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Abstract: High-performance sensing and control systems have an important role in Industry 4.0.
However, with the current solutions, the development effort is high and requires specialized skills
in electronic engineering. Therefore, a model-based approach on control and signal processing
systems using affordable heterogeneous hardware is proposed. In this work, a model-based code
generator is developed to abstract the user from the actual software implementation. Starting from
a combined model of a timing diagram and an embedded platform, a model transformation is
used to automatically generate functional acquisition firmware. This firmware generator enables
system engineers without deep software and hardware knowledge to set up complex control systems.
Furthermore, it equips software engineers with a solid framework for faster development.

Keywords: code generation; heterogeneous hardware; model-based design; signal acquisition;
embedded design; system engineering

1. Introduction

Data acquisition is an essential part of modern-day signal processing applications
in the domains of Industry 4.0 and cyber–physical systems (CPSs). Figure 1 presents
the necessary components for a signal processing system. In these types of applications,
sensor data originating from various sensing sources need to be digitized at high speeds
of sometimes up to the MHz range [1–6], with 8- to 32-bit quantization and on multiple
channels simultaneously. In these cases, robust and stable sampling is crucial for the
validity and performance of the subsequent signal processing steps.

main processorcoprocessor

shared RAM

filter ADC/DAC

bare-metal OS-based

heterogeneous SoCinterface PCBreal world

Figure 1. Necessary components for a functioning control system. A separate PCB has to be designed
to combine the selected ADC and/or DAC (including appropriate filtering) with the controller.
The controller will control the interface with the ADC and DAC according to the timing diagrams
necessary for the ADC sampling and/or DAC actuation. This requires an exact timing specific to the
chosen ADC/DAC.
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After the digitization step, relevant information is extracted from these signals, e.g., find-
ing specific locations on a captured signal through matched filtering algorithms. After in-
formation extraction and decision-making, actuation might have to be performed through
one or more digital-to-analog converters (DACs) with similar requirements as the analog-
to-digital converters (ADCs).

For prototyping purposes, off-the-shelf solutions exist in the form of specific data-
acquisition devices. However, these devices lack processing capabilities and, therefore,
require a separate PC to operate and process the acquired data. Another technique used in
the design and testing stages of complex real-time embedded systems is hardware-in-the-
loop (HiL) simulation with, e.g., a Speedgoat device [4]. Beyond the prototyping stages, both
approaches become too expensive for deployment in the field for real-world applications.

After the prototyping stage, engineers (typically) develop custom-made systems using
embedded processors and/or FPGAs and discrete ADCs and DACs. The downside is
that this requires significant engineering effort and domain expertise that is not always
available in companies that develop Industry 4.0 and CPS solutions. The custom-made
solutions make sense for high-volume, low-cost applications, where the engineering effort
can be amortized over many individual units. However, in other applications, this is not a
viable option.

In traditional embedded designs, a choice is to be made between an operating-system
based (OS-based) system and a bare-metal approach. When using OS-based systems,
hard real-time requirements for high-performance signal acquisition and actuation will
prove very hard to meet. Bare-metal systems are better suited for timing control purposes,
but come with an increase in programming effort and a decrease in flexibility and standard
functionality. Using heterogeneous systems that consist of both a bare-metal and an OS-
based system offer the best of both worlds, allowing strict hard real-time behavior, as well
as high flexibility (as explained in more detail in Section 2.1).

Low-cost open-source systems are available for experimentation with heterogeneous
platforms. This takes away part of the hardware design effort. However, it does not
eliminate the software engineering effort. This effort is still significant since it requires
in-depth knowledge of the system and its possibilities, as programming heterogeneous
systems is not straightforward at all.

As mentioned above, the use of a system-on-a-chip (SoC) removes part of the hardware
design effort. However, a separate PCB still has to be designed to combine the selected ADC
and/or DAC (including appropriate sampling or reconstruction filtering) with the SoC.
The SoC controls the interface with the ADC and DAC according to the timing diagrams
necessary for the ADC sampling and/or DAC actuation. This requires an exact timing
specific to the chosen ADC/DAC. This is typically performed using assembler code in
order to have full control over the execution time. This code needs to be written with
exact hardware-specific knowledge (e.g., processor and peripheral clock speeds). The data
coming from the ADC or going to the DAC can be transferred the main and coprocessor
processor using shared RAM.

Having the data available to the main processor, without loading this main processor
with the signal acquisition, opens up many opportunities. The main processor can now
perform signal processing with more relaxed scheduling deadlines and more processing
time available and take care of connectivity and data transfer. This implies that the system
can be connected to other computers or “the cloud”, with no further implications on the
timing requirements of the ADC/DAC, since this is handled on a separate processor. This
connectivity enables remote monitoring and control, as well as combining the unit in
a network of measurement and control units, permitting system operation suitable for
Industry 4.0 applications such as a complex production line.

The main objective of this research is to develop a modular high-level toolchain for
the development of control systems implemented on heterogeneous platforms, without re-
quiring deep insights from the user into the system’s intricate details. This approach could
drastically simplify and speed up the development flow for such systems. Part of the



Automation 2022, 3 473

current development complexity lies in the required skillset to develop a full system, since
it currently requires expert skills in several domains, e.g., signal processing, embedded
software, and hardware design. The focus of this paper is on a model-based code generator,
for which the workflow is presented in Figure 2. The current state-of-the-art is analyzed
in Section 2. An in-depth explanation of the presented work is presented in Section 3. An
evaluation of the developed framework can be found in Section 4, followed by proposals
for future work in Section 5, and finally, a conclusion on the presented work in Section 6.
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Figure 2. Proposed workflow for a model-based code generator for control systems. To begin,
the user defines or selects two models, one for the desired embedded platform and one for the desired
acquisition or actuation sequence. These two models are then automatically combined and used in a
model-to-text transformation that generates a timing plan combining the requirements from the two
models. This timing plan is then automatically combined with the minimal platform-specific library
and compiled with a platform-specific compiler to generate a functional firmware, as explained
in Section 3. An evaluation of a functional firmware generated by the framework can be found in
Section 4. The parts that are currently not automated are identified as future work in Section 5.
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2. State-of-the-Art
2.1. Heterogeneous Systems

With the advances in multi-core processors, as well as programmable hardware for
prototyping, the development of heterogeneous embedded systems has become much more
feasible and realistic [7]. Heterogeneous distributed computing systems (HeDCSs) can
be described as a collection of diversely capable processors. HeDCSs are an appropriate
method for solving computationally intensive problems with a high level of parallelism, as
well as a significant diversity between the processes.

Heterogeneity can be presented in two types: performance-level heterogeneity and
function-level heterogeneity [8]. Performance-level heterogeneous systems contain several
interconnected similar or identical general-purpose processors of varying speeds. In these
systems, a task can be executed by any one of the processors. To achieve function-level het-
erogeneity, systems combine general-purpose processors with special-purpose processors,
such as vector units, floating-point coprocessors, and input/output processors.

The latter combination currently exists in the form of field programmable gate arrays
(FPGAs) with soft-core CPUs, e.g., a Xilinx Spartan 6 FPGA combined with a MicroBlaze
soft CPU, as an FPGA SoC using FPGA fabric and an ARM processor (e.g., Xilinx’ Zynq
series or Intel/Altera’s Cyclone series), or as an SoC such as, e.g., the TI Sitara processor
family. A member of the latter family—the AM355x—is currently implemented in the
Beaglebone Black SoC [9]. The interesting part of this architecture is that it combines a
high-performance ARM A8 CPU with a low-level programmable real-time unit (PRU-
ICSS), i.e., a set of two RISC coprocessors running at 200 MHz with single-instruction I/O
capabilities. The coprocessors can be used in combination with the ARM A8 CPU using a
shared part of the DDR memory.

Together with the evolution in multi-core solutions, which is mainly focused on
increasing the average computing speed, a need for asymmetric multiprocessing has
emerged to be able to deal with the non-deterministic and unpredictable time delays specific
to scheduling-based systems. This is mainly caused by the very nature of asynchronous
events. To understand the problem, a distinction must be made based on the real-time
nature of the preferred system. This is divided into three categories, soft, hard, and “on-the-
clock true”. The main difference between those categories is the tolerance on the processing
time. When looking at soft real-time systems, the response time requirements are often
high. However, they are not stringent. A delayed operation due to a rarely occurring peak
load can be tolerated. Thus, the system is allowed to delay the response time. For hard
real-time systems, the response time requirements are strict deadlines and can result in
system failure if not met. The peak load performance must be predictable and should
not cause the system to violate the predefined deadlines. Temporal accuracy regarding
sequences of events and timing deadlines is often the concern here. A hard real-time system
must remain synchronous with the state of the environment in all cases. For industrial
use, the use-case of hard real-time systems is more common. However, a further level
can be distinguished in the case of hard real-time systems. Some applications have a very
narrow or absolutely zero timing tolerance. Such “on-the-clock true” real-time systems are
impossible to program on an OS-based system due to the inherent uncertainty in execution
time and order, as introduced by the (dynamic) scheduler. Delivering the response too
early, which is rarely a problem in common hard real-time systems, is not an event that can
be allowed here. Therefore, an exact knowledge of the execution time is necessary, making
bare-metal programming essential.

A typical use-case of such a system is the implementation of a timing diagram in the
frame of data acquisition or actuation or telecommunication front-ends. An example of
such a timing diagram is presented in Figure 3. Each time interval indicated on the diagram
has a specified maximum or minimum value constraint or, sometimes, both. Not meeting
these constraints may cause a glitch in the proper operation of the peripheral or might even
render it totally dysfunctional. In addition, any jitter on the control clock of the peripheral
will negatively effect the treated signals, in the case of an ADC/DAC reducing the effective
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number of bits (ENOB) of the acquisition/actuation. This level of real-time behavior sets
very high requirements for the controlling system, especially when combining this with
other functionalities. Being able to use a dedicated core (e.g., one of the coprocessors of the
PRU-ICSS on the Beaglebone Black) to control these timings provides a feasible solution.

Figure 3. Example of an “on-the-clock true” application: a timing diagram for serial operation of
the ADS8586S ADC chip from Texas Instruments [10]. Each of the time intervals indicated on the
diagram has a specified maximum or minimum value constraint or, sometimes, both. Not meeting
those constraints may cause a glitch in the proper operation of the peripheral or might even render
it totally dysfunctional. In addition, the sampling clock must be jitter free. Even a single clock tick
variation on the sampling clock will have a detrimental effect on the ENOB of the acquired data. This
level of real-time behavior sets very high requirements for the controlling system, especially when
combining this with other functionalities. Courtesy of Texas Instruments Inc.

2.2. Scheduling

The heterogeneity is manifested not only at the hardware and communication protocol
level, but also at the level of the scheduling policies used [11]. Scheduling policies are
categorized as static and dynamic. In static scheduling, the execution time, complexity,
and data dependencies between the tasks to schedule are known in advance. In dynamic
scheduling, tasks are allocated to processors upon arrival, and scheduling decisions must
be made during runtime. Task scheduling problems include, e.g., assignment of the
appropriate tasks to a suitable processor and ordering of task execution on each resource.
Scheduling decisions are based on dynamic parameters, which may change during runtime.
Tasks may be reallocated to other processors during runtime. This implies that dynamic
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scheduling offers the flexibility needed for more complex systems. The combination of
static and dynamic scheduling policies can be found on the aforementioned AM335x when
it runs GNU/Linux with a priority-driven scheduling algorithm on the main core, whereas
the coprocessors are running bare-metal with a static scheduling algorithm. To achieve
higher performance, the scheduling efficiency of application tasks is necessary.

2.3. Development Effort Requiring Advanced Tool Support

While the heterogeneous multi-core architectures seem promising, the development
effort increases with the level of heterogeneity. This necessitates complex toolchains and
programming processes to be able to exploit the full potential of such systems, e.g., the EU-
funded ARGO project [12–14], which focuses on a worst-case execution-time (WCET)-aware
parallel programming model for multi-core architectures in order to enhance predictability.
The ARGO project uses a similar approach as the one proposed. A model-based design en-
vironment is developed, which enables the developer to design a system from a high-level
point of view. Code generation and code transformation are performed with the strong
objective of keeping the code base predictable and alarming the developer as soon as possi-
ble about problems concerning WCET estimates in the design. The targeted architecture is
defined using the Architecture Description Language (ADL). Specific low-level transfor-
mations ensure that the WCET constraints are met as muchas possible. In our proposed
system, the analyzer is replaced with an analysis of the “on-the-clock true” behavior of the
generated code. Another good example of the evolution towards model-based toolchains
is found in the work of Gomes et al. [15], in which a workflow was developed using a
model-based approach to port hardware-specific code between different platforms.

Currently, SoC manufacturers appear a bit hesitant about the mentioned model-based
approaches. The development environments offered by TI, STMicroelectronics, and NXP
remain largely focused on the traditional approach of manual coding [16,17]. Their custom
tooling does offer some level of automation, in the form of a pin assignment tool and the
generation of a device tree script. However, there does not seem to be a good consensus
on what the best approach is for this automation. This leads to a variety in the resources
brought forth by the manufacturer-specific tooling, leading to cumbersome development
effort when switching a developed project between SoCs from different manufacturers.

A good example of just how elaborate the manual development of these resources
is can be found in the work of Verreycken et al. [2]. A system for passive acoustic sound
source localization in 3D was developed using a distributed microphone array. For acoustic
localization, the main feature to be used is the arrival time of the sound. This creates a
need for microphone arrays that are synchronized within a small fraction of the signals’
phase. The microphones are sampled using a single, simultaneously sampling ADC, which
results in time synchronization between the microphone channels up to a small fraction
of the signal’s phase according to the distance between the microphones. For this specific
use-case, the microphone data have to be captured at 285 kHz, at a resolution of 16 bit. Thus,
accounting for six channels, the total data throughput is 3.34 MBps per node. The system is
based on a Beaglebone Black single-board computer (SBC) extended with a custom PCB,
which embeds closely placed microphones, a filtering circuit, and a suitable ADC. To ensure
that the data are captured at a correct sampling rate without glitches, low-level interfacing
with the ADC is necessary at a precise rate with a real-time processor. The coprocessor
(of the Sitara/BBB) runs this assembly program bare-metal and can, therefore, guarantee
an exact timing execution at a sufficient data rate to deal with the relatively high data
throughput of 3.34 MBps. Higher-level interfacing, such as data transfer, can be handled by
the main processor, which is running GNU/Linux.

Directed towards heterogeneous system exploration, this system has been extended
in the scope of this paper. The single-capture mechanism was improved by means of a
ring buffer for the measurement data, allowing continuous measurements. The ring buffer
is shared between the coprocessor and the main processor, allowing the coprocessor to
store the data in the buffer, whilst the main core processes and stores or transmits the
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data for further downstream processing. The only requirement is to process the data fast
enough to prevent buffer overwrites. In order to validate this, a TCP connection was set up
with a server PC receiving and storing the data coming from the continuously measuring
Beaglebone Black setup.

The elaboration of these resources requires a considerable manual engineering effort
combined with a vast amount of domain-specific knowledge. The evaluation of these
resources allowed bringing forth a separation of the generic and specific parts. This
separation leads to the assumption that a generic framework with minimal platform-
specific components is possible.

3. Code Generation for a Heterogeneous Platform

Current approaches for the generation of code for a heterogeneous platform are largely
based on manual coding, which is arduous and error-prone. This research proposes to
autogenerate firmware, based on the model presented in Figure 4, which combines the
two main factors that determine the necessary actions. Firstly, the firmware needs to
comply with the strictly specified timing diagrams required by ADCs and DACs. Therefore,
a formal representation of a timing diagram was developed. In this model, an event-
based chain of consequences can be defined. Secondly, an embedded platform defining
the platform specifications is modeled, including, e.g., the I/O write and read function’s
duration. Depending on the defined platform, the appropriate platform-specific library is
included in the program, consisting of four basic functions, namely an initialization, a pin
read, a pin write, and a wait function, as well as the shared memory base address. These
four functions have proven sufficient to replicate a timing diagram of a deterministic nature.

Currently, this library has been elaborated for the coprocessors on the TI am335x
chipset and for a Cortex M4 processor, which is often used as a coprocessor. The de-
velopment of this library is a straightforward process, since the necessary functions are
standard functions for embedded systems. Due to the use of this platform-specific library,
the amount of instructions each function takes (i.e., its timing) is verified only once and
implemented in the model.

Figure 4 presents a simplified version of the model’s class diagram. A timing diagram
is defined as a sequential chain of consequences linked to a signal, where each consequence
has the following parameters: the signal on which it should act, the originating signal’s
edge that triggers the event, and the time before this consequence takes place. On top of
this, a trigger signal is defined. This is essentially the starting point of a timing diagram.
The trigger signal is triggered at the start of the timing diagram and sets in motion the
chain of consequences and their corresponding events. To allow a fine-grained modularity
and definition of the timing, a timing diagram can trigger another timing diagram. This
means that separate useful timing diagram models can be defined as building blocks and
combined at will. The complete version of the presented class diagram can be found in the
publicly available repository [18], as well as some elaborated examples.

The next step is a model-to-text transformation. This model-to-text transformation is
developed in the Eclipse Modeling Framework (EMF) in combination with Acceleo [19,20].
Acceleo is an open-source code-generation tool developed inside of the Eclipse Foundation,
implementing the Object Management Group’s Meta-Object Facility (MOF) Model to Text
Language (MTL) standard, which uses any EMF-based model to generate any kind of code.
This part will further be referred to as the “generator”. This generator transforms the model
into two files. The first is a C language program, in which the events defined in the model
are sequentially evaluated in combination with the specified platform restrictions.

This evaluation validates if the defined timing diagram is feasible on the defined
platform. The program starts by evaluating whether the events are not scheduled too close
to each other, accounting for the read and write times of the defined events on the specific
platform.
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Currently, it is assumed that simultaneous read or write actions on different in-
puts/outputs can be bundled, by using direct I/O registers, which control multiple pins.
Of course, this approach has its limitations on the amount of pins that can be used per plat-
form. However, to prove the generator’s functionality, this is currently sufficient. If more
I/O registers prove necessary for, e.g., a more complex use-case, the evaluation needs to be
expanded to include a sequential placement of events impacting a different I/O register
(e.g., a read on two input pins linked to separate input registers). Currently, the evaluation
applies sequential placement of concurrent events only in the case of a simultaneous input
and output event. Since the generator requires the inputs/outputs to be a single I/O
register, the assumption is made that each of these events implies only one function call
to a read or write function. Deciding which one comes first is fully compliant with the
sequence in which they are defined in the model definition, meaning that if the read event
has a write event as a consequence with no delay, the write event is executed directly after
the read event. In the cases when a delay is defined for an event, the delay is compared
with the duration of the previous function call. If this function call lasts longer than the
defined delay, the generation of a timing plan is aborted since the proposed timing cannot
be respected.

To enable a timing evaluation of the total sampling period during this process of
function placement, an incremental sum of the function call durations is kept. In the case of
a simultaneous read/write, the timer is added with both events’ durations; otherwise, it is
incremented with the specific function’s duration. This timer will be used at the end of the
evaluation to determine the amount of instructions used by the defined timing diagram.
This process of sequentially checking the timing between events proceeds up until the last
defined event of the timing diagram. Subsequently, it evaluates whether the entire chain of
consequences does not exceed the sampling period using the aforementioned incremental
sum of function call durations and the defined sampling frequency. If the incremental sum
is less than the amount of instructions that fit into the sampling period, the remaining
instructions are filled with no operation calls (NOPs), to generate an exact match with
the defined sampling period, or a nearest high approximation of the defined sampling
frequency, as demonstrated in Section 4. If both evaluations are valid, a valid solution
respecting the defined timing is generated and the generator continues. Otherwise, the gen-
eration is aborted and the user is informed about the problematic event. If the generation
is completed, this results in a timing plan matching the combined model, as presented in
Figure 2. The second is a platform-specific makefile for the generated C language program.
When running this makefile, the timing plan is merged with the platform-specific header
files. The merger of the timing plan with the platform-specific header files is basically
a replacement of the reads, writes, and NOPs with the appropriate function calls and
corresponding pinmask. The makefile then compiles this final C language program with
the appropriate compiler and settings for the specified platform. The compiled firmware is
then ready for deployment on the target system.

This firmware is combined with a controller program on the main core. This pro-
gram controls the remote processor using the remoteproc framework. Remoteproc allows
different platforms/architectures to control (power on, load firmware, power off) remote
processors while abstracting the hardware differences and can, as such, be considered
as a generic approach [21]. After starting the coprocessor, the control program is used
to access the shared RAM from the Linux user space. Using this access from the Linux
user space, the main processor can take care of the further signal processing and/or data
transfer with more relaxed scheduling constraints, whilst the coprocessor guarantees the
“on-the-clock-true” sampling.
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Figure 4. Simplified class diagram of the combined model. In the model, two main components are
defined: a timing diagram and an embedded platform. The timing diagram is defined as a sequential
series of events, with each event representing an output or input change at a specified time. This
series of events is then matched to the sample frequency in the next stage. The embedded platform
definition contains the read and write times, as well as the clock frequency; these are necessary
to form the timing plan in the next stage. The architecture and name parameter are necessary for
the compiler selection. The shared RAM address is used for data transfer between the main and
coprocessor. The complete version of the presented class diagram can be found in the publicly
available repository [18] , as well as some elaborated examples.

4. Evaluation of the Generated Code

To evaluate the genericity of the framework, two timing diagram examples have
been elaborated in combination with a Beaglebone Black and with an STM32MP157DK.
First is a timing diagram for six-channel serial operation of the ADS8556 ADC. Second
is a timing diagram for three channel pulse-density-modulated (PDM) operation using
SPH0641 microphones. When evaluating the timing plan generated from the model, there
are three possible outcomes. The first outcome is demonstrated in the top part of Figure 5.
This occurs when the sampling period is an exact multiple of the clock period. In this
case, a program that exactly matches the defined sampling frequency can be generated.
In the use-case with the ADS8556, the sampling frequency was set to 125 kHz, which is
exactly achievable with the 200 MHz clock of the Beaglebone Black’s PRU coprocessor.
The second outcome is shown in the bottom part of Figure 5, where the sampling period
is not an exact multiple of this clock period. This implies that the sampling frequency as
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defined is not possible on the defined platform. In the current implementation, 4.5 MHz
was defined, which is not exactly achievable with 200 MHz. The timing plan is then
generated for the closest possible higher approximation of the sampling frequency, being
4.545 MHz, whilst informing the user on the adjusted sampling frequency. Most of the time,
the sampling frequency is calculated as a minimum value [22]. This implies that anything
higher than the defined sampling frequency is equally adequate, as long as the user or
the rest of the system is aware of this change. The third outcome leads to an unsuccessful
generation. This occurs when the defined timing diagram is impossible on the defined
platform at the defined sampling frequency. The elaborated use-cases verify that the timing
evaluation algorithm is successful at performing a thorough analysis of the modeled timing
diagram’s implementation feasibility. By covering error conditions, as well as proposing a
best fit if an exact match is not present, this approach leads to reliable “on-the-clock true”
firmware generation.

a)

b)

c)

d)

e)

f )

g)

h)

Figure 5. Signals a–f: Result of the generated firmware on a Beaglebone Black running the timing
diagram from Figure 3 defined in the model as a 125 kHz sampling frequency for serial operation
of the ADS8556 ADC. The signals were captured with a Saleae Logic Pro digital analyzer. In this case,
the desired sampling frequency is matched exactly. The conversion start signal is used to determine
whether the exact sampling frequency of 125 kHz is achieved. Signal a is the conversion start signal
(CONVST_x in Figure 3) and is used to trigger a new conversion; this signal can be used to validate
the timing of the generated firmware. Signal b is the SCLK signal, and Signals c–e are the data inputs
(SDO_A-SDO_C), as mentioned in Figure 3. Signals g–h: Result of the generated firmware on a
Beaglebone Black running the generated firmware for sampling SPH0641 microphones at a defined
sample rate of 4.5 MHz. Due to the mismatch between clock frequency and the desired sampling
frequency, the generator generates firmware for the closest high approximation at 4.545 MHz and
provides feedback on the adjusted sample frequency to the user at compile-time. Signal g is the generated
clock signal, and Signal h is the pulse-density-modulated input signal generated by the microphone.
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Besides analyzing the generated waveforms to verify that the modeled timing diagram
is actually generated, a frequency analysis on a captured test signal was used to prove that
the sampling is exact. The test setup is presented in Figure 6. A test signal is generated
using a National Instruments USB-6363 DAQ in combination with Matlab. The generated
signal is used as the input to the previously developed hardware (explained in more detail
in Section 2.3). On this setup, the autogenerated firmware is used to sample the test signal at
125 kHz, as defined in the timing diagram model. The generated test signal is a combination
of three sine waves with a frequency of 10, 21, and 43 kHz. The exact retrieval of the input
signal frequencies in the frequency domain, as demonstrated in Figure 7, proves that the
sampling frequency as defined in the model is exactly achieved, and as such, the firmware
can be considered an exact representation of the model’s defined parameters. If the timing
was not exact, spurious frequencies or a shift in the peak frequencies would be visible in
the frequency analysis [23]. However, the data from the frequency analysis in Figure 7
present three clean peaks at the expected locations for the input test signal. To address
reusability and modularity, the model was developed with a clear distinction between the
timing diagram and the embedded platform. As such, the defined timing diagram for the
ADS8556 can easily be recombined with a different platform by loading it into the combined
model. To verify this, the embedded platform was replaced with an STM32MP157 instead
of the Beaglebone Black. The model definition of both platforms and their implementation
in the combined model can be found in [18].

Figure 6. Picture of the test setup used to generate a test signal with a known frequency. The test
signal was generated using Matlab and a National Instruments USB-6363 DAQ, which can be seen on
the right side in the picture. The test signal is captured using the previously developed hardware,
which can be seen on the left and is discussed in more detail in Section 2.3, in combination with an
automatically generated firmware and control software using the proposed framework. The timing
diagram is modeled for the ADS8556 to sample at 125 kHz in combination with a Beaglebone Black
with a clock speed of 200 MHz.
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Figure 7. To prove the timewise accuracy of the generated firmware, a test signal of 4 seconds
consisting of three sine waves with a frequency of 10, 21, and 43 kHz is used. The figure displays the
results of the captured test signal using the test setup from Figure 6. Five-hundred-thousand samples
of the test signal are used for the Fourier transform, leading to a frequency resolution of 0.25 Hz per
bin. The fact that the peaks in the frequency analysis are situated at exactly 10, 21, and 43 kHz verifies
that the automatically generated platform-specific timing is exact. The amplitude attenuation for
the higher frequencies is due to the presence of an analog Sallen–Key low-pass filter with a cut-off
frequency of approximately 26 kHz [24].

5. Future Work
5.1. Device Tree Generator

As explained in Section 4, the runtime pin control is currently included in a platform-
specific library, of which the timings are known. This is then properly combined in
the code generation. The issue of initial pin designation and configuration still remains
and is currently performed manually. To resolve this, a device tree script (DTS) should be
autogenerated using the signal properties defined in the model. The DTS creates the device
tree on the embedded Linux system. A device tree is a tree data structure with nodes that
describe the physical devices in a system, as well as device information, which cannot be
dynamically detected by a client program. The DTS is compiled into a device tree blob
(DTB) using the device tree compiler, which gets loaded by the bootloader and parsed by
the kernel at boot time. The use of a device tree is a well-accepted concept in embedded
Linux distributions, and it should allow a good degree of modularity, which is necessary to
achieve a generic toolchain, with the device tree as an adjustable platform-specific module.

5.2. Model-Based Simulation

In the research of Bialy et al. [25], the importance of automatic code generation is
emphasized as being crucial to the cost effectiveness of development. The use of model-
based code generation accelerates the process whilst decreasing the chance of errors in
comparison with manual coding from requirements or models. The use of automatic code
generation enables a variety of applications including software-in-the-loop, processor-in-
the-loop, hardware-in-the-loop, and rapid prototyping [26]. The keystone is the availability
of a behavioral model that provides for the design of the system (determining its key
parameters) prior to its generation. When implementing simulations and testing in the
different development stages, the system behavior can be verified and validated [26,27].
In our use-case, this model requires a specific choice for an ADC and/or DAC component,
as well as other external components, which have to be modeled. Mertens et al. [28] created
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a Simulink library of embedded platform components for the simulation of real-time
embedded systems. Expansion of this library for a wide choice of components with their
respective characteristics provides the users with a large range of trade-offs to consider,
which can be validated and evaluated in the subsequent simulation.

6. Conclusions

This paper presents a good improvement towards the usability of coprocessors on
heterogeneous SoCs without requiring expert-level domain-specific knowledge. This is
performed by means of a model-based code generator. By doing so, a big part of the
development complexity that typically lies in the embedded implementation of such
a complex sampling scheme is removed. The modularity of the generator framework
explicitly promotes reusability between different developments. This will only improve
when the framework becomes integrated in more projects since the model components
are interchangeable without further issues. This allows the development of an extensive
plug-and-play selection of acquisition devices and platforms on which to implement these
devices. The results presented in Section 4 demonstrate that the framework generates
robust and reliable firmware respecting the defined requirements. This proves that it
offers a solution to system engineers without the deep knowledge required when manually
programming such firmware.
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HeDCS Heterogeneous distributed computing systems
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WCET Worst-case execution time
ADL Architecture Description Language
SBC Single-board computer
EMF Eclipse Modeling Framework
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NOP No operation instruction
DTS Device tree script
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