +

hcBvΛ J(J + 1), transition frequency υtr ≈ Ev′ ,v′′ /h + cBv′ ,v′′ J ′′ (J ′′ + 1)− cBv′Λ′(2J ′′ − ∆J)∆J, where

BvΛ = }2

2µhc 〈ϕvΛ′′Λ

∣∣∣ 1
R2

∣∣∣ ϕvΛ′′Λ〉, Ev′v′′ = Ev′0Λ′ − Ev′0Λ′ , Bv′v′′ = Bv′Λ′ − Bv′′Λ′′ .
Applying this approximation to the bound vibrational states only we write:

P(ν, T) = ν
V′′ ,V′

∑
v′′=0,v′=0

exp
(
− Ev′′ Λ′′ Λ′′

kBT

)
|〈ϕv′′Λ′′Λ′′ |D(R)| ϕv′Λ′′Λ′〉|

2 N
∑

J′′=Λ′′
ωJ(2J ′′ + 1) exp

(
− hcBv′′ J′′ (J′′+1)

kBT

) 1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1) g(ν− νtr∆). (30)

V ′′ and V′ are the vibrational wave numbers of the highest bound vibrational state in the lower
electronic state Λ′′ and upper state Λ′, respectively. The number of transitions (v′′ i, v′ i, J ′′ i, ∆Ji) is
M = 3NV ′′V′. In the Q-branch approximation the relation in Equation (30) has a simpler form:

P(ν, T) = ν
V′′ ,V′

∑
v′′=0,v′=0

exp
(
− Ev′′ Λ′′ Λ′′

kBT

)
|〈ϕv′′Λ′′Λ′′ |D(R)| ϕv′Λ′′Λ′〉|

2 N
∑

J′′=Λ′′
ωJ′′ (2J ′′ + 1) exp

(
− hcBv′′ J′′ (J′′+1)

kBT

)
g(ν− νtr0). (31)
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The number of transitions (v′′ i, v′ i, J ′′ i) is M = JMV ′′V′. The reduced absorption coefficient
obtained using Equation (31) will be named VBA.

Neglecting the discreetness of the rotational structure, the sum over J ′′ can be
calculated analytically:

P(ν, T) = ωJ
ν
c

V,V
∑

v′′=0,v′=0

|〈ϕv′′ Λ′′ Λ′′ |D(R)| ϕv′Λ′′ Λ′〉|
2

|Bv′v′′ |
exp

(
− Ev′′ Λ′′ Λ′′

kBT − Bv′′ h(ν−νv′v′′ )
Bv′v′′ kBT

)
Θ
(

ν−νv′v′′
Bv′v′′

)
, (32)

where υv′v′′ = Ev′ ,v′′ /h. In the literature, this approach is called the Vibration band continuum
approximation (VBCA) [1,19].

The energy Ev′′Λ′′Λ′′ in Equation (29) has the meaning of the vibrational energy and Ev′′ J′′Λ′′ −
Ev′′Λ′′Λ′′ is the rotational energy of the ro-vibrational state (v′′ J ′′Λ′′ ). Assuming a non-LTE case
depending on two temperatures (vibrational Tv and rotational TR), the shape of the absorption spectra
can be written as follows:

P(ν, TV , TR) = ν
N,N
∑

v′′=0,v′=0
exp

(
− Ev′′ Λ′′ Λ′′

kBTV

) N
∑

J′′=Λ′′
ωJ′′ (2J ′′ + 1) exp

(
−

Ev′′ J′′ Λ′′ −Ev′′ Λ′′ Λ′′
kBTR

)
1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1)

∣∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′(J′′−∆J)Λ′
〉∣∣∣2g(ν− νtr∆)

3.2.3. Semi-Quantum Approximation (SQA)

Beuc et al. [18] calculated the vibrational transition profile in the relation in Equation (29) using
the classical Franck-Condon principle and the standard semi-classical approach:

N
∑

J′′=Λ′′
ωJ(2J ′′ + 1) exp

(
− hcBv′′ J′′ (J′′+1)

kBT

) 1
∑

∆J=−1

S(J′′ −∆J)Λ′

J′′ Λ′′

(2J′′+1) g(ν− νtr∆) ≈ ω J
2µkBT
}2 |〈ϕv′′Λ′′Λ′′ |RD(R)| ϕv′Λ′′Λ′〉|

2δ(ν− νtr) (33)

Using this approximation, the spectral profile acquires the form:

P(ν, T) ≈ νω J
2µkBT
}2

N,N

∑
v′′ , ν′

exp(−Ev′′Λ′′Λ′′

kBT
)|〈ϕv′′Λ′′Λ′′ |RD(R)| ϕv′Λ′′Λ′〉|

2g(ν− νtr). (34)

This expression was formally obtained by a completely semi-classical procedure, but it was
“dressed” in quantum-like form, so the authors called it the semi-quantum approximation (SQA).
In order to calculate the relation in Equation (33), only one diagonalization of the Hamiltonian matrix
for the upper and lower electronic state, respectively, is required. The number of transitions (v′′ i, v′ i)
is M = N2.

3.2.4. Numerical Calculation of the Spectral Profile

The numerical calculation of the spectral profiles given by Equations (25, 28, 30, 31, 34) comprises
two steps. The first one is to calculate all elements of the 3×M matrix Ptr in which the i-th raw contains
the transition frequency ν

(i)
tr , energy of initial ro-vibrational state E(i), and amplitude A(i) (Table 1).

The second step is to calculate the spectra using elements of the matrix Ptr. Equations (24, 28, 30,
31, 34) can be transformed into a single sum:

P(ν, T) = ν
M

∑
i=0

Exp

(
− E(i)

kBT

)
A(i)g(ν− ν

(i)
tr ). (35)

In the wavelength domain [20], the spectral profile is given by the relation:

P(λ, T) =
λ

∆λ

∆λ

∑ Exp

(
− E(i)

kBT

)
A(i). (36)
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The line profile g(λ − λ
(i)
tr ) is approximated with a Heaviside pi (or box car) function

g(λ− λ
(i)
tr )→ 1

∆λ hπ(
λ−λ

(i)
tr

∆λ ) , where the optical transition wavelength is λ
(i)
tr = c/ν

(i)
tr and ∆λ is equal

to or larger than the line profile half width and smaller than the instrumental half width. In the
evaluation of the relation in Equation (36), the time consumption is proportional to the number of
ro-vibrational transitions M. To make the evaluation time efficient we used the matrix P ⊆ Ptr, elements
of which satisfied the condition λ

(i)
tr ∈ (λmin, λmax), where the interval (λmin, λmax) was a spectral

region of our interest.

Table 1. Transition amplitude.

Amplitude A(i) Equation

ωJ′′i
S(J′′i −∆Ji)Λ′

J′′i Λ′′

∣∣∣〈ϕv′′i J′′i Λ′′ |D(R)| ϕv′i (J′′i −∆Ji)Λ′

〉∣∣∣2 (25)

ω Jn[2(kin + Λ) + n]
∣∣∣∣〈ϕv′′i Jki Λ′′ |D(R)| ϕv′i Jki Λ′

〉∣∣∣∣2 (28)

ωJ′′i
S(J′′i −∆Ji)Λ′

J′′i Λ′′

∣∣∣〈ϕv′′i 0Λ′′ |D(R)| ϕv′i 0Λ′

〉∣∣∣2 (30)

ωJ′′i
(2Ji
′ ′ + 1)

∣∣∣〈ϕv′′i 0Λ′′ |D(R)| ϕv′i 0Λ′

〉∣∣∣2 (31)

ω J
2µkBT
}2

∣∣∣〈ϕv′′ ,0,Λ′′ |RD(R)|ϕv′,0,Λ′
〉∣∣∣2 (34)

4. Results

To explain the characteristics of the theoretical approaches described in the previous section,
we compared them on the examples of absorption spectra of a heteronuclear Li− He molecule and
homonuclear Li2 and Cs2 molecules. Owing to the very small spin-orbit splitting in the Li atom
(for Li2P1/2,3/2, ∆ f s = 0.335cm−1), we used for the Li − He and Li2 molecules, relevant potential
curves and transition dipole moments calculated on a Hund’s case (a) basis, but for the Cs2 molecule
with strong spin-orbit splitting (for 6P1/2,3/2∆ f s = 554.039cm−1) we used the calculation on a Hund’s
case (c) basis. 7Li− 4He and 7Li2 molecules had small reduced masses µ = 2.54862 and µ = 3.508,
respectively, in comparison with the reduced mass µ = 66.453 of the 137Cs2 molecule. what is important
for dynamic in molecules and influences their spectra.

In the analysis of the Li − He spectra we used the G. Peach ab initio calculation presented in
Reference [21] (Figure 2a). X2Σ and B2Σ states had repulsive potentials with very small minima of
(Re = 11.73 ao, De = 1.53741 cm−1) and (Re = 16.4785 ao, De = 0.576 cm−1), respectively. A2Σ potential
had a minimum (Re = 3.33 ao, De = 1061.33 cm−1, ωe = 288.98cm−1, Be = 1.82 cm−1). A2Σ → X2Σ
transition had a monotonic difference potential forming a red wing of 2P3/2,1/2 → 2S1/2 resonant
doublet. The difference potential of the B2Σ → X2Σ transition had a maximum (Vm = 20645.6 cm−1

at Rm = 3.70314 ao), which corresponded to the satellite band at 484.364 nm in the blue wing of the
resonant doublet.

For the absorption spectra calculation of the Li2 molecule we used the Schmidt-Mink [22] ab initio
calculation (Figure 2b). There were two ground states; the strongly bound X1Σ+

g state (Re = 5.0ao,
De = 8460.8cm−1, ωe = 346.4cm−1, Be = 0.67cm−1) and the a3Σ+

u state with a shallow minimum
(Re = 7.8ao, De = 324.0cm−1, ωe = 57.4cm−1, Be = 0.26cm−1). The excited A1Σ+

u state had a deep
minimum (Re = 5.9ao, De = 9345.3cm−1, ωe = 252.9cm−1, Be = 0.49cm−1) and the A1Σ+

u → X1Σ+
g

difference potential had a minimum (Rm = 8.3ao, Vm = 10956.9cm−1, λm = 912.6nm). The B1Πu

state had two extremes, being a deep minimum (Re = 5.5ao, De = 3390.6cm−1, ωe = 263.9cm−1,
Be = 0.54cm−1) and a maximum (“hump”) at Rh = 12.0ao, with the energy 490.4cm−1 above the
asymptote. Transition B1Πu → X1Σ+

g had a monotonic difference potential. The excited triplet b3Σ+
g

had a deep minimum (Re = 6.0ao, De = 7032.4cm−1, ωe = 245.9cm−1, Be = 0.5cm−1) and the
b3Σ+

g → a3Σ+
u difference potential had a minimum (Rm = 4.5ao, Vm = 6146.8cm−1, λm = 1626.8nm).
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The c3Πg state had a repulsive potential energy curve but the difference potential of the c3Πg → a3Σ+
u

transition had two close extremes, a minimum (Rm = 5.2ao, Vm = 16376.3cm−1, λm = 610.6nm) and a
maximum (Rm = 7.4ao, Vm = 16724.9cm−1, λm = 597.9nm).

In the case of the Cs2 molecule we used the Allouche et al. [23] ab initio calculation (Figure 2c).
There were two ground states; the strongly bound X1Σ+

g (0+g ) state (Re = 8.7ao, De = 3755.4cm−1,
ωe = 45.0cm−1, Be = 0.012cm−1) and the a3Σ+

u (1u, 0+u ) state with a shallow minimum (Re = 11.9ao,
De = 281.3cm−1, ωe = 10.8cm−1, Be = 0.0064cm−1). The excited A1Σ+

u (0+u ) state had a deep minimum
(Re = 9.8ao, De = 5816.3cm−1, ωe = 38.4cm−1, Be = 0.0095cm−1) and the A1Σ+

u (0+u )→ X1Σ+
g (0+g )

difference potential had a minimum (Rm = 10.8ao, Vm = 8754.7cm−1, λm = 1142.2nm). The B1Πu(1u)

state had two extremes, a deep minimum (Re = 9.03ao, De = 2456.1cm−1, ωe = 37.4cm−1, Be =

0.011cm−1) and a maximum (“hump”) at Rh = 17.6ao, with the energy only 18.9 cm−1 above the
asymptote. Difference potential of the B1Πu(1u)→ X1Σ+

g (0+g ) transition had one maximum (Rm =

7.8ao, Vm = 13302.4cm−1, λm = 751.7nm). The excited triplet b3Σ+
g (1g) state had a deep minimum

(Re = 10.2ao, De = 3028.7cm−1, ωe = 28.1cm−1, Be = 0.0086cm−1) and the b3Σ+
g (1g)→ a3Σ+

u (1u)

difference potential was monotonic. The c3Πg(1g) state potential energy curve had two extremes,
a minimum (Re = 9.4ao, De = 1401.9cm−1, ωe = 58.7cm−1, Be = 0.01cm−1) and a hump at Rh = 15.1ao,
with energy 170.513cm−1 above the asymptote. The difference potential of the c3Πg(1g)→ a3Σ+

u (1u)

transition had one maximum (Rm = 14.1ao, Vm = 10512.8cm−1, λm = 826.8nm).
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4.1. Absorption Spectra of Li-He Molecule

We found that using Equation (28) for n ≤ 10, there was a negligible difference between the
QC and QCn spectra. The number of grid points N = 370 was used. Spectra were collected in bins
∆λ = 0.2nm and smoothed with a Gaussian with half-width of 0.6 nm. In the calculation of the
SQA spectra, the number of grid points N = 800 was used, and spectra are collected in the same bins,
but smoothed with a Gaussian with half-with of 1.2 nm.

In the short-wavelength region (Figure 3) all the methods gave almost the same result. The SCA
method showed small differences around the satellite band at 484.4 nm. In the long-wavelength
region, where the Condon transitions are connected with the attractive well of A2Σ state, Stückelberg
oscillations occured which were consequence of the interference of the wave functions X2Σ state near
the turning point. These oscillations increased with temperature. At higher temperatures, there was
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a larger contribution of transitions starting from the ro-vibrational states of the X2Σ state with high
energy and turning points at a very steep ground state potential, where the interference effect was
important. The SQA spectra showed much more pronounced oscillation because of the J ′′ = Λ′′

approximation, whilst they were smoothed in the QC and QC10 by averaging over the J ′′ . There were
no oscillations in the SCA spectra, whilst in this approach, the influence of a turning point close to the
Condon points was neglected.
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4.2. Absorption Spectra of Li2 Molecule

The number of grid points N = 400 was used for the QC and QCn, and N = 1000 was used for
the SQA spectra calculation. Using Equation (25) with n ≤ 6 there was negligible difference between
the QC and QCn spectra, so we compared the (Figures 4 and 5) QC and QC6 spectra. Ro-vibrational
transitions were collected in bins ∆λ = 0.2nm and smoothed with a Gaussian with half-width of
0.6 nm (QC and QC6) or a half-with 1.2 nm in the case of the SQA.

Spectra of the electronic c3Πg(1g)→ a3Σ+
u (1u) transition (Figure 4a) contained mostly free–free

ro-vibrational transitions. The main feature in these spectra was a satellite band around 597.9 nm.
The QC and QC6 spectra had small oscillation at the lowest temperature, what can be considered the
consequence of interference near the turning points of the repulsive c3Πg(1g) state. At all temperatures,
the SQA spectra had very small oscillation around the QC, but there was generally good agreement
with the QC and with SCA as well.

The main contribution to the spectra of the electronic b3Σ+
g → a3Σ+

u transition (Figure 4b) came
from the transitions between the free ro-vibrational states of the lower electronic state and the deeply
bound ro-vibrational states of the upper electronic state. The QC and QC6 continuous spectra had a
shallow oscillatory structure as a consequence of the large vibrational energy differences in the upper
electronic state (ωe = 245.9cm−1) and a decrease with the temperature. This oscillatory structure was
overemphasized in SQA spectra, and it did not exist in the SCA spectra.

The QC and QC6 spectra of the B1Πu → X1Σ+
g (Figure 5a) and A1Σ+

u → X1Σ+
g transition

(Figure 5b) were roughly identical showing a strong vibrational band structure. The SQA spectra also
had this vibrational band structure and at the lowest temperature of 500 K was in good agreement with
the QC spectra. At higher temperatures, especially at 2000 K, the SQA did not give satisfactory results.
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The SCA spectra at all temperatures have good envelope of the QC spectra, especially at 2000 K, where
quite right show shape of satellite band at λm = 912.6 nm.
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The QC spectra of the B1Πu → X1Σ+
g transition (Figure 6a) and the A1Σ+

u → X1Σ+
g transition

(Figure 6b) was compared with the VBA spectra and two semiclassical spectra: SCAbb and SCANbb.
Firstly, the SCAbb is a spectrum of bound–bound transitions and the second one SCANbb is a spectrum
of free–free and free–bound transitions. Contribution of the free–free and free–bound transitions was
negligible at T = 500 K, but it increased with temperature and was a dominant contribution in the
near wings of the Li resonant line (Figure 6b). At the lowest temperature, the VBA was in perfect
agreement with the QC because at that temperature a spectrum is completely of the bound–bound type.
At 1000 K, there was also good matching between the SCA and VBA, except in the short wavelength
region of the B-X transition.
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Figure 6. Li2 molecule, reduced absorption coefficient for the (a) B1Πu → X1Σ+
g and (b)

A1Σ+
u → X1Σ+

g transitions for three different temperatures (2000 K, 1000 K, 500 K), obtained with four
theoretical approaches (QC, VBA, SCAbb, SCANbb).

4.3. Absorption Spectra of Cs2 Molecule

In the case of the Cs2 spectra we used N = 1400 grid points for the QC, QCn, and SQA spectra
calculations. We found that that for n ≤ 50, the difference between the QC and QCn was negligible.
Spectral transitions were collected in bins ∆λ = 0.2nm and smoothed with a Gaussian with half-width
of 0.6 nm (for QC, QC50, SQA).

In the case of the continuous spectra of c3Πg(1g)→ a3Σ+
u (1u) (Figure 7a) and the

b3Σ+
g (1g)→ a3Σ+

u (1u) electronic transition (Figure 7b), all of the investigated methods (QC, QC50,
SQA, SCA) yielded results that were in excellent agreement amongst themselves. However, there
was some deviation of the SCA in the neighborhood of the satellite band at λm = 826.8nm, for the
lower temperatures.

Molecular bands spectra of the B1Πu(1u)→ X1Σ+
g (0+g ) (Figure 8a) and

A1Σ+
u (0+u )→ X1Σ+

g (0+g ) electronic transitions (Figure 8b) showed the excellent agreement of
the three approaches (SQA, QC50, QC). Only the SCA approach could not show the discrete vibrational
structure of the bands. That was the main reason for disagreement in this approach and the other
approaches in the neighborhood of the satellite band at λm = 751.7nm.
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u (1u) and (b)

b3Σ+
g (1g)→ a3Σ+

u (1u) transitions for three different temperatures (2000 K, 1000 K, 500 K), obtained
with four theoretical approaches (SQA, QC50, QC, SCA).
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5. Discussion and Conclusions

The use of a fully quantum-mechanical procedure based on the Fourier grid Hamiltonian
method is a numerically robust but a time-consuming method. The most time-consuming part
of the computation is the diagonalization of the Hamiltonian matrix. The time needed for this task
depends on the number of grid points N, the form of matrix itself, the numerical algorithm and it
is approximately t = αN2

√
N, (α is a number depending on computer and algorithm). The number

of points must be larger than the number of bound states (if the potential of the electronic state is
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attractive) to have enough states which represent free states. To produce spectra which are correct at the
frequencies corresponding to the transitions near the dissociation limit, the last grid point RN must be
chosen so that the energy difference V(RN)−V(∞) is small (where V(R) is the energy of the electronic

state). The number of grid points increased with the reduced mass of molecule N = RN

√
2µET
} , so we

used N = 370, 400, 1400 for Li-He, Li2, and Cs2, respectively. To calculate all transition elements of the
matrix P defined by P(ν, T, n) (Equation (28)), one needs time t = αN3

√
N/n. The number of J-values

collected in one transition in Equation (28) depended on the spectral resolution and interval between
the rotational transitions which was proportional with J ′′ (Bv′Λ′ − Bv′′Λ′′ ). Given the B-constant is
reciprocal to the reduced mass of the molecule, the number n increases with the mass and we used n =
10, 6, 50 for Li-He, Li2, and Cs2, respectively. To calculate the spectra QC or QCn using Equation (36)
one needs to collect all the transitions in bins of ∆λ, i.e., what needs a time proportional to the number
of transitions t = βN3/n (β is number depending on computer and algorithm). It is important to
emphasize that there is a relation for the time proportionality factors: α >> β.

The Vibrational band approximation (VBA) was numerically time efficient because one needs only
one Hamiltonian matrix diagonalization for the upper Λ′ and lower Λ′′ electronic state. This approach
gave good results for low temperatures, where the transitions between the lowest vibrational states
gave the dominant contribution. For high temperatures, higher vibrational levels must be considered,
where the energy difference between the adjacent vibrational states was decreasing and the first order
perturbation approach for the ro-vibrational energies and wave functions was no longer applicable.
Moreover, it is important to note that the VBA only gives the contribution of bound–bound transition
to the spectra. As a consequence, in the case of the Li2 molecule, VBA was in good agreement with
the QC spectra of the A-X and B-X band at lower temperatures. VBA was not suitable for spectra of
molecules with small ωe like the Cs2 molecule, but it was an excellent theoretical tool to analyze the
spectra of molecules with large ωe of order 103 cm−1, such as N2, O2, and CO molecules as an example.

Semi-quantum approximation the SQA was also numerically time-efficient because it needed
only one diagonalization of the Hamiltonian matrix for J ′′ = Λ′′ . SQA gave good results if the interval
between the rotational transitions was much smaller than the width of the instrumental profile, what is
better satisfied in the case of molecules with larger reduced mass. To have enough states representing
free molecular states, the number of grid points NS can be larger than number of points in the case
of a full quantum calculation NS ≥ N. In our calculation, we used NS = 800, 1000, 1400 for Li-He,
Li2, and Cs2, respectively. To calculate all transition elements of the matrix P (Equation 30) one needs
time tS = αN2

S
√

NS. The ratio of times needed to calculate all transitions in the QCn and SQA is
t

tS
= N

n

(
N
Ns

)5/2
. To calculate the spectra SQA using Equation (36) by collecting all the transitions in

bins of ∆λ, one needs time t = βN2. The ratio of evaluation times of the QCn, and SQA spectra was
t

tS
= N

n

(
N
Ns

)2
. The semi-quantum approximation was in very good agreement with the fully quantum

calculations, whilst its computer time consumption could be lower by few orders of magnitude; in the
case of the Cs2 molecule SCA is 28 times faster than the QC50 and 1400 times faster than the QC.
A disadvantage of this method is an unsatisfactory description of the discrete rotational structure of
the molecular bands and in some cases of the free–free spectra the overemphasis of interference effects
in the neighborhood of turning points.

The standard semi-classical approximation SCA and its refinement, the uniform Airy
approximation, did not give the ro-vibrational structure of the molecular bands, neglected the effects
of turning points, but agreed with the averaged quantum-mechanical spectra and was computationally
time efficient. Moreover, using the SCA it was possible to estimate contributions of the bound–bound,
bound–free, and free–free transition to the spectra. “Semi-classical theory will also play an increasingly
important role in interpreting the results of large, completely quantum mechanical calculations that
are becoming increasingly feasible as a result of enhanced computer power” (W. H. Miller [24]).

Comparison of the experimental and theoretical absorption and emission spectra of diatomic
molecules is an excellent tool for checking the accuracy of a molecular electronic structure: potential
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curves and transition dipole moments which are important data for plasma science. In the case of high
density and high temperature plasma conditions, the assumption of thermal equilibrium is essential
for an easy spectral simulation. Even in that case, different theoretical approaches are possible for a
rapid spectral simulation and for comparison with experimental spectra. These spectral simulations
could be applied even in non-thermal plasma conditions, which are probably more important for
some applications, like new plasma sources, plasma diagnostics, thermal plasma theory, and materials
science applications [25].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-2004/6/4/67/s1,
Table S1: Function N(z) and M(z).
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Appendix A

Let Sk be the sum of the contributions from the k-th interval, which contain n J ′′ values
(Jok, Jok + n− 1):

Sk =
Jok+N−1

∑
J′′=Jok

ωJ(2J ′′ + 1)Exp
(
−

Ev′′ J′′Λ′′

kBT

)∣∣〈ϕv′′ J′′Λ′′ |D(R)| ϕv′′ J′′Λ′′
〉∣∣2g(νtrJ′′ − ν). (A1)

Assuming that in this interval the transition matrix element of the dipole moment can be
approximated as

〈
ϕvJΛ|D(R)| ϕvJΛ

〉
≈
〈

ϕvJkΛ|D(R)| ϕvJkΛ
〉
, where Jok ≤ Jk ≤ Jok + n − 1, and ωJ

with its averaged factor ω J (equal to 1 for heteronuclear and 1/2 for homonuclear molecules) relation
(A1) can be written as:

Sk ≈ ω J Exp
(
−

Ev′′ JkΛ′′

kBT

)∣∣∣〈ϕv′′ JkΛ′′ |D(R)| ϕv′ JkΛ′
〉∣∣∣2g(vtrk − ν)

Jok+n−1
∑

J′′=Jok

(2J ′′ + 1)Exp
(
−

Ev′′ JΛ′′ −Ev′′ JkΛ′′

kBT

)

Here one chooses a line profile g(vtrk − ν) which has a larger half width than g(vtrJ′′ − ν) and a
transition frequency νtrk that is in the frequency interval of Sk. The sum in the previous expression can
be written as:

Jok+n−1
∑

J′′=Jok

(2J ′′ + 1)Exp
(
−

Ev′′ J′′ Λ′′ −Ev′′ JkΛ′′

kBT

)
≈

Jok+n−1
∑

J′′=Jok

(2J ′′ + 1)Exp
( hcBv′′ (Jk(Jk+1)−J′′ (J′′+1))

kBT

)2

≈
Jok+n−1

∑
J′′=Jok

(2J ′′ + 1)
(

1 +
hcBv′′ (Jk(Jk+1)−J′′ (J′′+1))

kBT + 1
2

( hcBv′′ (Jk(Jk+1)−J′′ (J′′+1))
kBT

)2
+ ...

)

In order that the second part in the brackets vanishes we chose Jk(Jk + 1) = J2
0k + nJ0k +

1
2
(
n2 − 1

)
and simplified the sum as follows: n(2J0k + n)

(
1 + (n2−1)(J0k

2+nJ0k+(n2−1)/4)
6

( hcBv′′
kBT

)2
+ ...

)
. If the

second part in the brackets is negligible one can write:

Sk ≈ ω J Exp
(
−

Ev′′ JkΛ′′

kBT

)∣∣∣〈ϕv′′ JkΛ′′ |D(R)| ϕv′ JkΛ′
〉∣∣∣2g(vtrk − ν)n(2J0k + n)

Effective rotational quantum number Jk is generally not an integer, it is a parameter in the
Schrödinger equation for the determination of energy Ev′′ JkΛ′′ and transition frequency νtrk =(

Ev′ JkΛ′ − Ev′′ JkΛ′′
)

/h.

http://www.mdpi.com/2218-2004/6/4/67/s1
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If one set Jok = kn + Λ, where Λ is larger of Λ′′ and Λ′, one obtains n(2J0k + n) =

n[2(kn + Λ) + n] and Jk(Jk + 1) = (kn + Λ)(kn + Λ + n) + 1
2 (n

2 − 1). Finally, we write:

Sk ≈ ω Jn[2(kn + Λ) + n]Exp
(
−

Ev′′ JkΛ′′

kBT

)∣∣∣〈ϕv′′ JkΛ′′ |D(R)| ϕv′ JkΛ′
〉∣∣∣2g(vtrk − ν)

Jk(Jk + 1) = (kn + Λ)(kn + Λ + n) + 1
2 (n

2 − 1)
(A2)
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