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Abstract: In this work, we develop and apply an ab-initio method to calculate the joint radial- and-
angular electron distributions following the interaction of two-electron spherical quantum dots (QD) with
intense terahertz pulses of subpicosecond duration. By applying the method to two QDs of different size,
we could investigate two particular ionization mechanisms: the direct and the sequential two-photon
double ionization. According to our results, the two ionization mechanisms show some similarity in the
angular distribution patterns, whereas the corresponding radial distributions are distinctly different,
associated with their joint kinetic energy spectrum. We also discuss the time-evolution of the ionization
process in the context of the different nature of the interaction of the QD with the external radiation and
the electron–electron correlation interactions.

Keywords: ab-initio; multiphoton ionisation; radial distributions; angular distributions; configuration
interaction

1. Introduction

The study of the optical properties of semiconductor quantum dots (QDs), wires, and wells has
attracted a lot of attention in the domains of fundamental theory and applications for quantum information
processing [1], solar energy harvesters, optoelectronics, and digital imaging [2]. Quantum confined
structures (QCS) exhibit a variety of enhanced optical properties compared with atoms, molecules,
and bulk materials. This is due to the high degree of flexibility in QCS design where it is possible to
artificially tailor their transport and optical properties at will. Nonlinear spectroscopy has proven
to be a powerful and widely used tool that can not only to probe the electronic structure and the
electron–hole dynamics in quantum systems but also has important technological applications [3,4].
For example, the nonlinearities in QCS have many applications in laser technology to create materials
with very large values of second- and third-order susceptibilities, which are essential for harmonic
generation radiation in the mid-infrared regime [5–10].

In the past, most of the attention was paid to the non-linear properties of coupled dots (molecular
quantum dots) in strong laser fields (see [11], and references therein). In contrast, the non-linear properties
of two-electron QDs in laser fields is a largely unexplored scientific area. The main reason is that in QDs
the electrons are confined within the QD potential and therefore they strongly interact, thus complicating
the representation of the electronic structure. The existing theoretical approaches rely on the description
of a considerably simplified system by ignoring part of the interelectronic correlations (essential states
approximation), an approach which may be not valid when the applied laser field is strong (i.e., when
the internal forces acting on each electron are of the order of the laser–electron interaction). In the latter
case, the electronic QD continuum and multiply-excited states play a decisive role in the system’s
dynamics. In this context, it is well known that the theoretical investigations (and associated numerical
and computational implementation) of nonlinear processes (e.g., the above threshold ionization and
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high-order harmonic generation (HOHG)) is a demanding problem both from the viewpoint of theory
and implementation (computationally).

In the present work, we apply an ab-initio electronic structure method to fully describe the double
ionization of two-electron semiconductor QDs, following the interaction with a terahertz (THz) laser field.
The ab-initio calculation method using a numerical local basis has been thoroughly tested and applied
to describe non-linear interactions of ultrashort fields with atomic and the molecular systems [12–19]
throughout the years, while its adaptation and application to the case of QDs is described in detail
in [20,21]. Here, we extend our theory to include the calculation of the joint radial and angular distributions
of the ejected electrons, a subject that is theoretically and computationally highly non-trivial, mainly
because the configuration space of the electrons extends to thousands of times the size of the residual
target (here, the QD).

The method is based on a non-perturbative solution of the time dependent Schrödinger equation
(TDSE) for the QD interacting with a linearly-polarized THz pulse. The model at hand describes a
spherical two-electron quantum dot built from a narrow bad gap semiconductor crystal of approximate
radius RQ. Within the effective mass approximation, the crystal potential is taken into account via
the electrons effective mass, m∗e , and the crystal’s dielectric constant, κ. In this case, the TDSE that
describes the QD is given by:

i
∂

∂t
ψ(r1, r2, t) =

[
Ĥm∗e ,k(r1, r2) + D̂m∗e ,k(r1, r2, t)

]
ψ(r1, r2, t), (1)

where H is the field-free QD two-electron Hamiltonian, ψ is the time-dependent wavefunction, and D
describes the interaction of the QD with the radiation field. In the above, the electron’s coordinates are
denoted as (r1, r2) . The field-free QD Hamiltonian is modeled through a Gaussian potential as,

Ĥm∗e ,k = ĥm∗e (r1) + ĥm∗e (r2) +
1

κ|r1 − r2|
, (2)

where ĥm∗e (ri) is the one-electron QD’s confinement Hamiltonian. The above expressions constitute the
fundamental equations of the present formulation. The details of calculating the electronic structure,
the time-dependent ψ(r1, r2, t), and the joint radial and angular distributions are discussed in the
next section.

2. Calculational Method of the Two-Electron QD Dynamics

In the following, the formulation for the ab-initio calculation of the radial and angular distributions
of the two ejected electrons is developed. Briefly, we calculate the two-electron wavefunction at the
end of the THz pulse and then extract the desired information either by projecting onto the asymptotic
two-electron wavefunction which describes two uncorrelated electrons or by evaluating the squared
modulus of the two-electron wavefunction.

As the method of solving for the electronic structure of the quantum dot and its dynamics under
the interaction with a laser field is discussed in detail in [20,21], we make a short discourse of this and
the equations necessary for the current theory are presented.

2.1. Calculation of the QD Electronic Structure

We assume the electrons confined in a spherically symmetric Gaussian potential well of depth V0

and width parameter β, where β is related to the quantum dot radius by RQ =
√

ln 2/β. In this case,
the one-electron QD confinement Hamiltonian is modeled as,

ĥm∗e (r) = −
1

2m∗e
∇2 −V0e−βr2

. (3)
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The model also takes into account the inter-electronic interaction via the electrostatic Coulomb
potential. The equations used to represent the quantum dot-laser system are presented in scaled atomic
units (s.a.u), which is discussed in [20]. We thus replace the set of the material constants by Q = (m∗e , k, β, V0)

and denote the one-electron Hamiltonian by ĥq and the two-electron QD Hamiltonian in Equation (2) as,
ĤQ. Therefore, the eigenvalue problem to be solved is the time-independent Schrödinger equation (TISE),

ĤQΦNΛ(r1, r2) = ENΛΦNΛ(r1, r2), (4)

where ΦNΛ(r1, r2) are the eigenstates of ĤQ (two-electron field free wavefunctions) and the index
Λ is shorthand for (L, S, ML, MS), representing the total orbital and spin angular momenta, and their
projections onto the z-axis, respectively. While the notation is kept general, only the singlet symmetry case
is considered where (S, MS) = (0, 0). The system is assumed to be confined in a sphere of radius R, much
larger than the QD’s size, R >> RQ. Within our particular approach, we implement the so-called fixed
boundary conditions, which require the wavefunction to strictly vanish at the origin and the boundaries,
r = R. Consequently, all QD’s states (including the continuum) become discretized, allowing the bound
and continuum states to be treated in the same way, all subject to the unity normalization. For the solution
of equation (4), a configuration interaction (CI) method is employed where the quantum dot eigenstates
are expanded on an uncorrelated two-electron basis φΛ

n1l1n2l2
(r1, r2), formed by Slater determinants of

angular momentum coupled one-electron states (configurations) found from the one-electron TISE. More
specifically, the uncorrelated two-electron basis functions are the eigensolutions of the Hamiltonian
Equation (2) but without the 1/|r1 − r2| interaction term. The singlet antisymmetric uncorrelated basis
with sharp angular momentum values, (L, ML), respectively, are as below,

φΛ
n1l1n2l2(r1, r2) = A12

Pn1l1(r1)

r1

Pn2l2(r2)

r2
Y LML

l1l2
(Ω1, Ω2), (5)

where Y LML
l1l2

(Ω1, Ω2) are the bipolar spherical harmonics, containing the angular momentum coupling
coefficients (Clebsch–Gordon coefficients) and A12 is the anti-symmetrization operator which acts to
exchange the coordinates of the two electrons. The purely radial functions, Pnl(r), are calculated as
solutions of the radial one-electron eigenvalue QD Hamiltonian,[

−1
2

d2

dr2 +
l(l + 1)

2r2 −V0e−βr2
]

Pnl = εnl Pnl(r). (6)

The radial functions are numerically solved for by expanding on a basis of B-Splines with excellent
properties for representing continuum states [22? ]. Having completed these calculations, the correlated
two-electron basis in terms of the uncorrelated basis may be written as,

ΦNΛ(r1, r2) = ∑
n1l1n2l2

νNΛ
n1l1n2l2 φΛ

n1l1n2l2(r1, r2), (7)

where the expansion coefficients νNΛ
n1l1n2l2

are called the configuration CI coefficients. Substituting (7)
into the TISE and projecting over φΛ

n1l1n2l2
(r1, r2) converts it into a matrix equation, which upon

diagonalization retrieves the eigenenergies ENΛ and the CI coefficients νNΛ
n1l1n2l2

. The energies of the
ground state, single ionization threshold, and double ionization threshold are denoted by E0, E1, and E2,
respectively, where E2 ≡ 0 [sketches in Figure 1]. If a two-electron eigenstate has an energy ENΛ < E1,
then the state is of bound character. States with energies E1 < ENΛ < E2 represent singly ionized QD
with an ejected electron (including resonance states), and states with ENΛ > E2 may represent both
singly and doubly ionized QDs with one-electron ejected or two-electrons ejected, respectively.
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2.2. Quantum Dot Laser Field Dynamics

Having solved for the electronic structure of the two-electron quantum dot, its dynamics under the
influence of an intense and ultra-short linearly polarized laser pulse will be solved for. This amounts to
solving the time dependent Schrödinger equation (TDSE) for the quantum dot-field system (Equation (1)).
We use a semiclassical representation for the laser field in the Coulomb gauge and the long wavelength
approximation for the field,

D(t) = ẑA(t) · (p̂1 + p̂2), (8)

where ẑ is a unit vector (not an operator) along the z-axis, representing the linear polarization of
the laser pulse along this axis. p1 and p2 are the electron momenta and A(t) is the electromagnetic
potential field of the laser pulse, E(t) = −Ȧ(t) in the Coulomb gauge (E(t) is the electric amplitude),
given by,

A(t) =
E0

ω
sin2

(
πt
τp

)
sin ωt, (9)

where E0 is the field amplitude and ω is the carrier frequency. For a realistic ultrashort laser pulse, we
use a squared sinusoidal envelope, which satisfies the requirements that the envelope varies slowly
with respect to the carrier period, and rises and falls to zero. τp is the laser pulse duration, related to
the field period (T0 = 2π/ω) by τp = ncT0, where nc is the number of field cycles in the pulse.

The solution for Equation (1) is found by an expansion of the time-dependent wavefunction on
the two-electron eigenstates with time dependent coefficients as,

Ψ(r1, r2, t) = ∑
NΛ

CNΛ(t)ΦNΛ(r1, r2). (10)

The quantity |CNΛ(t)|2 represents the probability of observing the system in state ΦNΛ(r1, r2) at
time t or alternatively the state population. Solving the TDSE by substitution into Equation (1) and
multiplying from the left by Φ∗N′Λ′(r1, r2) and integrating over the entire coordinate space transforms
the TDSE into a set of coupled ordinary differential equations,

iĊNΛ(t) = ENΛCNΛ(t) + ∑
N′Λ′

DNΛN′Λ′CN′Λ′ , (11)

where DNΛN′Λ′ are the dipole matrix elements between the states ΦNΛ and ΦN′Λ′ . Standard angular
momentum algebra allows for the expression of the two-electron dipole matrix elements in terms
of the νNΛ

n1l1n2l2
CI coefficients and the one-electron dipole matrix elements; the latter are calculated

numerically given the Pnl(r) radial functions [22]. Thus, solving the TDSE amounts to calculating
only the two-electron dipole matrix elements and integrating Equation (11) to find the time dependent
coefficients, CNΛ(t).

For the reader who is interested, it is advised to look at the works in [20,21] for a more detailed
exposition of the method for QDs. We are now ready to proceed with the main subject of the present
work which are the radial and angular distributions of the doubly ionized QD system.

The time-dependent coefficients, CNΛ(t), along with the CI coefficients, νNΛ
n1l1n2l2

, allow the calculation
of various observables of the system, via the expansions (10) and (7); ultimately, the radial and angular
distributions are expressed in terms of these coefficients and radial wavefunctions Pnl(r), albeit in a
complicated fashion.

3. Two-Electron Joint Radial Probability Distributions

We start by giving the proper definitions for the probabilities to be calculated. The radial probability
density is defined to be,

Pr(r1, r2) = r2
1r2

2

∫
|Ψ(r1, r2, t)|2dΩ1dΩ2, (12)
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With the density automatically normalized to unity,
∫∫

dr1dr2Pr(r1, r2) = 1, since, for the total
time-dependent wavefunction,

∫
d3r1d3r2|Ψ(r1, r2, t)|2 = 1.

Calculating the two electron radial distribution amounts to evaluating the square modulus of
the time-dependent wavefunction, expanded on the spectral basis (which is itself expanded as a
sum of determinants) and integrating over all angular coordinates. Starting with the time-dependent
wavefunction expansion, Equation (10) and the two-electron eigenstate expansions, Equations (7) and (5),
we have,

Ψ(r1, r2, t) = ∑
nΛ

CNΛ(t)ΦNΛ(r1, r2) = A12 ∑
NΛ

CNΛ(t) ∑
n1l1n2l2

ν
(NΛ)
n1l1;n2l2

φΛ
n1l1;n2l2(r1, r2) (13)

= ∑
NΛ

CNΛ(t) ∑
n1l1n2l2

ν
(NΛ)
n1l1;n2l2

A12φΛ
n1l1;n2l2(r1, r2)

= ∑
Λl1l2

[
∑

Nn1n2

CNΛ(t)ν
(NΛ)
n1l1;n2l2

A12
Pn1l1(r1)

r1

Pn2l2(r2)

r2

]
YΛ

l1l2(Ω1, Ω2).

This is eventually written as,

Ψ(r1, r2, t) = ∑
Λl1l2

f Λ
l1l2

(r1, r2, t)

r1r2
YΛ

l1l2(Ω1, Ω2), (14)

with the partial-wave channels, f Λ
l1l2

(r1, r2, t), defined as,

f Λ
l1l2(r1, r2, t) = ∑

Nn1n2

CNΛ(t)ν
(NΛ)
n1l1;n2l2

ρn1l1;n2l2(r1, r2), (15)

and the two-electron radial functions by,

ρn1l1;n2l2(r1, r2) ≡


Pn1l1(r1)Pn2l2(r2), n1l1 = n2l2

1
2

[
Pn1l1(r1)Pn2l2(r2) + (−)l1+l2+LPn1l1(r2)Pn2l2(r1)

]
. n1l1 6= n2l2

(16)

In the above, the exchange term results from the anti-symmetrization of the two-electron eigenstates.
The appearance of the phase factor (−)l1+l2+L is attributed to the symmetry properties of the Clebsch–
Gordon coefficients under particle exchange. For the case where we want to examine only the singlet
symmetry, combinations of l1, l2 and L are taken such that the phase factor is always +1.

Now, using the definition of the radial probability density and the orthonormality of the bipolar
spherical harmonics, we have

Pr(r1, r2, t) = r2
1r2

2

∫
|Ψ(r1, r2, t)|2dΩ1dΩ2

= r2
1r2

2

∫  ∑
Λl1l2

∑
Λ′ l′1l′2

f Λ
l1l2

(r1, r2, t)

r1r2

f ∗Λ
′

l′1l′2
(r1, r2, t)

r1r2
YΛ

l1l2(Ω1, Ω2)Y∗Λ
′

l′1l′2
(Ω1, Ω2)

 dΩ1dΩ2

= ∑
Λl1l2

∑
Λ′ l′1l′2

f Λ
l1l2(r1, r2, t) f ∗Λ

′
l′1l′2

(r1, r2, t)
∫

YΛ
l1l2(Ω1, Ω2)Y∗Λ

′
l′1l′2

(Ω1, Ω2)dΩ1dΩ2

= ∑
Λl1l2

∑
Λ′ l′1l′2

f Λ
l1l2(r1, r2, t) f ∗Λ

′
l′1l′2

(r1, r2, t)δΛΛ′δl1l′1
δl2l′2

.

We then arrive at our main equation for the radial probability distribution as,

Pr(r1, r2) = ∑
Λl1l2

| f Λ
l1l2(r1, r2, t)|2. (17)
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This form of the radial distribution equation is particularly useful as it allows the decomposition of the
full radial distribution into partial waves, (l1, l2). The above equation in combination with Equation (15)
provides the total radial distribution including both the bound and continuum states of the QD. For our
purposes, in the summation of Equation (15), we must take care to include only index combinations
corresponding to double ionization (DI) states. The energy of the states in the double continuum is, EN =

εn1 + εn2 ; thus, the minimum values of N, n1, n2 are set by the conditions EN > 0, and εn1 > 0, εn2 > 0,
which effectively exclude the bound and the single ionization states from the summation.

4. Two-Electron Joint Angular Probability Distribution

Attempting to calculate the square of the wavefunction expanded on the spectral basis and integrating
over radial coordinates leaves an equation that is not practical to evaluate. Instead, to calculate the angular
distributions, an asymptotic momentum basis is employed. It is valid to assume asymptotic conditions
after the laser pulse has finished and sufficient time has elapsed, as, if t→ ∞, then r1, r2, |r1− r2| → ∞,
i.e the two electrons asymptotically move as free electrons.

A method is described below to express the DI probability distributions following double electron
ejection in a photoionization process. For this, we need to define the asymptotic momentum two-electron
wavepackets, in the context of a doubly-ionized QD. Asymptotically (at detector’s location), the QD’s
asymptotic Hamiltonian and the momentum operator commute with each other and therefore their
eigenstates may serve as a common basis to express the quantum mechanical state of the system of the
two-electrons; these are denoted here as φ

(−)
k1k2

(r1, r2):

Ĥ(0)
Q φ

(−)
k1k2

(r1, r2) = (ε1 + ε2)φ
(−)
k1k2

(r1, r2), (18)

where Ĥ(0)
Q = hq(r1) + hq(r2) and hq(ri) is the one-electron QD Hamiltonian, Equation (3), of the ith

electron. Note that the superscript (−) refers to ingoing asymptotic behavior, but for the sake of conciseness
φ
(−)
k1k2

(r1, r2) is denoted by φk1k2(r1, r2) in the following. From the above, it is easily concluded that the
two-electron states φk1k2(r1, r2) are expressed as the product of states of φk(r):

φk1k2(r1, r2) = φk1(r1)φk2(r2), E = ε1 + ε2 > 0. (19)

The positive-energy eigenstates of this far-distance Hamiltonian φk describe states of energy
ε = k2/2 with momentum vector, k:

hq(r)φk(r) = εkφk(r), εk =
k2

2
> 0. (20)

The next step is to express φk(r) in the partial wave basis of φnlm(r), defined by the common set
of commuting observables h, l2, lz and denoted by φnlm = φεn lm,

φk(r1) = ∑
l1m1

al1m1(k)φn1l1m1(r1), alm(k) =
ile−iδkl Y∗lm(ϑ, ϕ)

√
k

. (21)

Now, we need to express φk1k2(r1, r2) on the two-electron ’partial wave basis’ Φ(Λ)
k1l1;k2l2

(r1, r2),

which in turn is properly interpreted as the CI basis Φ(Λ)
n1l1;n2l2

(r1, r2) of Equation (5). The short-range
phase shifts δkl are here defined from the calculated radial eigenstates of Equation (6) relative the
corresponding asymptotic Bessel functions (with the same indices). For the imposed zero boundary
conditions, Pnl(R) = 0, we have,

Pnl(r)→
√

2
knπ

sin(knr− l
π

2
+ δkn l), εn > 0. (22)
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The wavenumber, k, is forced to take discrete values, k→ kn. This is due to the fact that, assuming
the QD is enclosed in a spherical box, all states (both negative and positive energy) are actually discrete.
Thus, with the convention that, for positive energies, ε1 > 0, ε2 > 0:

εnlm → εkn lm, since εn =
k2

n
2

. (23)

In fact, the values of the discretized wavenumber values depend on the l angular quantum number,
kn = kn(l). In the following, we suppress this dependence. We make the final results insensitive to this
dependence by enlarging the box so that to have a sufficient positive-energy density of states. Thus,
the indices n and k are equally valid to denote the same state with εn = k2

n/2, namely φnlm(r) ≡ φklm(r).
Direct replacement of (21) into φk1k2(r1, r2) gives,

φk1k2(r1, r2) = ∑
l1m1;l2m2

al1m1(k1)al2m2(k2)φε1l1m1(r1)φε2l2m2(r2). (24)

Now, we can replace ε1 → k1 and ε2 → k2 and then express the product of the single-electron
states φk1l1m1(r1)φk2l2m2(r2) on the basis of the two-electron states with E = ε1 + ε2, total angular
momentum L = l1 + l2, and L̂z = lz1 + lz2 , namely the ΦLML(r1, r2). Following a standard angular
momentum algebra, we arrive at the expansion below for the asymptotic solutions:

φk1k2(r1, r2) = ∑
Λ

∑
l1m1;l2m2

al1m1(k1)al2m2(k2)C
l1m1;l2m2
LML

ΦΛ
k1l1;k2l2(r1, r2), (25)

where Cl1m1;l2m2
LML

is a Clebsch–Gordon angular momentum coupling coefficient. ΦΛ
k1l1;k2l2

(r1, r2) are
angular momentum coupled two-electron basis functions.

We are now ready to proceed with calculation of the joint two-electron angular probability.
The differential probability of measuring the system in the state φk1k2 is given by the square of the
projection of the time-dependent wavefunction evaluated after the end of the pulse, written formally as

d2P(k1, k2)

dk1dk2
= lim

t→∞
|〈φk1k2(r1, r2)|Ψ(r1, r2, t)〉|2 = |C(k1, k2)|2. (26)

The time-dependent wavefunction is written as,

|Ψ(r1, r2, t)〉 = ∑
NΛ

CNΛ(t) ∑
l1n1;l2n2

νNΛ
n1l1n2l2 A12|φΛ

l1n1l2n2
〉, (27)

where A12 is the anti-symmetrization operator. The projection is calculated as,

C(k1, k2) = ∑
Λ;l1m2,l2m2

a∗l1m1
(k1)a∗l2m2

(k2)C
LML
l1m2;l2m2

〈φΛ′
l′1n′1l′2n′2

|A†
12

× A12 ∑
NΛ′

CNΛ′(t) ∑
n′1l′1;n′2l′2

νNΛ′
n′1l′1n′2l′2

|φΛ
l1n1l2n2

〉. (28)

Again, following standard algebraic manipulations, we arrive at the below compact expression,

C(k1, k2) = ∑
NΛ;l1l2

CNΛ(t)V
(NΛ)
n1l1;n2l2

(−i)l1+l2 ei(δk1 l1
+δk2 l2

)YΛ
l1,l2(k̂1, k̂2), (29)
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with the CI matrix elements VNL
n1l1n2l2

defined as,

VNL
n1l1n2l2 =


νNL

n1l1n2l2
, n1l1 = n2l2,

2νNL
n1l1n2l2

, n1l1 6= n2l2.
(30)

Now, by replacing dki = k2
i dki k̂i, i = 1, 2, we end up at,

Sk(k1, k2) =
dP(k1, k2)

dk1dk2dΩ̂k1 dΩ̂k2

= |C(k1, k2)|2 . (31)

The final step is integration over all possible kinetic energies, and, since these are discretized,
integration is equivalent to a summation over the n1, n2 indices, which gives:

Sk(k̂1, k̂2) = ∑
n1,n2

|C(k1, k2)|2 . (32)

Equations (29) and (32) constitute the two main equations used to calculate the joint two-electron
angular distributions. We extract the distributions corresponding to the DI by imposing the conditions
described in the case of the DI radial distribution for Equation (15).

5. Results and Discussion

The quantum dot structure is solved for using expansion (7) with angular momentum configurations
for total angular angular momenta L = 0, 1, 2, and 3, chosen such that we are examining only the singlet
states. We have kept all configurations with l up to 3, which are adequate for our purposes. The box
radius chosen for the calculation was Rb ≈ 160 nm.

As the QD structure is size dependent, the radial and angular distributions are presented for two
different sizes. The first quantum dot (Q1) is chosen with radius of 4.6 nm, while the second (Q2) has
radius of 3.2 nm. Both quantum dots are built from the same semiconductor crystal with an electron
effective mass and dielectric constant of m∗e = 0.1× me and κ = 5× 1/4πε0, respectively, with me

as the vacuum electron mass and ε0 as the vacuum permittivity. The TDSE is then propagated for
a laser pulse of central carrier frequency ω = 304.7 meV, at an intensity I0 = 6.397× 105 W/cm2.
The pulse duration is ≈ 0.163 ps (12 cycles). Given these laser pulse parameters, there are two distinct
double ionization mechanisms that can occur. For Q1, assuming the quantum dot is initially in its
ground state (E0 =−582.8 meV), then E0 + 2ω > E2 and thus double ionization via the simultaneous
absorption of two photons is an open ionization channel, known as direct double ionization [see left
sketch of Figure 1]. For E1 = −334.4 meV, it holds that E1 + ω < E2 and the probability for further
ionization of Q+

1 , via single-photon absorption, is significantly diminished as it is not energetically
favorable. Double ionization can then occur, only if the Q+

1 ionizes by absorbing two photons or
more. We then expect for the chosen range of intensities the dominant double ionization channel to be
the two-photon direct ionization from the ground state (since the sequential channel necessitates a
three-photon absorption which becomes important only towards higher intensities).

In contrast, the situation for the Q2 is very different. For Q2 with ground state energy E0 =−365 meV,
the direct two-photon double ionization is again energetically possible, since E0 + 2ω > E2. However,
now, double ionization can also proceed sequentially from Q2 to Q+

2 by one photon absorption and
then one further ionization of Q+

2 by absorbing one more photon (since for E1 = −232.9 meV we have
E1 + ω > E2); the important difference is that the sequential ionization via Q+

2 requires two-photon as
well [See right sketch of Figure 1].
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Figure 1. Sketch of the main modes of double photoionization. In the left sketch (RQ = 4.6 nm) is
the direct double ionization (DDI) mechanism, where one-photon ionization of the singly-ionized
QD is not energetically allowed. The right sketch (RQ = 3.2 nm) is the sequential double ionization
mechanism, where one-photon ionization from the ground state of the neutral and the singly-ionized
QD is energetically allowed.

Thus, for Q1, the dominant ionization regime is the direct double ionization (DDI) channel and
for Q2, sequential double ionization (SDI). The main difference is that for the former, while the primary
interaction is the radiation field, the electron–electron interaction may contribute significantly in the
overall double ionization process, whereas for the SDI case the electron–electron interaction is greatly
diminished in significance; theoretically, it is not a prerequisite for double ionization to occur.

As a result of the importance of the electron–electron correlations between the SDI and DDI, we want
to examine what quantitative differences show up in the radial and angular probability patterns for
the ejected electrons following double ionization between Q1 and Q2.

5.1. Radial Distributions

5.1.1. Direct Double Ionization Regime (RQ = 4.6 nm)

The form of the radial distribution Equation (17) is such that the total radial distributions can be
decomposed into partial wave contributions (l1, l2). While there are 10 different partial wave contributions
present in the calculations, only the four most dominant partial waves are presented here, as shown
in Figure 2. As discussed above, in the DDI case, the absorption of two photons by the QD directly
from its ground state will lead to the simultaneous ejection of the two interacting electrons, and thus
inter-electronic interactions could play an important role in the double ionization process.

It is not a trivial task to demonstrate undoubtedly the individual role the laser field and the
electron-electron (e-e) interaction in the overall double ionization process but we try below to interpret
in a qualitative fashion the radial distribution patterns. We notice that the most dominant configuration
channels are those of the pp, and then that of the sd configurations, followed by the ss and dd channels.
This order of significance could be attributed to the increased need of electron–electron correlation
interactions going from the pp to the other channels.

In the case of the pp channel the angular momentum and energy transfers are somewhat consistent
and may be completed without the need of e-e interactions; this is because each photon carries an
angular momentum of one and as such one could think of the pp process as each absorbed photon
transferring its angular momentum to the individual electrons in QD’s ground state and the electrons
liberate (with s→ p for each ejected electron); the residual e-e interactions do cause changes only on the
(primary acquired) electron’s energies on their way out the QD region and thus the peak structure in the
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spectrum, leading to a highly peaked radial pattern. Thinking along similar lines for the other peaks,
we may infer that e-e interactions must occur in order to be observed. For example, in the case of the sd
peak, it appears that one of the electrons has ’absorbed’ the two-photon’s angular momenta (s→ d);
this is in contrast with the energy sharing pattern where the two-electrons appear to have acquired
similar energies. Alternatively, the sd configuration in the DI channel may result from p→ s and p→ d
one-photon absorption from the pp component of the ground state, which is discussed in Section 6.

Figure 2. The four dominant two-electron DI partial radial distributions in the DDI regime (RQ = 4.6 nm).

The inter-electronic interactions allow for the energy of the two photons to be shared between
the two electrons, as shown in [21], where it is found that in the direct regime the kinetic energy
distributions tend to have their peaks at equal energies, ε1 ≈ ε2. In accordance to this observation, it is
not surprising that the structure of the partial radial distributions in Figure 2 show peaks centered
around equal distances, r1 ≈ r2. For example, for the dominant peak of the, (p, p)-wave, we see that
two-electron wavepacket is about 25 nm away from the QD’s center travelling outwards.

5.1.2. Sequential Double Ionization Regime (RQ = 3.2 nm)

As mentioned above, the smaller quantum dot has lower ionization thresholds, thus providing
access to the sequential double ionization mechanism. While both sequential and direct double ionization
contribute, it is immediately clear in Figure 3 due to the drastic changes in structure of the radial
distributions that the sequential mechanism dominates the double ionization process. In addition,
comparing, for example, the pp contribution in both DDI and SDI, the scale factor for DDI is 10−12,
whereas, for SDI, it is 10−9. An in depth discussion on the relative contributions of the partial waves and
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1L symmetries to the total kinetic energy distribution is provided in [20,21], and the same considerations
can be carried here, specifically the dominance of the pp channel by three orders of magnitude over the
others. It is clear from the separation of the two peaks that the pp channel is populated mainly by SDI,
while for the other channels these peaks are affected by the electronic correlation, suggesting competition
between SDI and DDI. In terms of e-e correlation effects the DDI processes are certainly of less interest,
as they are overwhelmed by the primary interaction with the THz laser radiation.

Figure 3. The four dominant two-electron DI partial radial distributions in the SDI regime (RQ = 3.2 nm).

Finally, we can draw our attention to the total distributions presented in Figure 4, where, in the
SDI regime (right), the dominance of the pp wave can be clearly seen by the fact that, even though
the total distributions is represented simply as a sum of the partial distributions, the total distribution
looks almost exactly the same as the pp distribution which has mostly washed out the effect of the other
distributions (the main difference being a higher probability along equal positions, attributed to e-e
correlation). On the other hand, in the DDI regime, the total distribution (left of Figure 4) results from
four dominant partial distributions with comparable relative probabilities, giving a distribution that
cannot be associated to an overwhelming partial wave, bringing to light again the role of e-e correlation.

We may, however, try and associate the peak positions in the distributions relative to the expected
peak positions resulting from a simplified energy calculation. With the excess energy (kinetic energy)
of the electrons after photoionization has occurred, E = k2

1/2 + k2
2/2, and assuming that the peak

strength of photoionization process occurs at the electric field maximum of the laser pulse at a time
∼ τp/2, we can find the classical velocity of the electron from the kinetic energy and calculate how far
the electron is expected to travel after the second half of the laser pulse has finished, ri ∼ viτp, i = 1, 2.

For the SDI case (right panel of Figure 4) the kinetic energy peaks of the two electrons for the
pp-wave are 174.14 meV (1.6 s.a.u) and 65.3 meV (0.6 s.a.u.) [21]. In addition, for reference, 1 s.a.u of
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time is 0.006047 ps. For the laser pulse given here with a pulse duration of 0.163 ps, the expected peak
position in the joint radial distribution is placed at (r1, r2) ≈ (61 nm, 39 nm). Comparing this with the
pp radial distribution, we can see that the peaks are approximately present at this position. On the
other hand, in the case of DDI (left panel of Figure 4), with both electrons having a kinetic energy of
16.33 meV (0.15 s.a.u) for the pp-wave, the resultant expected position for both electrons is≈20 nm and
comparing with the pp radial distribution we can see again that the peak falls approximately on this
position. As the expected positions are the result of a rough estimation based on classical kinematics
relations, a discrepancy between the radial distributions and the expected positions is to be expected.

Figure 4. (Left): The total radial distribution in the DDI regime (RQ = 4.6 nm). (Right): The total radial
distribution in the SDI regime (RQ = 3.2 nm).

5.2. Angular Distributions

Equation (32) is evaluated using the asymptotic basis states forming ψk1k2(r1, r2) for momenta
calculated from the relation εi = k2

i /2 where i = 1,2. Since the joint two-electron angular probability
distribution has four angle parameters (ϑ1, ϕ1, ϑ2, ϕ2) there are various ways of plotting. The choice
here is to fix the ejection angles of one of the electrons (ϑ1, ϕ1) = 0 and then to plot the angular
probability for the second electron for a fixed ϕ2 = 0 [see Figure 5].

E

B

La
ser

x̂

ŷ

ẑ

r̂1

r̂2

θ2

ϕ2

Figure 5. Sketch of the second electron’s ejection angle, assuming a fixed ejection direction of the first
electron, θ1 = 0 and ϕ1 = 0 along the laser polarization axis.
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Direct Double Ionization Regime (RQ = 4.6 nm)

As can be seen in Figure 6, the direction of ejection of the second electron relative to the first is
primarily along the parallel (0◦) and anti-parallel (180◦ or back-to-back) directions. It is clear that the
total distribution is dominated by the contribution of the pp channel, which seems to imply that the
two electrons escape primarily due to absorption of a single photon each. Attention should now be
drawn to the fact that the peak ratio of anti-parallel to parallel ejection in the direct regime is≈2.5 times
greater. Intuitively, this would be expected in a classical picture of the simultaneous ejection of two
electrons, where one can expect the electrons to move in opposite directions due to the interelectronic
interaction. Corroborated by the discussion of the radial distributions in the DDI case, it should be
concluded that the ejection pattern of the two-electrons is mainly determined by channels due to the
interaction with the laser field with a lower contribution originating from the e-e interaction channels.
These e-e channels contribute destructively for electrons ejected along the same direction θ1 ∼ θ2 ∼ 0
as they lead to a reduction of the pp pattern in the overall angular distribution probability along these
angles, in contrast to the back-to-back ejection pattern for θ2 ∼ 180◦.
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Figure 6. Angular distributions for the dominant partial wave channels in the DDI regime (RQ = 4.6 nm)
for fixed ejection of one electron, θ1 = 0, and ϕ1 = ϕ2 = 0.

5.3. Sequential Double Ionization Regime (RQ = 3.2 nm)

Again, decreasing the quantum dot size to access the SDI regime, we note an overall peak increase
of the distributions in Figure 7 due to the overall higher probability of ionization in the SDI regime,
with the multiplier increasing by two orders of magnitude. In view of the opening of the SDI channel,
the total angular distribution is naturally dominated by the pp partial wave, as ionization mostly occurs
via the independent ejection of the two electrons, having absorbed a single photon each with no angular
momentum transfer required. The domination of the pp ionization channel over the others is even
more striking in this case. Another clear difference in the SDI regime is the ratio of peak anti-parallel
to parallel ejection has drastically decreased, from ≈2.5 in the DDI regime, to ≈1.2 in the SDI regime.
This leads to more symmetric pattern as concerns the probability to have two-electrons in the same
(θ2 ∼ 0◦) and opposite (θ2 ∼ 180◦) directions (given that θ1 = 0◦ is fixed). Considering that the electric
field of the radiation alternates its direction evenly, this is what should be expected for independent
ejection of the two-electrons. In this sense, the observed reduction ratio of the parallel/back-to-back
ejection relative to the DDI regime is again a manifestation of the role of the e-e interaction in the QD’s
double ionization.
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Figure 7. Angular distributions for the dominant partial wave channels in the SDI regime (RQ = 3.2 nm)
for fixed ejection of one electron, θ1 = 0, and ϕ1 = ϕ2 = 0.

6. Partial Wave DI Probabilities

One question of research interest is the relative role of the interelectronic interactions and the
radiation field in the double ionization process; this certainly depends on the target system and the
radiation properties. The size variability of the QD offers the possibility to switch between ionization
regimes and keeping the external field constant. In our case, For the larger QD, RQ = 4.6 nm, the DDI
mechanism prevails in the double ionization, whereas, for the smaller one, RQ = 3.2 nm, the SDI
mechanism is the main double ionization channel. Some insight can be shed by calculating the dynamic
development of the four dominant partial DI yields during the pulse at times where the external field
vanishes; thus, in Figure 8, we plot the partial yields for the (ss), (sd), (pp), and (dd) channels when the
field has completed its 3rd, 6th, 9th, and 12th cycle, for both the larger (left plot) and the smaller (right
plot) QD.

Figure 8. The partial-wave DI yields for the dominant channels for the RQ = 4.6 nm (left) and the
RQ = 3.2 nm QDs (right) plotted versus the field cycles. The total duration was 0.136 ps and the peak
intensity was 105 W/cm2.
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It facilitates the discussion if we assume the following symbolic equation of a double-ionization
event where the QD absorbs two photons and excites at a state where two electrons are liberated with
suitable energies and angular momenta:

ψg = C1|s2〉+ C2|p2〉+ · · ·+ 2ω −→ ψ f = C′1|ksk′s〉+ C′2|ksk′d〉+ C′3|kpk′p〉+ C′4|kdk′d〉+ · · ·

Generally, the |s2〉 CI component is stronger than the |p2〉 component (C1 >> C2). On the other hand,
the absolute amplitudes of |Ci|2, i = 1− 4 are related with the partial DI yields shown in Figure 8.
The procedure followed to calculate the partial DI yields is shown in [21].

Given the above considerations, in the case of the larger QD (where direct DI prevails), the dominant
production channel (kp, k′p) is a direct absorption of 1-photon from each of the 1s orbitals of the |s2〉
of the ground state, ψg. This transition mode, at rise side of the pulse, generates the (p, p) wavepacket,
whereas, later on, the e-e interaction 1/r12 potential takes over and results to a redistribution of the DI
probability to the other partial waves, (ss), (sd), (dd); this redistribution corresponds mainly to angular
momentum exchange rather than energy exchange so that both electrons carry the same kinetic energy at
the end, as suggested by inspection of the radial distributions in Figure 2 (and noticing that this reflects
directly to the joint two-electron kinetic energy spectrum) [21].

It is interesting to comment here that this is in contrast with the atomic Helium (a purely two-electron
system) where the trend is to get a flat or U-shaped kinetic energy distribution (in contrast to the peaked
one, observed here) depending on the photon energy [23]. At this point, we only add the speculative
comment that one reason for this difference could be attributed to the very rapid decay of the Gaussian
central potential in QD (∼e−βr2

relative to the ∼1/r Coulombic potential of the He core).
Similarly, at the beginning of the pulse, the (0,0), (0,2), and (2,2) may be produced directly from

weaker component |p2〉 of the ground state. The latter therefore suggests that the stronger the correlation
in the ground state of the QD the larger the relative production of these channels. Along these lines of
thinking, the decrease of the (1,1) population after the ninth cycle (where the laser is almost absent) with
the simultaneous increase of (0,2) and (0,0) is the manifestation of e-e correlation interactions, ∼ 1/r12

(this is a common feature in the case of DI of atomic He, as reported in [14]), while the radiation is the
primary interaction during the initial stages of the ionization (when the pulse is rising).

Turning now to the case of the smaller QD (where the SDI is the dominant DI channel), by inspection
of the right plot of Figure 8, we observe that the decrease of the (1,1) double ionization channel when
the pulse is falling (after the ninth cycle) is not observed. The transition mechanisms discussed above
(photon absorption from the weaker components of the ground state at the initial stages and the 1/r12

e-e interactions at later times) may play a role in the production of the two-electron partial wavepackets
of (0,0), (0,2), and (2,2). However, the initially emitted electrons have different kinetic energies (which
is reflected in different localization in space) in (1,1), resulting in a weaker 1/r12 potential and as such
production of (0,0), (0,2), and (2,2) via the (1,1) partial wave is no longer effective. Thus, our conclusion
in this case is that the most probable DI channel for the latter (weaker) partial waves is the result of
direct two-photon absorption from the |p2〉 component of the ground state. Such a mechanism may
explain the constant larger (more than double) yield of the (0,2) channel relative to the (0,0) given the
propensity rule for one-photon electric transitions favouring p→ d over p→ s (about a factor of 2).
We finalize this discussion by commenting that the present observations are in good agreement with
the analysis of Barna et al. [24] in the atomic case.

7. Conclusions

An ab-initio method for the calculation of the joint radial- and angular-electron distributions of
the double ionization of a two-electron QD in THz fields was developed and applied to two QDs of
different size. The computational method assumes a spherical QD with no other parameters introduced.
We developed in detail the non-trivial case of calculating the two-electron continuum QD wavefunction
and the associated method of extracting experimentally accessible observables. We related the dominant
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double ionization mechanisms with the contribution of the electron–electron and radiation interaction
potentials in the process and found a similarity in the angular distribution patterns but not in the radial
distribution patterns. We believe that the conclusions as they stand can be carried forwards and could be
used to interpret experimental ejection patterns for more QDs of more complicated electronic structures.
Other aspects of the interaction of a QD with a THz field which could be of interest are the properties of
harmonic generation, which was left out of the current discussion, as it involves a different formulation
to be developed and constitutes a research project by itself.
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e-e electron–electron
CI Configuration Interaction

References

1. Harrison, P.; Vavanis, A. Quantum Wells, Wires and Dots, 4th ed.; John Wiley and Sons: Chichester, UK, 2016.
2. Chakraborty, T. Quantum Dots, a Survey of the Properties of Artificial Atoms; Elsevier: Amsterdam, The Netherlands, 1999.
3. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: Oxford, UK, 1995.
4. Langbein, W.; Patton, B. Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of

individual quantum systems. Opt. Lett. 2006, 31, 1151. [CrossRef] [PubMed]
5. Fejer, M.M.; Yoo, S.J.B.; Byer, R.L.; Harwit, A.; Harris, J.S., Jr. Observation of extremely large quadratic

susceptibility at 9.6–10.8 µm in electric-field-biased AlGaAs quantum wells. Phys. Rev. Lett. 1989, 62, 1041.
6. Sirtori, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Giant, triply resonant, third-order nonlinear susceptibility in

coupled quantum wells. Phys. Rev. Lett. 1992, 68, 1010. [CrossRef] [PubMed]
7. Heyman, J.N.; Craig, K.; Galdrikian, B.; Sherwin, M.S.; Campman, K.; Hopkins, P.F.; Gossard, A.C. Resonant

harmonic generation and dynamic screening in a double quantum well. Phys. Rev. Lett. 1994, 72, 2183.
[CrossRef] [PubMed]

8. Gurnick, M.K.; DeTemple, T.A. Synthetic nonlinear semiconductors. IEEE J. Quant. Electr. 1983, 19, 791.
[CrossRef]
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