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Abstract: The concept of treating subranges of the electron energy spectrum as species in chemical
models is investigated. This is intended to facilitate simple modification of chemical models by incor-
porating the electron interactions as additional rate equations. It is anticipated that this embedding of
fine details of the energy dependence of the electron interactions into rate equations will yield an
improvement in computational efficiency compared to other methods. It will be applicable in situa-
tions where the electron density is low enough that the electron interactions with chemical species
are significant compared to electron–electron interactions. A target application is the simulation of
electron processes in the D-region of the Earth’s atmosphere, but it is anticipated that the method
would be useful in other areas, including enhancement of Monte Carlo simulation of electron–liquid
interactions and simulations of chemical reactions and radical generation induced by electrons and
positrons in biomolecular systems. The aim here is to investigate the accuracy and practicality of the
method. In particular, energy must be conserved, while the number of subranges should be small to
reduce computation time and their distribution should be logarithmic in order to represent processes
over a wide range of electron energies. The method is applied here to the interaction by inelastic
and superelastic collisions of electrons with a gas of molecules with only one excited vibrational
level. While this is unphysical, it allows the method to be validated by checking for accuracy, energy
conservation, maintenance of equilibrium and evolution of a Maxwellian electron spectrum.

Keywords: electron scattering; chemical model; simulation; rate equations; electron energy distribution

1. Introduction

Simulations of atmospheric processes involving chemistry often involve the processing
of a set of reactions specified in the form:

A + B k→ C + D + . . . , (1)

where A, B, C and D are atoms or molecules and k is the rate constant. The rate r at which
A and B interact is given by:

r = k[A][B] , (2)

where [x] represents the density of species x and the rate constant k has the units L3s−1

where “L” is the unit of length in which the density is specified (e.g., cm3s−1).
For each species i with number density ni, a one-dimensional mass continuity equation

can be written:
δni
δt

= Pi − lini , (3)

where Pi and li are the production rate and loss probability [1].
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The set of continuity equations can be solved iteratively until equilibrium is ob-
tained [2], or applied over a series of time steps for non-equilibrium simulations [1]. Even
where equilibrium is required, a time-step simulation is useful to determine the time for
equilibrium to be attained [3].

Electron interactions can be (e.g., [4]) incorporated into the set of rate equations in
forms such as:

A+ + e kr−→ A or A + e ka−→ A− or A + e kex−→ A∗ + e∗ , (4)

where ∗ represents a change in energy and kr, ka and kex are the average rate constants, for
recombination, attachment and excitation, for electrons with a Maxwellian distribution
characterised by an electron temperature Te. However, in many atmospheric applications,
such as those including auroral, cosmic-ray or VUV input, the electrons are not in thermal
equilibrium [5,6]. For example, in the Earth’s nighttime mesosphere, electrons are created
in ionization produced by cosmic rays and by Lyman-α radiation [7], and they then lose
energy in collisions with atmospheric molecules before recombining with positive ions or
attaching to molecules to produce negative ions. At the same time, chemical processes
produce vibrationally-excited OH [8], with some of this energy being transferred to other
species and then to free electrons in superelastic collisions. The time-scale of these processes
depends on the density of each constituent. Therefore, calculating the electron density
requires a non-equilibrium simulation that includes both the electron–impact processes
and chemical processes.

Another potential application may be to enhance Monte Carlo simulation of non-
equilibrium electron–liquid transport [9]. In cases where there are too many tracks (from
ionisation) or too few tracks (from attachment) to simulate, approximate approaches such as
“re-scaling” [10] or “weighting” [11] are used and the distribution of the excited species is
not considered. It is possible that using a chemical model that includes electron interactions
could be applied in such situations. In addition, the chemical model could be applied to
determine a non-equilibrium distribution of excited species in a gas prior to applying a
Monte Carlo simulation of electron impact.

Ionizing radiation applied to biological materials can produce secondary electrons,
radicals (e.g., OH•) and ions (e.g., H3O+), all of which can cause damage to DNA [12,13].
As the electrons may lose energy in a series of interactions with water and other molecules
before interacting with a DNA molecule, a chemical model that incorporates a changing
electron energy spectrum should be applicable to simulating damage to DNA by ioniz-
ing radiation.

Thus, an aim of this work is to develop a method to calculate the development of the
electron energy spectrum for a system where the electrons are interacting with atoms and
molecules that are simultaneously interacting with each other. This has previously been
addressed in plasma physics as part of a “state-to-state” approach [14] in which excited
states of atoms and molecules are treated as independent species. This chemical model is
coupled to the electron distribution via the Boltzmann equation, with the reaction rates
between electrons and chemical species being recalculated each time the coupling is made.
The aim here is to do this with a different approach in which groups of electrons of similar
energy are treated as individual chemical species and consequently all interactions are
calculated in each time step. An advantage of this method is that the electron interactions
can be added into the list of rate equations in existing models, avoiding the work involved in
merging different computer codes that are geared to different problems. Another advantage
is that some detail (e.g., thresholds and narrow resonances) of the electron interactions can
be incorporated into the reaction rates, so they do not have to be recalculated at each time
step and so a relatively coarse energy grid can be used to reduce computation time.

The proposed method is to divide the electron energy range into subranges and to
treat each subrange in the same way as a chemical species i.e., each reaction, such as those
in Equation (4), is replaced by a series of reactions that represent the interaction for a set
of different initial and final electron–energy subranges. Due to the large range of energies
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of different processes (from ionisation to recombination), a logarithmic distribution of the
energy ranges is preferable.

A test of this proposed method, to investigate validity and accuracy, is to simulate
the injection of electrons of one energy into a gas of OH molecules, where only vibrational
excitation of one level of OH is considered. OH is chosen as it is relevant to two of the
examples postulated above.

In Section 2.1, the background theory and computational techniques required to
develop and test the proposed method are outlined. In Section 2.2, the method and its
computational implementation are outlined. The results of various tests of the method to
show its viability and the errors involved are given in Section 3. These results are discussed
in Section 4, from which conclusions are drawn and given in Section 5.

2. Materials and Methods
2.1. Background Theory and Techniques

A simple way to simulate the evolution of a set of interacting species is to apply
Equation (2) to each reaction (1) for a time-step ∆t, so that the change in each species is:

− ∆[A] = −∆[B] = ∆[C] = ∆[D] = k[A][B]∆t. (5)

For each species i, the gains and losses are added up to give the total gain Gi and total
loss Li so the new density ni of species i after time ∆t is:

ni(t + ∆t) = ni(t) + Gi − Li. (6)

The development of the densities of all species can be simulated by iterative application
of Equation (6) over the required time, but the magnitude of ∆t is limited by the requirement
that the density must not go negative and so this “explicit” formula is unsuitable for
simulation of systems over long time intervals.

An alternative “semi-implicit” method [15] is justified by the fact that, through the
time interval ∆t, the loss rate li is proportional to the instantaneous density ni(t). Hence,
an approximation is being made irrespective of whether the value of Li is approximated
by being proportional to ni(t) or ni(t + ∆t). Thus, substituting the final density for the
initial density:

ni(t + ∆t) = ni(t) + Gi − Li = ni(t) + Gi − Li
ni(t)
ni(t)

= ni(t) + Gi − Li
ni(t + ∆t)

ni(t)
(7)

and rearranging:

ni(t + ∆t)
(

1 + Li
1

ni(t)

)
= ni(t) + Gi , (8)

leads to:

ni(t + ∆t) =
ni(t) + Gi

1 + Li
ni(t)

. (9)

As the new density cannot be negative, Equation (9) avoids the main problem with
Equation (6) and so allows much longer values of ∆t to be used.

There are more sophisticated time-step algorithms (e.g., [15,16]), but the requirement
here is to be able to discriminate between the error due to the time-step algorithm and
any error inherent in the approximation of the electron energy spectrum. For example,
the Gauss–Seidel method is quoted to have an error of 1% [16]. As Equation (9) would
be expected to have no error in the limit of very small time steps, the errors due to the
simulation method can be separated from the errors due to the time-step calculation.
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To allow the simulation to run to equilibrium with minimum computation time, an
adaptive time step ∆t is required to implement Equation (9) efficiently [3]. The initial value
of ∆t is set very small (e.g., 10−10 s) and is then successively increased as:

∆tj+1 = f ∆tmin = f min
[

ni(t)
Li − Gi

for ni(t) > 1, Li > Gi

]
∆tj , (10)

where ∆tmin is the minimum time interval for any of the constituents i to fall to zero in the
next time step ∆tj+1 at the current rate of change, and f is a fraction that acts to reduce the
error in the calculations.

The rate constant for collisions between an electron and a gas molecule in a unit
volume is vσ, where v is the electron’s velocity and σ is the cross section or probability for
the interaction. Thus, the rate constant as a function of energy is:

k(E) = vσ = σ
√

2E/m. (11)

It therefore follows that the rate constant k(Ea, Eb) for all transitions of electrons
starting in a range [Ea, Eb] is:

k(Ea, Eb) =

∫ Eb
Ea

σ(E)
√

2E/mF(E)dE∫ Eb
Ea

F(E)dE
, (12)

where F(E) is the electron energy distribution function (EEDF). For a Maxwell–Boltzmann
distribution:

F(E) =
2√
π

(
1

kBT

)3/2
E1/2e−E/(kBT) , (13)

where T is the electron temperature, and kB is Boltzmann’s constant [17].
The cross section σs for a superelastic collision, for electron impact energy E, can be

determined from the inelastic cross section using [18,19]:

σs(E) =
E + ε

E
σ(E + ε) , (14)

where ε is the threshold energy of the inelastic excitation.
Electrons impacting atoms and molecules will gain or lose energy by elastic scattering.

Published cross sections [20] for elastic electron scattering by OH are only for electron
energy above 1 eV. Thus, as an approximation, the formula for the elastic electron energy
transfer rate for O of Banks [21] is used, i.e.,

dUe/dt = −3.74× 10−18nen(O)T1/2
e (Te − T) (15)

where dUe/dt is the energy transfer rate (eV cm−3s−1), Te is the temperature of a Maxwellian
distribution of electrons, T is the temperature of the O atoms, ne is the electron density
(cm−3), and n(O) is the O density.

2.2. Proposed Method

To incorporate the electron reactions (4) into a time-step simulation, the proposed
approach is to split the electron energy range [Emin, Emax] into N subranges R1–RN , with
R0 set as the range [0, Emin].

In place of the single reaction A + e k−→ A∗ + e∗, a series of reactions:

A + Ri
kij−→ A∗ + Rj , (16)

is entered into the list of chemical reactions, with the number density of electrons in
each energy range Ri treated in the same way as the density of a chemical species. (For



Atoms 2022, 10, 62 5 of 16

example, in the current implementation, the number of electrons in the range [0, Emin] is
stored in a variable R0. While a logarithmic distribution of subranges is desirable, a linear
distribution is considered first for simplicity before proceeding to the complications added
by a logarithmic distribution.

Consider a case where electrons lose or gain energy ε in elastic and superelastic
collisions with gas molecules. In Figure 1a, the case where the transition energy ε is less than
the size of the energy subranges is considered for two energy subranges with boundaries
at E01, E12 and E23 and midpoints at E1 and E2. Applying Equation (12) with F(E) = 1 (as
the electron–energy distribution is varying), the rate constant k21 for transitions where the
electron crosses from R2 to R1 is:

k21 =

∫ E12+ε
E12

σ(E)
√

2E/mdE∫ E23
E12

dE
(17)

The rate constant k22, for cases where the electron energy remains in the same subrange
while the excited species is produced is similarly:

k22 =

∫ E23
E12+ε σ(E)

√
2E/mdE∫ E23

E12
dE

(18)

If σ(E)
√

2E/m were constant, then energy would be conserved because the energy
lost by electrons that remain in the same subrange would be offset by the higher energy
implied for those that transition to the next subrange, i.e.,

k21(E2 − E1) = (k21 + k22)ε. (19)

However, as σ(E)
√

2E/m varies across the subrange, energy will not be conserved so
a correction is necessary. This is made by solving Equation (19) for a modified value of k22:

k′22 = k21(E2 − E1 − ε)/ε. (20)

In the case of Figure 1b, where ε is greater than the subrange size, all electrons transition
to a lower subrange and there is no physical value of k33. However, a notional value of k′33
can be calculated to maintain conservation of energy:

k′33 = (k32(E3 − E2 − ε) + k31(E3 − E1 − ε))/ε. (21)

While k′33 is an unphysical quantity and can be negative, it implements conservation of
energy by correcting for the approximation that σ(E)

√
2E/m is constant over the subrange.

Applying a similar analysis for the case where ε is much larger than the subrange size leads
to a general equation:

k′ll = Σl−1
i=0kli(El − Ei − ε)/ε (22)

for inelastic collisions and

k′ll = ΣN
i=l+1kli(Ei − El − ε)/ε (23)

for superelastic collisions.
As electrons may be initially introduced at high energy, but then proceed to lose energy

through a series of collision processes down to a very low energy, it is desirable to make the
energy subrange boundaries on a logarithmic scale to keep the total number of subranges
N + 1 to a viable minimum for the calculations while allowing for adequate resolution at
low electron energies. Equations (22) and (23) are applicable, even where electrons in one
subrange can transition to several lower subranges.
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R1 R2

E01 E12 E23E1 E2

k21

k22

(a)

R1 R2 R3

E01 E12 E23 E34E1 E2 E3

k31

k32

(b)

Figure 1. Electron energy losses (arrows) in relation to electron–energy subranges: (a) For an energy
transition ε that is less than the subrange size E23 − E12, electrons with initial energies in the shaded
area cross the boundary to range R1, while the others remain within range R2. (b) For ε greater than
the subrange size E34 − E23, all electrons transit to a lower subrange, with those in the shaded region
going to R1 and the others to R2.

Aspects of the model are illustrated in Figure 2, for inelastic and superelastic collisions
of electrons with OH molecules in the lowest and first vibrational level of the ground state.
It shows rate constants for individual energies and average rate constants for the simulation
where the electron energy range is divided into 30 logarithmically-spaced energy subranges
between 0.01 eV and 20 eV, labelled R1–R30, with electrons below 0.01 eV assigned to the
subrange R0.

Inelastic electron–impact cross sections for the 0→1 vibrational excitation in OH,
calculated using the method of Riahi et al. [22], are shown by a solid curve. This case was
chosen as it provides a smoothly varying curve, so that the accuracy of the simulation can
be evaluated with minimum contribution from any structure in the cross sections. The
superelastic cross sections for the 1 → 0 transition, calculated using Equation (14), are
shown by the dashed curve. Using these cross sections in Equation (11), rate constants
for the 0 → 1 excitation (ε = 0.443 eV) are shown for 2500 logarithmically-spaced initial
energies (between 0.005 and 20 eV) by horizontal green lines drawn between the initial and
final electron energies at the appropriate vertical position. Rate constants for the superelastic
deexcitations are plotted similarly in purple. Transitions ending in the lower-energy ranges
all start from within a small energy range near the threshold, so, in applying Equation (12)
to calculate the averaged rate constants, the steps in energy must be sufficiently small.

Equations (17), (18), (22) and (23) were applied to calculate the rate constants for
transitions between pairs of subranges. These are represented in Figure 2 by left-pointing
arrows for inelastic collisions and by right-pointing arrows for superelastic collisions,
drawn from the centre of the initial subrange to the centre of the final subrange, with the
vertical position showing the value of the average rate constant. At low electron energies,
the average rate constants are much lower than the individual ones because, particularly
near the threshold, only a fraction of the possible transitions starting within the higher
energy subrange end in each lower-energy subrange. Thus, these are better described
as “effective” rate constants. This is an example of the way in which details of the cross
section within an energy range are embedded in the rate constants. At higher energies,
where the transition energy is much less than the width of the energy subranges, the
effective rate constants are again lower because only transitions that cross a subrange
boundary are included. The effective rate constants for collisions that leave the electron in
the same subrange are plotted as octagons for the inelastic collisions and squares for the
superelastic collisions.

In some cases, the corrected rate constants produced by Equations (22) and (23) can be
negative. While this is unphysical, it makes a necessary correction to maintain conservation
of energy. The negative values are indicated by filled symbols in Figure 2.
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Figure 2. Rate constants (upper panel) and cross sections (lower panel) as a function of electron
energy for electron–impact vibrational excitation (0→ 1) in OH. Rate constants for inelastic collisions
are shown by green lines from the initial to the final electron energy. In the simulation (for transitions
between pairs of the 31 energy subranges indicated by the vertical dashed lines), the effective
rate constants are shown by arrows drawn from the midpoint of the initial subrange to the final,
while symbols (circles for inelastic and squares for superelastic collisions) show the effective rate
constants for the transitions where the initial and final electron energies are in the same subrange.
Negative rate constants are indicated by solid circles for inelastic collisions and solid squares for
superelastic collisions.

As examples, the reactions added to the model for inelastic collisions starting in
subranges R18 and R30 are specified as:

OH(0) + R18
k18,14−→ OH(1) + R14 where k18,14 = 9.921× 10−10 cm−3s−1

OH(0) + R18
k18,15−→ OH(1) + R15 where k18,15 = 2.225× 10−9 cm−3s−1

OH(0) + R18
k18,16−→ OH(1) + R16 where k18,16 = 1.549× 10−9 cm−3s−1

OH(0) + R18
k18,18−→ OH(1) + R18 where k18,18 = 9.862× 10−11 cm−3s−1

OH(0) + R30
k30,29−→ OH(1) + R29 where k30,29 = 2.161× 10−10 cm−3s−1

OH(0) + R30
k30,30−→ OH(1) + R30 where k30,30 = 1.725× 10−9 cm−3s−1 (24)
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A proof-of-concept test of this proposed method, to investigate validity and accuracy,
is to simulate the injection of electrons of one energy into a gas of OH molecules that are
initially all in the lowest level of the ground state and to consider only excitation to the
first vibrational level. While this is unphysical, as it does not consider the electron–electron
interactions that would dominate in this case, the rationale is to make a stringent test in
a case where a theoretical equilibrium can be calculated. Initially, the electrons will lose
energy in exciting the OH molecules, then regain some of it via superelastic collisions, until
an equilibrium is reached. The total energy of the system (of electrons plus excited OH
molecules) should be equal to the total input energy, while the electrons should have a
Maxwell–Boltzmann distribution as given in Equation (13).

Consider that Ne electrons with a total energy Etot are mixed with Ng OH molecules
in the lowest level of the ground state. Assuming that at equilibrium the vibrational
temperature of the gas and the electron temperature are the same, this temperature T can
be found by solution of the equation:

e−ε/(kT)

1 + e−ε/(kT)
εNg + 1.5kTNe = Etot. (25)

In order to compare results for logarithmic and linear spacing of the subranges, where
the average energy of the electrons EN (i.e., centre of subrange RN) is different between the
two, Ne is chosen so that the equilibrium gas energy Eg is the same:

Ne =
Eg

EN − 1.5kT
where T =

−ε

k ln
( g f

1−g f

) , g f =
Eg

Ngε
. (26)

The electrons can also gain or lose energy in elastic collisions with the gas molecules.
To calculate rate constants for elastic collisions, Equation (15) for electron scattering from O
is used, making the further approximation of applying the characteristic temperature Te of
a Maxwellian distribution of electrons to that of a single electron. This gives the change of
energy of an electron with energy E (eV) for unit gas and electron densities as:

∆E
∆t

= −3.74× 10−18T1/2
e (Te − T) , (27)

where Te = E/k. As ∆E is a small fraction of the electron subranges, the rate for transfer
from subrange Rj to Rk is divided by the number of individual collisions required to transfer
a total energy of Ej − Ek, where Em is the midpoint of the energy subrange Rm. Thus, the
rate constant for elastic collisions that transfer energy from range Rj to range Rk is:

k jk =
∆E

Ej − Ek
where|j− k| = 1 . (28)

To verify this method, the simulated energy of the electrons can be compared with
that predicted in an iteration of the total electron energy Ee:

Ee(t + ∆t) = Ee(t)− ∆E , (29)

where ∆E is calculated using Equation (15).

3. Results

The 119 effective-rate equations illustrated by the arrows and symbols in Figure 2
were applied to a gas containing (per cm3) 108 OH molecules in the ground state and
562,666 electrons in range R30 (determined using Equation (26) to given a final OH energy
at equilibrium of 9.7 MeV) for a logarithmic distribution of subranges. The simulation was
run (with f = 10−6) for 1000 s, giving the results shown in Figure 3 for the OH, electron
and total energies as a function of time. The simulated values at every thousandth time
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step are shown by symbols. In addition, the electron distributions at the beginning and
the end of the simulation are shown. The theoretical and simulated equilibrium values are
plotted as horizontal lines over each energy interval. It can be seen in Figure 3 that energy
is transferred from the electrons to the gas molecules, reaching close to an equilibrium
after 700 s. At this stage, both the gas energy and the total energy are lower by about 2%,
while the electron energy is close to the expected value. The simulated electron energy
distribution is close to the calculated Maxwellian distribution (“Equil. ED”) but with a
residual high-energy tail.

The results for repeating the simulation with 506,677 electrons and a linear distribution
of 31 subranges are shown in Figure 4. The simulated OH energy reaches about ∼1% of the
equilibrium value after about 400 s, but the electron energy stabilises at (proportionally)
a significantly higher absolute value, resulting in a slight excess in the total energy. The
excess electron energy appears as higher values in the number of electrons at <1 eV in the
electron distribution.

Initial energy

Sim. total energy

Equil. electron energy

Sim. electron energy

Equil. OH energy

Sim. OH energy

(a)

E
n
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rg

y
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Energy (eV)

Figure 3. Simulated (symbols) and equilibrium (lines) values of (a) gas, electron and total energies
for N = 30 with a logarithmic distribution of subrange boundaries. The simulated values are plotted
as a function of time at every thousandth time step. The electron distributions (b) are shown for the
original (4), predicted equilibrium (thick line) and simulated at 1000 s (thin line).

In Figure 5, the simulated OH energies are plotted as a function of time for linear
and logarithmic spacing of 31 subranges, each for the uncorrected rates (Equations (17)
and (18)) and for the rates corrected for energy conservation (Equations (22) and (23)). While
there is little difference until about 150 s into the simulation, the values in the corrected
cases approach the predicted equilibrium while those for the uncorrected cases rapidly
gain excess energy. The energy in the corrected linear case is constant between 500 s and
1,000,000 s, while in the logarithmic case it is constant from 700 s to 500,000 s and then
declines slightly. In addition, the OH energies for the corrected logarithmic case with the
negative rates set to zero are shown. These show excess energy appearing after about
1000 s.

The simulations summarised in Figure 5 were repeated for N = 100, giving the ener-
gies plotted in Figure 6 as a function of time. In both the corrected linear and logarithmic
cases, the OH energies converge to the predicted value and the equilibrium is then main-
tained for 1,000,000 s, while for the uncorrected cases the energies still diverge, or go to
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zero in the case of setting negative rates to zero. The rise time for the logarithmic case is
slightly longer than for the linear case.
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Figure 4. Simulated (symbols) and equilibrium (lines) values of (a) gas, electron and total energies
for N = 30 with a linear distribution of subrange boundaries The simulated values are plotted as
a function of time at every thousandth time step. The electron distributions (b) are shown for the
original (4), predicted equilibrium (thick line) and simulated at 1000 s (thin line).
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Figure 5. The calculated OH energies as a function of time are shown for logarithmic and linear
distributions of 31 subranges, compared with the equilibrium value (– – –). For the linear distribution,
uncorrected (- - - -) and corrected (—–) cases are shown, while, for the logarithmic distribution,
uncorrected (— —), corrected (�) and corrected with negative rates reset to zero (–·–·–) are shown.

In Figure 7, the OH, electron and total energies are plotted as a function of time, for
N = 100 with logarithmic spacing, showing all approaches and then remaining very close
to the predicted values. The percentage errors in the total energy are plotted, showing a
rise to about 0.09% before falling to 0.03% when equilibrium is attained. (The discontinuity
at about 200 s is due to a change in sign in the difference between the simulated and
calculated values).
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Figure 6. The calculated OH energies as a function of time are shown for logarithmic and linear
distributions of 101 subranges, compared with the equilibrium value (– – –). For the linear distribution,
uncorrected (- - - -) and corrected (—–) cases are shown, while for the logarithmic distribution
uncorrected (— —), corrected (�) and corrected with negative rates reset to zero (–·–·–) are shown.
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Figure 7. Initial or equilibrium (horizontal lines) and simulated (symbols) energies plotted as a
function of time for N = 100. The percentage errors in the total energy are shown by plus signs.
Vertical dashed lines indicate the times for which the electron distributions are plotted in Figure 8.

The simulated electron distributions, at the times shown by the vertical dashed lines
in Figure 7, are plotted along with the theoretical equilibrium distribution in Figure 8.
The errors (being the difference between the simulated and theoretical distribution as a
percentage of the higher value) are plotted as crosses where the simulated values are higher
and circles for where they are lower. At 110 s, most of the electrons are still at high energy,
but, by 300 s, the Maxwellian distribution has appeared, with a remaining high-energy
tail. This tail, which is almost gone by 1000 s, has disappeared entirely by 106 s, at which
time the rest of the simulated distribution is unchanged since 1000 s, seen clearly in the
similarity of the details of small-scale discrepancies. A possible reason for this remaining
small-scale structure is an aliasing effect between the fixed value of ε and the changing
sizes of the subranges that result in varying proportions of electrons transferring to a lower
or higher-energy subrange.
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Figure 8. Simulated electron distributions (at 110 s, 300 s, 1000 s and 106 s) are plotted along with
the predicted equilibrium distribution (thick lines). Errors, being the difference between simulated
and theoretical values as a percentage of the larger value, are shown by crosses where the simulated
value is larger and circles where it is smaller.

The simulation was applied for different values of the maximum subrange number
N and the scaling fraction f . The results are summarised in Table 1, which gives the
consequent computational parameters (the number of rate equations Neqn, the number of
timesteps in the simulation Nts and, as an indicator of the computational load, their product)
and the errors at 106 s in the electron energy, OH energy and total energy. The percentage
errors in the total energy are plotted in Figure 9 as a function of the computational load
(NeqnNts).
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Figure 9. Percentage errors in the total energy for N = 30, 50 and 100, for in each case (left to right)
f = 10−4, 10−5, 10−6 and 10−7, plotted as a function of the computational load (NeqnNts).
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Table 1. Summary of consequent computational parameters (number of rate equations Neqn, number
of time steps Nts and their product) and percentage errors in the calculated values (of electron energy,
OH energy and total energy) resulting from combinations of the initial computational parameters
(maximum subrange N and scaling fraction f ).

Computational Parameters

Initial Consequent Percentage Errors in Energies:

N f Neqn Nts NeqnNts (106) Electron OH Total

30 0.0001000 119 60,489 7.2 5.48 −0.59 −0.41
30 0.0000100 119 149,550 17.8 4.34 −1.75 −1.57
30 0.0000010 119 408,678 48.6 3.93 −2.13 −1.95
30 0.0000001 119 1,123,618 133.7 3.80 −2.23 −2.05
50 0.0001000 203 19,753 4.0 2.41 0.63 0.68
50 0.0000100 203 51,978 10.6 1.73 −0.22 −0.17
50 0.0000010 203 156,367 31.7 1.45 −0.57 −0.51
50 0.0000001 203 489,639 99.4 1.36 −0.67 −0.61

100 0.0001000 422 18,663 7.9 1.56 1.15 1.17
100 0.0000100 422 48,555 20.5 0.84 0.24 0.25
100 0.0000010 422 141,089 59.5 0.67 0.01 0.03
100 0.0000001 422 423,030 178.5 0.60 −0.07 −0.05

In Figure 10, rate equations based on Equation (28) are added to the model to include
elastic scattering. The peak OH energy produced by excitation is reduced by about 10%.
The OH energy then declines as it is transferred to the electrons and then to the thermal
energy of the gas by elastic scattering. As a check on the approximation embodied in
Equation (28), Equation (15) is applied at each time step to calculate the energy loss using
the instantaneous electron energy, assuming a Maxwellian distribution. The total energy
from the simulation (“Sim. total energy”) and that from assuming a standard Maxwellian
distribution (“Total energy—Maxwellian”) are close, particularly in the first 100 s, indicating
that the approximations involved in Equation (28) are valid.
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Figure 10. The previous simulation with elastic scattering from the gas molecules added. The total
energy (vibrational + electron energy) is shown for: (4) implementation of Equation (28) as rate
equations in the simulation and (— — ) point-by-point application of Equation (15).
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4. Discussion

In Figure 6, it is shown that, with the energy range split into a sufficiently large number
of subranges, the simulated OH energy approaches close to the predicted value and is
maintained at that value over a long time. In Figure 7, it is shown that the OH, electron
and total energies all converge to the predicted values, while Figure 8 shows the simulated
electron distribution to be close to the theoretical distribution. Thus, Equations (22) and (23)
and their implementation are confirmed to be valid. This is emphasised in Figure 6 by
the gross departures from equilibrium in cases where the corrections for conservation of
energy are not applied.

Comparison of Figures 5 and 6 shows that, while the rise time is longer for both the
linear and logarithmic corrected cases for a smaller number of subranges, the effect is more
pronounced in the logarithmic case. As this lag in rise time is not seen for the uncorrected
logarithmic case with N = 30, where it is close to the values of the linear case until the
predicted equilibrium value is reached, it can be inferred that the lag is associated with the
correction for energy conservation and that it is more pronounced in the logarithmic case.

As a major rationale for this method is to increase computational efficiency, it is essen-
tial to reduce the number of subranges to a minimal value. This introduces inaccuracies
as shown in Figures 3 and 4. In the linear case, the electron energy is proportionally high,
presumably due to the major part of the electron distribution being averaged into one
subrange. In the logarithmic case, the OH and total energy are both slightly reduced and
the rise time is substantially increased. Thus, a choice must be made between using a
logarithmic or a linear spacing, depending on whether rise time or accuracy of the elec-
tron spectrum is more important. An approach to this may be to run both a linear and
logarithmic model, so that the difference in results gives an indication of the magnitude of
the errors.

The near-accurate calculation of the OH energies in Figure 4 demonstrates the success-
ful incorporation of the detail of the electron–impact cross sections into a few rate equations
for transitions in and out of the one subrange [0.01–0.8] eV, which incorporates almost all
the electron–impact cross sections below the peak value. This demonstrates the potential of
this method to reduce computation times, relative to recalculating the excitation rates for
each iteration of the electron spectrum.

In Figure 9, it is seen that, for N = 100 and f < 10−6, very high accuracy in the
equilibrium total energy is maintained to 106 s. For each value of N, the discrepancy
asymptotes to a fixed value with decreasing f , showing that the time-step method is
not a source of error in the results for f < 10−6. The figure also shows that there is a
substantial increase in accuracy in reducing f to 10−6, but a further decrease makes little
difference to the accuracy while substantially increasing the computational load. Thus, to
achieve a desired level of accuracy for this particular application, the strategy would be
to use f = 10−6 and then choose the appropriate number of subranges. The inaccuracy
introduced by reducing N is substantially greater than by increasing f . Thus, it appears
that an optimum value of f , in a compromise between computation time and accuracy,
is 10−5.

Figure 10 shows that elastic scattering (calculated using values for O atoms) reduces
the initial excitation of OH by about 10%. Thus, elastic scattering for all the species present
must be included in a simulation.

5. Conclusions

A method to simulate nonequilibrium interactions of electrons with gas molecules
was proposed and tested. In this method, the energy range of the electrons is split into
subranges that are then treated in a time-step calculation in the same way as chemical
species, so the electron interactions can be incorporated easily into existing simulations
without new coding being required. It was found that, in excitation of gas molecules with
one vibrationally-excited level, the initial energy of the electrons was transferred to the gas
molecules until an equilibrium was reached that, with sufficiently small subranges, was very
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close to the predicted equilibrium values. This equilibrium was then maintained over a long
time (106 s), validating the method of calculating the rates for the electron interactions. The
simulated electron spectrum was also very close to the predicted Maxwellian distribution.
On reducing the number of energy subranges (which is desirable for reduced computation
time), two discrepancies became apparent. For a linear spacing of the subranges, the
simulated electron distribution had a higher energy, presumably because most of the
equilibrium electron distribution was represented by a single subrange. However, the
accuracy of the results despite this low resolution confirmed the potential of the method
to reduce computation times by incorporating details of the cross-section spectrum into a
small number of rate equations. For a logarithmic spacing, the rise in gas energy was slow,
and the final gas and total energies were slightly less than the predicted values. Thus, the
proposed method is capable of producing accurate results, but the minimum number of
subranges, and thus computational efficiency, will need to be assessed for the requirements
and circumstances of the particular application.
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