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Abstract: For homogeneous driving, half cycle harmonics and its corresponding half cycle cutoff
(HCO) show prominent spectral features, allowing one to produce an isolated attosecond pulse with
suitable filtering, or vice versa the retrieval of the driving pulse itself. The temporal profile and spatial
dependence of the inhomogeneously enhanced field are two important factors that determine the high
harmonic generation (HHG) near a plasmonic nanostructure. This leads us to the question of how the
HHG spectra and, in particular, the corresponding half cycle harmonics modify with different types of
inhomogeneously enhanced fields. To elucidate this, we have made a comparative study of the HHG
in three different types of inhomogeneously enhanced laser pulses by employing the time-dependent
Schrödinger equation in one dimension. Within our chosen parameter range, the HCO in cutoff and
mid-plateau regimes shift towards higher order with the increase of strength of the inhomogeneity
in isotropic case. In anisotropic inhomogeneity, the cutoff HCO shifts towards the higher order but
the mid-plateau HCO shifts towards lower order with the increase of strength of inhomogeneity.
With increasing carrier envelope phase (CEP), the enhanced HCO in the lower-order harmonic region
shifts towards higher orders. This shift is nearly linear from near the above threshold to mid-plateau
region and becomes saturated in the near cutoff region. The harmonic spectra is modulo-π periodic
for the isotropic inhomogeneity and it is modulo-2π periodic for the anisotropic inhomogeneity. This
extension of periodicity increases the tunability of the enhanced HCO harmonics with CEP in the
anisotropic inhomogeneity than the CEP tuning of the HCO harmonics in the isotropic inhomogeneity
or vice versa the retrieval of CEP.

Keywords: high harmonic generation; spatial inhomogeneity; half cycle cutoff

1. Introduction

The details of the temporal structure of the driving laser pulse become increasingly
important for the high harmonic generation (HHG) as we go towards a few optical cycle
pulse lengths [1–6]. For a chirp-free pulse, the pulse envelope and the carrier envelope
phase set the amplitude of each half optical cycle. While interacting with atomic, molecular,
or condensed matter systems, the overall electronic response results from the contribution
form each of the half cycles of these pulses. Selective portions of the harmonic spectrum can
become enhanced due to the generation in the cutoff regions corresponding to a few half
optical cycles of the driving laser pulse, well-known as the half cycle cutoff (HCO) [7–9].

Half cycle harmonics have been studied with particular emphasis on electron dy-
namics in atoms and molecules interacting with a few cycle pulses. The carrier envelope
phase (CEP) retrieval of a few optical cycle laser pulses through HCO have been theo-
retically predicted [7] and experimentally demonstrated [8]. The production of isolated
attosecond pulses are demonstrated using the HCO-enhanced harmonics [8]. HCO in
the near-threshold harmonics are found to be very sensitive to the ionic potential [10].
Refs. [11,12] have implemented the HCO harmonics to identify the temporal location of
the HHG by exploiting the fact that the rate of change of the HCO with respect to gating
depends on the location of the half cycle in the driving pulse. HCO positions have been
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found to drastically modify the extreme-ultraviolet (XUV) cutoff [13]. The spectral width
of the XUV continuum have been controlled by modifying the difference of the cutoff ener-
gies between the highest and the second-highest half-cycles using a bichromatic field [14].
Refs. [15–17] have shown numerically that by employing an additional ultraviolet pulse
one can enhance the selective HCO harmonics, and thereby its detection. Employing the
CEP-dependent peak position of the half cycles of the electric field profile, [18] have demon-
strated the extraction of a pulse’s envelope and chirp. [19] show that the idea of HCO can
be applied to the high-energy coherent photoelectrons and also extended the spectral range
of HCO to soft X-ray harmonics. Half-cycle cutoff features up to 385 eV using HHG with
two-cycle, carrier-envelope-phase-controlled pulses at 1.85 µm are demonstrated [20].

Recently, it has been found that the nanostructure environment is a promising candidate
for the coherent control of electron dynamics to produce high-energy photons/photoelectrons
along with high tunability [21–27]. This is due to the field enhancement, spatial variation
of field intensity of the pulse, and truncation of trajectories near the nanostructure bound-
ary [22,24]. Compared to the homogeneous fields in the inhomogeneous field, the harmonic
emissions tend to become confined in the sub-cycle temporal range of the pulse. Recently,
a sensitivity to the CEP on photoemissions from plasmonic gold nanoantennas excited
with a few cycle optical pulses were studied and it was found that it depends heavily on
the pulse shape and pulse energy, owing to the competition between the consecutive sub
optical cycles [28]. Sub-cycle controlled ionization has been studied in single solid-state
nanostructures recently in [29].

However, HCO in nanostructure-assisted HHG are comparatively less studied in
the literature despite its potential importance in achieving selective enhancement and
characterizing CEP. In a spatially inhomogeneous driving field, the HCO are found to
be very sensitive to the strength of inhomogeneity, the reason being the energy gain
by the electron in the laser+ion potential, which is modified heavily due to the spatial
inhomogeneity [30]. Therefore, one can ask how the HCO modifies with different types/rate
of inhomogeneously enhanced fields, which has not been studied so far. To illustrate
this we have studied the HHG process with a few cycle driver in three different types
of inhomogeneity employing time-dependent Schrödinger equations in one dimension
(1− D). Time-resolved harmonic generation is studied using the Gabor transformation of
quantum mechanical dipole acceleration along with classical trajectory simulation.

The cutoff and mid-plateau HCO shift towards the higher order with the increase
of strength for the isotropic inhomogeneity. In anisotropic inhomogeneity, the cutoff
HCO shifts towards the higher order but the mid-plateau HCO shifts towards the lower
order with the increase of strength of inhomogeneity. The HCO are very sensitive to the
CEP of the pulse. HCO in the lower-order harmonic region shifts towards higher orders
with the increase of CEP. The harmonic spectra is modulo-π periodic for the isotropic
inhomogeneity and it is modulo-2π periodic for the anisotropic inhomogeneity. This
extension of periodicity increases the tunability of the enhanced HCO regions with CEP in
the latter case than the CEP tuning of the HCO harmonics in the isotropic inhomogeneity
or vice versa the retrieval of CEP.

The article is organized as follows. In Section 2 we have briefly presented the theoreti-
cal methods applied in this study, in Section 3 we have presented the results, followed by a
conclusion in Section 4.

2. Theoretical Methods

The interacting laser pulse is considered to be linearly polarized. The electron motion
that gives most of the contribution to the harmonic generation process is parallel to the
laser’s polarization direction [31]. Therefore, it is reasonable to solve the time-dependent
Schrödinger equation (TDSE) in the reduced dimension. The 1− D TDSE for the atomic
electron in length gauge [24,32,33] is

i
∂

∂t
|ψ(x, t)〉 =

[
p2

2
+ V(x) + HI

]
|ψ(x, t)〉, (1)
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With HI = xE(x, t), which describes the interaction of the electron with the laser
pulse. We have used atomic units (a.u.) throughout unless otherwise specified.

Using Ehrenfest’s theorem, the dipole acceleration is written as

d(t) = 〈ψ(x, t)| d
dx
{−V(x)− xE(x, t)}|ψ(x, t)〉. (2)

The emission spectra is given by the Fourier transformation of the dipole acceleration
as [33,34]

|d(ω)|2 = |
∫ ∞

0
d(t)exp[−iωt]dt|2. (3)

In the full-time Fourier transform, we obtain the complete spectral information of the
harmonics, but the temporal information is lost. To detect further aspects of recollision dy-
namics, we perform the Gabor transformation for computing the time–frequency response
(TFR) of the harmonic generation as [24,35–38]

σW(ω, τ) =
∫

a(t)W(t− τ)e−iωtdt, (4)

where the Gabor window is defined as

W(t− τ) = exp(−(t− τ)2/δ2). (5)

The temporal width of the Gabor window δ can be tuned to extract the relevant
spectral information in expense of temporal information. As the width becomes larger,
one gets closer to the original Fourier transformation [39]. The value of δ was taken as 1

3ω ,
which provides a good balance between the spectral and the temporal structures of the
HHG process [37]. The model potentials for the atomic system is taken as [40]

V(x) = − 1√
x2 + α2

. (6)

We have taken α = 1.18, which gives the ground state of the potential as −0.58 a.u.
(−15.76) eV corresponding to the ionization potential of argon. The electric field of the
laser pulse is taken as

E(x, t) = E0 f (t)[1 + g(x)][cos(ωt + φCEP)], (7)

where the angular frequency of the laser pulse is ω = 0.0254 a.u. (1790 nm), and the
peak electric field amplitude of the incoming driving laser pulse is E0 = 0.048 a.u. (the
corresponding intensity is 8× 1013 W/cm2). We take three different forms of the spatial in-
homogeneity viz. g(x) = εqx2, εm|x| and εx. The parameters εq, εm, ε represent the strength
of the field inhomogeneity. This approximation of the inhomogeneity captures the essential
physics of HHG near various plasmonic nanostructure environments. Physically, the sym-
metric forms represent the plasmonic field enhancement near bow-tie-like nanostructures
[30,32,41,42]. The spatially asymmetric plasmonic field enhancements correspond to that
due to the nanotip [22,41,42]. f (t) represents the shape of the pulse envelope, taken as

f (t) = cos2(πt/τ), (8)

where τ is the length of the pulse, which is taken to be 4 optical cycles. For further analysis,
we solve the Newton’s second law of motion to compute the classical trajectories of the
ionized electron moving in the laser field [33]. The first return of the electron, starting
from an ionization time at position x = 0, is considered as a recollision event and the
corresponding return kinetic energy is computed. This, in addition to the ionization
potential, are converted to the respective emitted harmonic photon energy. A detailed
investigation on the gauge dependence of these results is beyond the scope of the present
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work. The validity of this model study can be ensured as g(xabs)� 1, where xabs denotes
the truncation boundary, which is satisfied here.

3. Results and Discussion

First, we take a look into the half cycle harmonics and corresponding HCO for high
harmonic generation in a homogeneous environment. In Figure 1a we have shown the
HHG spectra generated by a four cycle pulse with carrier envelope phase φ = 0 interacting
with the model atom. The plateau and near cutoff region harmonic spectra show some
prominent enhanced regions, about harmonic order 135, 105, and 50. One can see their
temporal origin in the time–frequency map of the dipole acceleration, as shown in Figure 1b;
they originate near 2.25, 2.75, and 3.25 optical cycle. Also, we can see the temporal structure
of the rescattering events and identify the HCO region in the classical trajectory calculation,
see the marked regions in Figure 1c. The quantum TFR map shows that these cutoff regions
have comparatively higher recombination strength than in the half cycle plateau harmonics.
They have contributions from both short and long trajectories, as can be seen from the TFR
and classical trajectory simulations (CTS).

(a) (b) (c) (d)

0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4Harm. yield (arb. u.) 0 0.5 1 1.5 2 2.5 3 3.5 4
Time (o.c.) Time (o.c.) Time (o.c.)
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Figure 1. Half cycle cutoff: harmonic spectra (a), time–frequency response of the harmonic generation
(b), and classical trajectory calculation of return energy are shown in (c,d). In the false color map
in (b) yellow represents high value and blue represents low value of the intensity of the Gabor
transformation. S and L represent the short and long trajectories, respectively.

Now we see how the spectra modify with respect to different types of inhomogene-
ity and how the HCO enhancement are dependent on the structure. We have taken
three different functional forms of the inhomogeneous enhancement, where the g(x) =
εx, εm|x|, and εqx2 as mentioned above. Near a plasmonic nanostructure, the harmonic gen-
eration process is mostly influenced by the dynamics of free electrons in the inhomogeneous
field due to the plasmonic enhancement until it hits the nanostructure and may become
absorbed. Thus, the harmonic spectra depends on both the plasmonic enhancement and
the absorbing boundary [22,24]. The confinement boundary, i.e., the gap size of the region
of inhomogeneity is ∼ 250 a.u. In our numerical simulation, we set the absorbing boundary
near ±125 a.u., thereby we focus on the dependence of the harmonic generation on the dif-
ferent forms of the inhomogeneity. Numerically, we take the form of the absorbing potential
Vabs as given in [43] and multiply the wavefunction with exp(−Vabs) after each time step.
For the homogeneous driving, the classical quiver radius is xα = E0/ω2 = 74.4 a.u., so the
absorbing boundary is about 1.5 times higher than all of the short trajectories and a few of
the long trajectories in the near classical cutoff. This loss of trajectories due to absorption
of long trajectories near the boundary is clearly seen in Figure 1d where this boundary
condition is satisfied compared to (c), where the absorbing boundary is set at a very high
value. Hereafter, all of the computations are performed with the nanostructure-absorbing
boundary condition.
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In Figure 2, we have presented the HHG spectra for the above-mentioned types of
inhomogeneity in different panels, where the CEP of the driving pulse is zero. For the
sake of comparison, we have plotted the HHG spectra in the homogeneous driving. We
have increased the strength of inhomogeneity for each type up to the point when the
HCO-enhanced structure nearly disappears. In this way, we can qualitatively compare the
dynamics of HCO with respect to the various types of inhomogeneity.

(a) (b) (c)εqx2 εm|x| εx

5×10−6

1×10−5

2×10−5

3×10−5

Homogeneous
Homogeneous

Homogeneous

0.0001

0.0005

0.001

0.002

0.0001

0.0005
0.001

0.002

Figure 2. Variation of HHG spectra with respect to the strength of inhomogeneity for spatial depen-
dence εqx2 (a), εm|x| (b), and εx (c). Harmonic yield is given in logarithmic scale. The spectra are
shifted vertically to improve visualization. Different strength of inhomogeneity are indicated by
arrows with corresponding color. An HCO location is indicated with pink arrow.

In the inhomogeneous driving, with the increasing strength of inhomogeneity, the
extension of the cutoff is observed irrespective of the type of functional dependence. This
extension of the cutoff is due to the gain in more kinetic energy while traveling in the
enhanced inhomogeneous field compared to the homogeneous driving [22,24]. Also,
with the increase of inhomogeneity, we can observe that the spectrum becomes more
dense towards a quasicontinuum generation. For the asymmetric inhomogeneity, ref. [22]
showed that with a continuous wave laser even harmonics are produced due to the broken
inversion symmetry, and with the increase of strength of inhomogeneity, the intensity of
even harmonics become similar to that of the odd harmonics. Similarly, in the present
calculation, we can see that the spectral intensity becomes flat over the spectral range as
we have used a few cycle driving pulse. Furthermore, we can clearly see the extension of
each half cycle of plateau harmonics, which is due to the corresponding enhancement of
the electric field amplitude of the pulse in x2 and |x| types, but for x, we can see a different
trend in the evolution of the mid-plateau HCO, which shifts towards the lower order with
the increase of strength of inhomogeneity.

To understand the temporal development and investigate the dynamics in the
half cycle, we have computed the time–frequency response of the dipole acceleration
of the electron as shown in Figure 3 for εm|x| inhomogeneity. The parameter varied as
εm = 1× 10−4, 5× 10−4, 1× 10−3, and 2× 10−3 in units of inverse of length in atomic units.
The harmonics are generated in the falling edge of the pulse. The primary three recollision
events are identified and marked as P1, P2, and P3 in the TFR maps corresponding to the
three half optical cycles. These recollision events are also clearly identified in the classical
solution of Newton’s second law for electron’s motion in the inhomogeneous field for
the first recollision, consecutively marked as P1, P2, and P3. This also provides a cross
verification of our computation. For the lowest value of inhomogeneity, the trajectories are
more or less similar to the trajectories in the homogeneous driving, as shown in panels (a,e)
of Figure 3, also compared with the HHG spectra for the homogeneous (black) and curves
for εm = 1× 10−4 (red). With this strength of inhomogeneity, the cutoffs are seen to have
extended by a small amount. The truncation of the long trajectories are due to the absorp-
tion near the boundary (compare with the classical return picture in Figures 1d and 3e).
As we increase the strength of inhomogeneity, these half cycles fields become enhanced
which increases the quiver radius (∼ E/ω2) and subsequent gain in return kinetic energy
(∼ E2/ω2). Therefore the simple man model shows that with the increase of strength of
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inhomogenity, first the long trajectories and then the short trajectories would become ab-
sorbed near the boundary. This can be seen in the classical return picture in the panels (e–h)
and in the quantum TFR maps in (a–d). With the increasing strength of inhomogeneity, the
enhanced HCO due to the P1 and P2, i.e., cutoff and plateau, are broadened and eventually
become nearly merged in the background at the highest value of the strength considered
here. The enhancement near the threshold trajectory as marked with P3 in the panels are
much robust with respect to the strength of inhomogeneity in the chosen parameter range.
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Figure 3. TFR map calculated from the Gabor transformation of dipole acceleration (a–d) and
classical trajectory simulation of return energy (e–h) are shown for the three different strengths of
inhomogeneity for spatial dependence εm|x|. The color map values are shown on the right of each
panel of the TFR map, which represent the logarithm of intensity of the Gabor transformation, i.e.,
|σW(ω, τ)|2. In CTS plots, open circles represent the starting time of the trajectories and filled circles
are the time of recollision. S and L represent the short and long trajectories, respectively.

Next, we consider the functional form εqx2 for the inhomogeneity. The strength of
the inhomogeneity parameters are taken as εq = 5× 10−6, 1× 10−5, 2× 10−5, and 3× 10−5
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in units of inverse square of length in au. The harmonic spectra and the corresponding
TFR along with CTS are shown in Figure 2a and Figure 4, respectively. Within the chosen
inhomogeneity range, the overall feature of the modification of spectra due to the increasing
strength of inhomogeneity is similar to that in the εm|x|, as can be seen by comparing (a) and
(b) of Figure 2. The enhanced HCO regions become broader and shift towards the higher
photon energy, and visibility becomes suppressed along with the strength of inhomogeneity.
The temporal dynamics, as shown in Figure 4, clearly show that the contributions, which
come from the dominant three half cycle bunch of first return trajectories, viz. P1, P2, and
P3, are similar to that in the previous case.
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Figure 4. The same as Figure 3 except for spatial dependence εqx2.

The previous two functional forms of inhomogeneity are inversion symmetric. Next,
we consider the inhomogeneity εx, which is asymmetric. The HHG spectra for various
values of the strength of inhomogeneity are shown in panel (c) of Figure 2. The parameter
values are taken to be the same as εm. In Figure 5, we have presented the TFR and CTS
in panels (a) and (b), respectively. The variation of spectra and corresponding dynam-
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ics are different than in the symmetric inhomogeneity. With the increasing strength of
inhomogeneity, the cutoff energy corresponding to one of the half cycles marked as P1
extends towards the higher order, whereas harmonic generation in the other two half cycles
compressed towards the lower orders (see panels (a–d) of Figure 5). These are also clearly
visible in the classical simulations of the first return trajectories, as shown in panels (e–h)
of Figure 5. Thus, we can expect that isolated XUV pulses can be efficiently generated in
the anisotropic inhomogeneity using the contribution from the one dominant half cycle
compared to the isotropic inhomogeneity where two dominant half cycles contribute.
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Figure 5. The same as Figure 3 except for spatial dependence εx.

These HCO are highly sensitive to the carrier envelope phase of the driving laser
pulse. In Figure 6, we have presented the complete panorama of the HHG spectra with
respect to the CEP for homogeneous in (a) and for the inhomogeneities εqx2 (b), εm|x|
(c) and εx (d) of Figure 6. The inhomogeneity parameters are taken as εq = 1× 10−5,
εm = 5× 10−4, ε = 5× 10−4. With respect to the increase in CEP, the enhanced HCO in the
lower-order harmonic region shifts towards the higher orders. This shift is nearly linear
from near the above threshold to the mid-plateau region and becomes saturated in the
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near cutoff region. Furthermore, the harmonic spectra depends on the CEP with modulo-π
for the first three isotropic driving. In the inhomogeneity of εx type, the isotropy breaks
and the spectra become modulo-2π periodic. This extension of periodicity increases the
tunability of the enhanced HCO regions with respect to CEP in the latter case than that in
the isotropic inhomogeneity or vice versa the retrieval of CEP using these HCO vs. CEP
as the database [8]. One can further tune the HCO with the strength of inhomogeneity
within a certain limit, as discussed above. The spectra and the HCO vary sensitively with
respect to the length of the pulse. For a shorter pulse, the number of contributing half
cycles decreases and for a longer pulse, the number of contributing half cycles increases
and consecutive HCO start to overlap. How this spectra and half cycle harmonics modify
in different types of inhomogeneity needs further investigation.

(a)

(b)

(c)

(d)

CEP (2π)
Figure 6. Carrier-envelope-phase-dependent harmonic spectra are shown in color map (the color
bars are shown on right side of each panel) for homogeneous (a) and for inhmogeneous driving with
spatial dependence εqx2 (b), εm|x| (c) and εx (d).

With suitable gating of these half cycle cutoff harmonics, one could generate XUV
pulses. We have computed the XUV pulse profiles by gating the harmonics around the half
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cycle cutoff near harmonic order 100 (marked with a dashed arrow in Figure 2) presented
in Figure 7. These XUV pulses are highly sensitive to the type of inhomogeneity and
its strength at a fixed CEP of the driving pulse. For the isotropic inhomogeneity, this
particular HCO shifts towards the higher order and the temporal width of the XUV pulse
becomes narrower with the increasing strength of inhomogeneity (panels a,b). This scenario
is opposite for the anisotropic inhomogeneity, where the HCO shifts towards the lower
energy and the XUV pulse slightly broadens with a higher strength of inhomogeneity.

80—120
(0)

80—120
(0.0001)1+εm|x|

1+εqx2

1+εx

90—130
(0.0005)

105—145
(0.001)

80—120
(0)

95—135
(5×10−6)

110—150
(1×10−5)

80—120
(0)

80—120
(0.0001)

70—110
(0.0005) 65—105

(0.001)

(a)

(b)

(c)

Time (optical cycle)

Figure 7. Temporal profiles of intensity of the XUV pulses generated using the harmonics around the
half cycle cutoff near harmonic order 100. Different panels are for different types of inhomogeneity.
The strength of the inhomogeneity and harmonic order window are mentioned in each XUV profile.
Each profile is shifted in time for clarity.

Before concluding, we would like to point out that for a long wavelength optical pulse,
the spreading of the wave packet in the transverse direction is strong and could reduce the
efficiency. This effect is not considered in the present numerical simulation using the 1D
model, which could be further scrutinized using a full 3D TDSE simulation or Lewinstein
model calculations. But, we strongly believe that the main conclusions in this work will
remain same.

4. Conclusions

We have presented how the HCO modifies with different types of inhomogeneously
enhanced fields. To elucidate this, we have made a comparative numerical study of
the HHG in three different types of inhomogeneously enhanced laser pulses at various
strengths of inhomogeneity and CEP of the pulse. The results clearly show that HCO
modify with different types/rates of inhomogeneously enhanced fields, which originates
from the energy gain by the electron in the laser+ion potential that modifies heavily due to
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the spatial inhomogeneity. Subsequently, the CEP-dependence of HCO is very different in
different types of inhomogeneity. Our results demonstrate that up to a certain strength of
inhomogeneity, HCO could be a robust marker for CEP retrieval/tagging. One can extract
CEP within modulo-π for isotropic inhomogeneity, whereas it is modulo-2π for anisotropic
inhomogeneity. We expect these results to aid in the control of XUV pulses when using
HCO for the identification of the type of inhomogeneity.

Author Contributions: Conceptualization, A.M.; methodology, A.M.; investigation, A.M.; data
curation, A.M.; writing—original draft preparation, A.M.; writing—review and editing, A.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the corresponding author on reasonable request.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HHG High harmonic generation
CEP Carrier envelope phase
HCO Half cycle cutoff
XUV Extreme-ultraviolet

References
1. Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [CrossRef]
2. Baltuška, A.; Udem, T.; Uiberacker, M.; Hentschel, M.; Goulielmakis, E.; Gohle, C.; Holzwarth, R.; Yakovlev, V.; Scrinzi, A.; Hänsch,

T.; et al. Attosecond control of electronic processes by intense light fields. Nature 2003, 421, 611–615. [CrossRef] [PubMed]
3. Frolov, M.; Manakov, N.; Silaev, A.; Vvedenskii, N.; Starace, A.F. High-order harmonic generation by atoms in a few-cycle laser

pulse: Carrier-envelope phase and many-electron effects. Phys. Rev. A 2011, 83, 021405. [CrossRef]
4. Frolov, M.; Manakov, N.; Silaev, A.; Vvedenskii, N. Analytic description of high-order harmonic generation by atoms in a

two-color laser field. Phys. Rev. A 2010, 81, 063407. [CrossRef]
5. Peng, D.; Frolov, M.; Pi, L.W.; Starace, A.F. Enhancing high-order harmonic generation by sculpting waveforms with chirp. Phys.

Rev. A 2018, 97, 053414. [CrossRef]
6. Taoutioui, A.; Agueny, H. Femtosecond single cycle pulses enhanced the efficiency of high order harmonic generation. Microma-

chines 2021, 12, 610. [CrossRef]
7. Yakovlev, V.S.; Scrinzi, A. High harmonic imaging of few-cycle laser pulses. Phys. Rev. Lett. 2003, 91, 153901. [CrossRef]
8. Haworth, C.; Chipperfield, L.; Robinson, J.; Knight, P.; Marangos, J.; Tisch, J. Half-cycle cutoffs in harmonic spectra and robust

carrier-envelope phase retrieval. Nat. Phys. 2007, 3, 52–57. [CrossRef]
9. Cundiff, S.T. Better by half. Nat. Phys. 2007, 3, 16–18. [CrossRef]
10. Xiong, W.H.; Geng, J.W.; Gong, Q.; Peng, L.Y. Half-cycle cutoff in near-threshold harmonic generation. New J. Phys. 2015,

17, 123020. [CrossRef]
11. Pfeifer, T.; Jullien, A.; Abel, M.J.; Nagel, P.M.; Gallmann, L.; Neumark, D.M.; Leone, S.R. Generating coherent broadband

continuum soft-x-ray radiation by attosecond ionization gating. Opt. Express 2007, 15, 17120–17128. [CrossRef] [PubMed]
12. Abel, M.J.; Pfeifer, T.; Nagel, P.M.; Boutu, W.; Bell, M.J.; Steiner, C.P.; Neumark, D.M.; Leone, S.R. Isolated attosecond pulses from

ionization gating of high-harmonic emission. Chem. Phys. 2009, 366, 9–14. [CrossRef]
13. Cavalieri, A.L.; Goulielmakis, E.; Horvath, B.; Helml, W.; Schultze, M.; Fieß, M.; Pervak, V.; Veisz, L.; Yakovlev, V.; Uiberacker, M.;

et al. Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic
continua. New J. Phys. 2007, 9, 242. [CrossRef]

14. Guo, Y.H.; Lu, R.F.; Han, K.L.; He, G.Z. Generation of an isolated sub-100 attosecond pulse in a two-color laser field. Int. J.
Quantum Chem. 2009, 109, 3410–3415. [CrossRef]

15. Zeng, Z.; Cheng, Y.; Song, X.; Li, R.; Xu, Z. Generation of an extreme ultraviolet supercontinuum in a two-color laser field. Phys.
Rev. Lett. 2007, 98, 203901. [CrossRef]

16. Lan, P.; Lu, P.; Cao, W.; Li, Y.; Wang, X. Carrier-envelope phase-stabilized attosecond pulses from asymmetric molecules. Phys.
Rev. A 2007, 76, 021801. [CrossRef]

17. Song, X.; Zeng, Z.; Fu, Y.; Cai, B.; Li, R.; Cheng, Y.; Xu, Z. Quantum path control in few-optical-cycle regime. Phys. Rev. A 2007,
76, 043830. [CrossRef]

http://doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1038/nature01414
http://www.ncbi.nlm.nih.gov/pubmed/12571590
http://dx.doi.org/10.1103/PhysRevA.83.021405
http://dx.doi.org/10.1103/PhysRevA.81.063407
http://dx.doi.org/10.1103/PhysRevA.97.053414
http://dx.doi.org/10.3390/mi12060610
http://dx.doi.org/10.1103/PhysRevLett.91.153901
http://dx.doi.org/10.1038/nphys463
http://dx.doi.org/10.1038/nphys493
http://dx.doi.org/10.1088/1367-2630/17/12/123020
http://dx.doi.org/10.1364/OE.15.017120
http://www.ncbi.nlm.nih.gov/pubmed/19551005
http://dx.doi.org/10.1016/j.chemphys.2009.09.016
http://dx.doi.org/10.1088/1367-2630/9/7/242
http://dx.doi.org/10.1002/qua.22168
http://dx.doi.org/10.1103/PhysRevLett.98.203901
http://dx.doi.org/10.1103/PhysRevA.76.021801
http://dx.doi.org/10.1103/PhysRevA.76.043830


Atoms 2023, 11, 113 12 of 12

18. Ye, P.; He, X.; Teng, H.; Zhan, M.; Zhang, W.; Wang, L.; Zhong, S.; Wei, Z. Extraction of the in situ temporal information of
few-cycle laser pulse from carrier-envelope phase-dependent high order harmonic spectrum. JOSA B 2014, 31, 1355–1359.
[CrossRef]

19. Geiseler, H.; Ishii, N.; Kaneshima, K.; Kitano, K.; Kanai, T.; Itatani, J. High-energy half-cycle cutoffs in high harmonic and
rescattered electron spectra using waveform-controlled few-cycle infrared pulses. J. Phys. At. Mol. Opt. Phys. 2014, 47, 204011.
[CrossRef]

20. Teichmann, S.M.; Silva, F.; Cousin, S.L.; Biegert, J. Importance of intensity-to-phase coupling for water-window high-order-
harmonic generation with few-cycle pulses. Phys. Rev. A 2015, 91, 063817. [CrossRef]

21. Kim, S.; Jin, J.; Kim, Y.J.; Park, I.Y.; Kim, Y.; Kim, S.W. High-harmonic generation by resonant plasmon field enhancement. Nature
2008, 453, 757–760. [CrossRef] [PubMed]

22. Husakou, A.; Im, S.J.; Herrmann, J. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal
nanostructures in noble gases. Phys. Rev. A 2011, 83, 043839. [CrossRef]

23. Ciappina, M.; Pérez-Hernández, J.; Shaaran, T.; Biegert, J.; Quidant, R.; Lewenstein, M. Above-threshold ionization by few-cycle
spatially inhomogeneous fields. Phys. Rev. A 2012, 86, 023413. [CrossRef]

24. Ciappina, M.; Biegert, J.; Quidant, R.; Lewenstein, M. High-order-harmonic generation from inhomogeneous fields. Phys. Rev. A
2012, 85, 033828. [CrossRef]

25. Du, T.Y.; Guan, Z.; Zhou, X.X.; Bian, X.B. Enhanced high-order harmonic generation from periodic potentials in inhomogeneous
laser fields. Phys. Rev. A 2016, 94, 023419. [CrossRef]

26. Blanco, M.; Hernández-García, C.; Chacón, A.; Lewenstein, M.; Flores-Arias, M.T.; Plaja, L. Phase matching effects in high
harmonic generation at the nanometer scale. Opt. Express 2017, 25, 14974–14985. [CrossRef]

27. Ansari, I.N.; Hofmann, C.; Medišauskas, L.; Lewenstein, M.; Ciappina, M.F.; Dixit, G. Controlling polarization of attosecond pulses
with plasmonic-enhanced bichromatic counter-rotating circularly polarized fields. Phys. Rev. A 2021, 103, 013104. [CrossRef]

28. Piglosiewicz, B.; Schmidt, S.; Park, D.J.; Vogelsang, J.; Groß, P.; Manzoni, C.; Farinello, P.; Cerullo, G.; Lienau, C. Carrier-envelope
phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 2014, 8, 37–42. [CrossRef]
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