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Abstract: A proposed architecture to design the optimal parameters of Membership Functions
(MFs) of Type-1 Fuzzy Logic Systems (T1FLSs) using the Chicken Search Optimization (CSO) is
applied to three Fuzzy Logic Controllers (FLCs) in this paper. Two types of MFs are considered in
the study: triangular and trapezoidal ones. The performance and efficiency of the CSO algorithm
are particularly good when perturbations are added during the execution in each control problem.
Two benchmark control problems: Water Tank Controller and Inverted Pendulum Controller are
considered for testing the proposed approach. Also, the optimal design of a fuzzy controller for
trajectory tracking of an Autonomous Mobile Robot (AMR) is considered to test the CSO. The main
goal is to highlight the efficiency of CSO algorithm in finding optimal fuzzy controllers of non-linear
plants. Two types of perturbations are considered in each control problem. Results show that the
CSO algorithm presents excellent results in the field of Fuzzy Logic Controllers. Two types of Fuzzy
Inference Systems: Takagi-Sugeno and Mamdani FLSs, are implemented in this paper. The most
important metrics usually applied in control are used in this paper, such as: Integral Time Absolute
Error (ITAE), Integral Time Squared Error (ITSE), Integral Absolute Error (IAE), Integral Square Error
(ISE), Mean Square Error (MSE), and Root Mean Square Error (RMSE).

Keywords: chicken search optimization; fuzzy controller; perturbation; autonomous mobile robot;
benchmark problems

1. Introduction

In recent decades the Chicken Search Optimization (CSO) algorithm has shown good
results and the efficiency of this bio-inspired algorithm has been verified in different prob-
lems. For example, in [1], Al Shayokh et al. presented a bio inspired distributed Wireless
Sensor Network (WSN) localization based on chicken swarm optimization; in [2], Baner-
jee et al. presented an improved serially concatenated convolution turbo code (SCCTC)
using chicken swarm optimization; in [3], Chen et al. presented a penalty function with
a modified chicken swarm optimization for constrained optimization; in [4], Deb et al.
presented a Hybrid Multi-Objective Chicken Swarm Optimization and Teaching Learning
Based Algorithm for Charging Station Placement Problem; in [5], Deb et al. showed a new
Teaching–Learning-based Chicken Swarm Optimization Algorithm; in [6], Deb et al. pre-
sented some recent studies on Chicken Swarm Optimization Algorithms; and in [7], Hafez
et al. presented an innovative approach for feature selection based on Chicken Swarm
Optimization. In addition, in [8], Kurozawa et al. showed an optimization of the enzymatic
hydrolysis of chicken meat using response surface methodology; in [9], Lin et al. presented
a robust recurrent wavelet neural network controller with improved particle swarm opti-
mization for linear synchronous motor drive; in [10], Qu et al. presented a Chicken Swarm
Optimization based on elite opposition-based learning; in [11], Wang et al. showed an
improved Chicken Swarm Algorithm based on chaos theory and its application in wind
power interval prediction; and in [12], Wu et al. presented an improved Chicken Swarm Op-
timization. Further, in [13], Wu et al. presented a convergence analysis and improvement of
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the Chicken Swarm Optimization Algorithm; and in [14], Wu et al. showed an application
of improved Chicken Swarm Optimization for Maximum Power Point Tracking (MTTP)
in photovoltaic system. Finally, in [15] Yaseen et al. presented a Hybrid Invasive Weed
Optimization Algorithm with Chicken Swarm Optimization Algorithm to solve Global
Optimization Problems; in [16], Zarlis et al. presented a framework of training Adaptive
Neuro-Fuzzy Inference System (ANFIS) using Chicken Swarm Optimization for solving
classification problems, and in [17] Liang et al. presented a fast Synthetic Aperture Radar
(SAR) image segmentation method based on an improved Chicken Swarm Optimization
Algorithm. All these previous works allow us to observe that the CSO algorithm shows
efficiency in various fields of study.

Other important contributions in which CSO algorithm has had an important presence
is on the medical area. Some works include [18], where a comparative study of bio-inspired
algorithms applied in the optimization of fuzzy systems is presented by Miramontes et al.,
and [19], where a prediction of cervical cancer using Chicken Swarm Optimization is
presented by Tripathi et al.

Control is a study area of much interest for several authors; for example, in [20]
the authors focused on a constrained population extremal optimization-based robust
load frequency control of multi-area interconnected power system; ref [21] based their
study in design of fractional order Proportional Integral Derivative (PID) controller for
automatic regulator voltage system based on multi-objective extremal optimization; ref [22]
presents an understanding edge computing focused on engineering evolution with artificial
intelligence; ref [23] studied an improvement of Maximum Power Point Tracking (MPPT)
control performance using fuzzy control and Variable Gain Proportional Integral (VGPI)
in the Photovoltaic (PV) system for micro grid; ref [24] presents an optimization of fuzzy
trajectory tracking in autonomous mobile robots based on bio-inspired algorithms; and
in [25] they analyzed an optimization design and test bed of fuzzy control rule base for a
PV system MPPT in a micro grid.

In the field of control, the CSO algorithm has also proven to be a good algorithm. For
example, in [26], Li et al. showed a chicken swarm–based method for ascent trajectory
optimization of hypersonic vehicles; in [27], Amador-Angulo et al. presented an optimal
design of fuzzy logic systems through a Chicken Search Optimization Algorithm applied
to a benchmark problem; in [28], Liang et al. presented an improved Chicken Swarm
Optimization Algorithm and its application in robot path planning; in [29], Mu et al.
presented an optimal trajectory planning for robotic manipulators using chicken swarm
optimization; and in [30], Wu et al. presented an improved Chicken Swarm Optimization
method for reentry trajectory optimization.

Bio-inspired algorithms are based on the natural behavior of species that have allowed
them to be used in solving complex problems. A wide variety of algorithms have been
developed in the field of control. Some related works are mentioned as follows: two
applications of Bee Colony Optimization (BCO) are presented in [31,32], a Salp Swarm
Algorithm (SWA) is studied in [33], a Bio-inspired Chaotic Fruit Fly Algorithm (FFA) is
presented in [34], a Particle Swarm Optimization (PSO) is presented in [35], a Flower
Pollination Algorithm (FPA) is presented in [36], a Cuckoo Search Algorithm (CSA) is
presented in [37], a Grey Wolf Algorithm (GWA) is presented in [38], a Bat Algorithm (BA)
is presented in [39], a Black Hole Algorithm (BHA) is presented in [40], a Firefly Algorithm
(FA) is presented in [41], some bio-inspired algorithms are analyzed and presented in [42],
a Cat Swarm Optimization (CSO) Algorithm is presented in [43], and an Ant Colony
Optimization (ACO) algorithm is presented in [44]. For this reason, in this paper some
benchmark control problems are studied and analyzed with Chicken Search Optimization
Algorithm (CSO) for solving problems and demonstrated the efficiency in this algorithm
in control problems. The benchmark problems have proven to be a good technique for
testing the performance of a bio-inspired algorithm; for example, in [45], a design of a
sliding mode controller for a water tank liquid level control system is presented; in [46],
a controller design for rotary inverted pendulum system using evolutionary algorithms
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is presented; in [47], a fuzzy controller for a benchmark problem related to computing
with words approach is presented. Also, controlling the stabilization and trajectory in
a robot is another interesting field in control problems; for example, in [24,31,48,49] an
autonomous system to control a mobile robot is presented; in [50], a fuzzy controller in AC
servo motor drive is presented; and in [51], a bio-inspired decentralized autonomous robot
mobile navigation control for multi agent systems is presented. In the existing literature
it is shown that the CSO method is applied as the solution of different types of problems
at present time, because it is a precise and solid method for optimization problems. For
this reason, the main contribution is to make use of this algorithm in the optimization of
control problems.

The main motivation in this paper is to demonstrate the efficiency and performance of
the Chicken Search Optimization Algorithms in control problems. Specifically, two bench-
mark problems are implemented, which are the water tank controller, and the inverted
pendulum. Also, an autonomous mobile robot for stabilization of trajectory is implemented.
Another important contribution is the statistical comparison with other meta-heuristics
algorithms. Many works of the CSO algorithm have been presented in control problems,
but in this paper, the more important contribution is to find the optimal design of the
Membership Functions (MFs) of a Type-1 Fuzzy Logic System (T1FLS) applied to control
problems. Also, all the problems were executed with perturbations in the model with
the goal of analyzing the behavior that CSO algorithm when levels of noise are added in
the model.

The organization of this paper is as follows. Section 2 describes the chicken search
optimization algorithm. Section 3 describes each of the three control problems, the structure,
equations and characteristics. Section 4 describes the proposed structure of the Type-1
Fuzzy Logic System (T1FLS) for each control problem. In Section 5 the simulation results
are presented and analyzed. In Section 6 a comparative and discussion of results are
presented. Finally, Section 7 presents some relevant conclusions and future works in
this paper.

2. Chicken Search Optimization Algorithm

The interesting bio-inspired algorithm that this paper considers to analyze and explore
is called the Chicken Swarm Optimization (CSO) based on the behaviors of cocks, hens and
chicks in finding food. The main idea in this algorithm was created by Meng, Liu, Gao and
Zhang in 2014 [52]. BCO algorithm uses the chicken swarm in the searching space which is
mapped a specific particle individual. Also, three types of chicken are used in the swarms:
Cock swarm, chick swarm and hen swarm for the whole chicken swarm. Each role has a
different weight in the CSO algorithm; for example, in the methodology of this algorithm,
cock swarms present a highest fitness and the chick swarms present lowest fitness. The
role (hen, chick and cock) is assigned during the execution of the algorithm depends of its
fitness value. In the implementation of CSO algorithm in each control problem, a chicken
represents a possible solution for the control problem [52]. The CSO algorithm has as
objective error minimization in each control problem. The proposed idea is represented
by Figure 1.

In this algorithm each particle represented a possible solution in the problem. For
example, in the case of the first control problem called water tank controller, the proposed
fuzzy logic system (FLS) has triangular membership functions (MF) at the inputs and
outputs. Two type of MFs are implemented in this paper. The first is a triangular MF that
depends on three parameters, which are a, b and c as given by the Equation (1), where a and
c represents the feet of the triangle and the b locates the peak, and the second is a trapezoidal
MF that depends on four parameters which are a, b, c and d, as given by Equation (2). This
triangular and trapezoidal MFs are represented graphically in Figure 2a,b, respectively.

f (x; a, b, c) =max
(

min
(

x− a
b− a

,
c− x
c− b

)
, 0
)

(1)
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f (x; a, b, c, d) =max
(

min
(

x− a
b− a

, 1,
d− x
d− c

)
, 0
)

(2)

Figure 1. General idea for the Chicken Search Optimization (CSO) algorithm to solve control problems.

Figure 2. Points of triangular membership functions (MF) (a), and trapezoidal MF (b).

Figures 3 and 4 show the points (parameters) that make up each input and output
triangular membership function.

A Type-1 FLS was optimized with the CSO algorithm, and it is necessary to have a
particle (cock, hen or chick) with a size to optimize the membership functions (MFs). In this
case it is called a vector representing the possible best distribution in the MFs for the first
study case called water tank controller, as shown in Figure 5. The vector has 33 positions to
optimize, because this control problem has two inputs each with three triangular MFs, and
one output with five triangular MFs.
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Figure 3. Points of membership functions of (a) Input 1 and Input 2 for the water tank problem
controller, (b) Input 1 and Input 2 for the autonomous mobile robot problem controller.

Figure 4. Points of membership functions of the Output 1 and Output 2.

Figure 5. Vector for the optimization CSO algorithm.

Table 1 shows the total size of the vectors in each control problem and the type of
membership function that CSO algorithm to find and optimize.
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Table 1. Size of vector in the optimization by CSO algorithm for each control problem.

Control Problem
Input Output

Total Size of Vector
Total Type of MFs Total Type of MFs

Water Tank
Controller 2 3—Triangular in each Input 1 5–Triangular in

each output 33

Inverted
Pendulum
Controller

4 2—Trapezoidal in each Input Sugeno-Takagi
(Function) 32

Autonomous
Mobile Robot

Controller
2 Trapezoidal—

Triangular—Trapezoidal 2 3—Triangular in
each Output 40

The dynamism of CSO algorithm is represented in the following equations. For all the
particles, the particle with best fitness is called with the role of cock particle swarm; this
selection is represented by Equation (3):

xt+1
i,j = xt

i,j + randn
(

0, σ2
)
·xt

i,j (3)

where t represents the generations, and xt+1
i,j and xt

i,j indicate the position of jth dimension

of a chicken in t + 1. The function randn
(
0, σ2) is implemented as a random of Gaussian

distribution in Equation (4) to find the variance:

σ2 =

{
1, −−−−−−−−− > f iti < f itk

exp
(
( f itk− f iti)
(| f iti |+ε)

)
, −−−−−−−−− > f iti ≥ f itk

}
(4)

where i, k ∈ [1, rsize] and i 6= k. In each control problem, rsize indicates the number of
cock swarms, and the size of the swarm is 30 values. Also, a cock particle represents the
number of values for the design of the MF for the Fuzzy Logic System in this paper; for
each control problem the values of the MFs are different (see Table 1). f iti and f itk are the
fitness values of cock particle i and k, respectively; ε is an important value that represents a
number which is used to avoid zero-division-error, is the smallest constant in the computer.
Otherwise, for CSO algorithm, hen swarm was selected with good fitness. Its random
search is found by Equation (5) that is performed via cocks of hen population and that
of others.

xt+1
i,j = xt

i,j + S1·rand·
(

xt
r1.j − xt

i,j

)
+ S2·rand·

(
xt

r2.j − xt
i,j

)
(5)

where xt
i,j and xt

r2.j is used in the position of the cock individual r1 in the population of
hen xi and cock individual r2 in the other population, respectively. rand is a function that
represents a uniform random number with the range of [0, 1]. Equation (6) calculates the
values of S1 and S2:

S1 = exp
(
( f iti − f itr1)

(| f itr2|+ ε)

)
, S2 = exp( f itr2 − f iti) (6)

where r1 ( f itr1) represents the fitness value of the cock individual in the population of hen
xi, and r2 ( f itr2) represents the fitness value for the cock individual, respectively. In CSO
algorithm all individuals, except for the cock and hen swarm, are defined as a chick swarm.
Equation (7) shows this search mode follows that of the hen swarm:

xt+1
i,j = xt

i,j + FL·
(

xt
m,j − xt

i,j

)
, FL ∈ [0, 2] (7)

In the CSO algorithm, the chick would follow its mother to forage for food, therefore
xt

m,j, is the position of jth dimension of particle m in t + 1, t indicate the generation, then,
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this characteristic is represented by parameter FL. Hence, m represents the position of
the ith chick’s mother (m ∈ [1, N]), where N indicates the size of swarm (population).
Algorithm 1 illustrates the pseudocode of the CSO algorithm.

Algorithm 1 General Steps of the CSO Algorithm

1. Initialize a population of N chickens and define the relation parameters;
2. Evaluate the N chickens’ fitness values, t=0;
3. While (t < Max_Generation)
4. If (t % G = = 0)
5. Rank the chickens’ fitness values and establish a hierarchal order in the swarm;
6. Divide the swarm into different groups, and determine the relationship between the chicks and
mother hens in a group;
7. End if;
8. For i = 1; N
9. If (i == rooster)
10. Update its solution/location using Equation (3);
11. End if;
12. If (i == hen)
13. Update its solution/location using Equation (5);
14. End if;
15. If (i == chick)
16. Update its solution/location using Equation (7);
17. End if;
18. Evaluate the new solution;
19. If the new solution is better its previous one; update it;
20. End For;
21. End While;

With the goal to illustrate each step in the CSO algorithm, with a total of 9 steps,
Figure 6 shows the Flowchart of the mechanism in this algorithm.

Figure 6. Flowchart of the step in the CSO algorithm.
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3. Control Problems

For performance evaluation of the CSO algorithm a total of three control problems
are implemented in this work. Two are benchmark problems and the other is to control
the stabilization in an autonomous mobile robot (AMR). These control problems allow to
analyze the behavior of proposed method to find the optimal design for the MFs through
an efficient CSO algorithm. The general description of each control problem is presented in
the following subsections.

3.1. Water Tank Controller

The first problem has the goal of filling the water tank, therefore, based on the actual
water level in the tank the controller has to be able to provide the proper activation of the
valve. Figure 7 illustrates the variables involved so that the valve opening operates, and
Equation (8) shows the mathematical functions in this problem.

d
dt

Vol = A
dH
dt

= bV − a
√

H (8)

where Vol is the volume of water in the tank, A is the cross-sectional area of the tank, b is a
constant related to the flow rate into the tank, and a is a constant related to the flow rate
out of the tank. The equation describes the height of water H as a function of time, due to
the difference between flow rates into and out of the tank.

Figure 7. Graphic representation of the problem of water tank.

3.2. Inverted Pendulum Controller

The second problem consists of controlling a pendulum given a force F that is applied
horizontally (in x) to a cart. The pendulum moves horizontally towards a dynamic point at
the base and the goal is to get to that point quickly and with greatest balance or stability
that the vertical bar (pendulum) can present. Figure 8 graphically shows the idea for
this problem.

3.3. Autonomous Mobile Robot Controller

The last control problem consists of a unicycle mobile robot [24], which has two
driving wheels located on the same axis and a front free wheel, and Figure 9 shows a
graphical description of the robot model.
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Figure 8. Second problem of control. (a) Representation in the model, and (b) graphic idea for the inverted
pendulum controller.

Figure 9. Graphic idea for the Autonomous Mobile Robot (AMR) problem.

The robot model assumes that the motion of the free wheel can be ignored in its
dynamics, as shown by Equations (9) and (10).

M(q)
.
v + C

(
q,

.
q
)
v + Dv = τ+ P(t) (9)

where

q = (x, y, θ)T is the vector of the configuration coordinates,
v = (v,)T is the vector of velocities,
τ = (τ1,τ2) is the vector of torques applied to the wheels of the robot where τ1, and τ2
denote the torques of the right and left wheel,
P ∈ R2 is the uniformly bounded disturbance vector,
M(q) ∈ R2X2 is the positive-definite inertia matrix,
C
(
q,

.
q
)
ϑ is the vector of centripetal and Coriolis forces, and

D ∈ R2X2 is a diagonal positive-definite damping matrix.

The kinematic system is represented by Equation (10).

.
q =

 cos θ 0
sin θ 0

0 1

[ v
ω

]
(10)
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where (x,y) is the position in the X−Y (world) reference frame, θ is the angle between the
heading direction and the x-axis, v and ω are the linear and angular velocities. Further-
more, Equation (11) shows the non-holonomic constraint, which this system has, which
corresponds to a no-slip wheel condition preventing the robot from moving sideways.

.
y cos θ − .

x sin θ = 0 (11)

The system fails to meet Brockett’s necessary condition for feedback stabilization,
which implies that no continuous static state-feedback controller exists that can stabilize
the closed-loop system around the equilibrium point.

4. Proposed Structure of Type-1 Fuzzy Logic Systems for Control
4.1. Fuzzy Logic System

A fuzzy logic system (FLS) that is defined entirely in terms of Type-1 fuzzy sets, is
known as Type-1 Fuzzy Logic System (Type-1 FLS), and its elements are defined in the
following Figure 10 [45,46].

Figure 10. Architecture of a Type-1 fuzzy logic system (FLS).

A type-1 fuzzy set in the universe x is characterized by a membership function
µA(x) taking values on the interval [0, 1] and can be represented as a set of ordered pairs
of an element and the membership degree of an element to the set and are defined by
Equation (12) [53,54]:

A = {(x, µA(x))}| x ∈ U} (12)

4.2. Fuzzy Logic Controller

The general idea of a Fuzzy Logic Controller (FLC) was created by Mamdani in 1976.
An important work of FLC is in [55] describing an application of fuzzy algorithms for
control of simple dynamic plant. Another variant for the inferences in FLS is Takagi-Sugeno
(in this paper the inverted pendulum control problem is of type Takagi-Sugeno), and the
works in [56,57] apply this approach in the inference form of Takagi-Sugeno and Mamdani
for the Type-1 FLS. Figure 11 shows the general representation of the FLCs.
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Figure 11. Architecture of a Fuzzy Logic Controller (FLC).

An important aspect in the evaluation of the FLCs is the disturbance in the feedback
phase. This block allows the bio-inspired algorithm, in this case CSO, to demonstrate its
efficiency in the optimization of the control problem. Some works where the behavior of
the problem with level of noise in the model is analyzed are [31,58–64]. In this paper, two
type of disturbances are considered in each model.

4.3. Proposed Structure of the Type-1 FLS

The proposed structures of the Type-1 FLS for each control problem are described in
the following subsections.

4.3.1. Water Tank Controller

The first control problem has a proposed structure of two inputs called level and rate,
each with three triangular MFs, and only one output called valve with five triangular MFs.
A total of five rules are necessary to control the filling of the water tank. Figure 12 illustrates
the Fuzzy Inference System (FIS) (a) and the inferences rules (b). Also, Figure 13 shows the
FLC model that is implemented in the executions by CSO algorithm.

Figure 12. Proposed structure or the first Fuzzy Inference System (FIS) Control Problem. (a) Input and output of the FLS,
and (b) inference rules for the Water Tank Controller.
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Figure 13. FLC model for execution of simulation by CSO algorithm of the Water Tank Controller. (a) Pulse generator
perturbation, and (b) Band-limited perturbation.

Two type of perturbations are added in the model, specifically to block the error: a
pulse generator (a) and a band-limited (b) [58], for each control problem, with the goal to
visualize the efficiency of CSO algorithm when disturbance is present.

4.3.2. Inverted Pendulum Controller

The second control problem has a proposed structure of four inputs called in1, in2,
in3 and in4, each with two trapezoidal MFs. This FIS is of Takagi-Sugeno type. A total of
16 rules are necessary for stabilization of the pendulum. Figure 14 illustrates the Fuzzy
Inference System (FIS) (a) and the inferences rules (b). Also, Figure 15 shows the FLC
model for this second control problem.

4.3.3. Autonomous Mobile Robot Controller

The third control problem has the structure of two inputs called ev (error in the linear
velocity), and ew (error in the angular velocity). Each input has three MFs of which in the
extremes are trapezoidal MFs and in the middle a triangular MF, for each input. Regarding
the outputs, it has two, called T1 (Torque 1) and T1 (Torque 2) with three triangular MFs,
respectively. Figure 16 illustrates the Fuzzy Inference System (FIS) (a) and the inferences
rules (b). Also, Figure 17 shows the FLC model for this third control problem.
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Figure 14. Proposed structure of the second FIS Control Problem. (a) Input and output of the FLS, and (b) inference rules
for the Inverted Pendulum Controller.
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Figure 15. FLC model for the simulation by CSO algorithm of the Inverted Pendulum Controller. (a) Pulse generator
perturbation, and (b) Band-Limited perturbation.

Figure 16. Proposed structure of the third FIS Control Problem. (a) Input and output of the FLS, and (b) inference rules for
the Autonomous Mobile Robot Controller.
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Figure 17. FLC model to execution of simulation by CSO algorithm of the AMR Controller. (a) Pulse generator perturbation,
and (b) Band-Limited perturbation.

5. Simulations Results

The analysis of results is presented in this section for each control problem. The setting
of parameters for CSO algorithm is presented in Tables 2 and 3.

Table 2. Settings of CSO algorithm for benchmark control problems.

Parameters Values

N (Population) 30
RN 0.15 * N
HN 0.7 * N
MN 0.15 * N

G 10
FL [0.5, 0.9]

Generations 40

Table 3. Settings of CSO algorithm for Autonomous Mobile Robot control problem.

Parameters Values

N (Population) 20
RN 0.15 * N
HN 0.7 * N
MN 0.15 * N

G 10
FL [0.5, 0.9]

Generations 15

The main reason for the decision to decrease the values in Population (N) and Gen-
erations only for third control problem is because it is not a benchmark problem, also,
with previous experiments, it was analyzed that a maximum number of generations is not
necessary for good errors to be found by the CSO algorithm.

To evaluate of efficiency of the CSO algorithm in control, a series of performance
indices are used in non-linear plants, which are the Integral Square Error (ISE), Integral
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Absolute Error (IAE), Integral Time Squared Error (ITSE), Integral Time Absolute Error
(ITAE), the Root Mean Square Error (RMSE) and the Mean Square Error (MSE). The
mathematical representation of each are shown in Equations (13)–(18), respectively.

ISE =

∞∫
0

e2(t)dt (13)

IAE =

∞∫
0

|e(t)|dt (14)

ITSE =

∞∫
0

e2(t)tdt (15)

ITAE =

∞∫
0

|e(t)|tdt (16)

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (17)

MSE =
1
n

n

∑
i=1

(Yi −Yi)
2 (18)

The fitness function of CSO algorithm is the MSE (see Equation (18)), and this means
that the best individual in each execution is the particle that has the lowest value of MSE
of the entire population. Each FLC shown in Figures 13, 15 and 17 has two references.
The first one indicates the desired reference trajectory, which is Yi (estimated value) and
the second one represents the trajectory created by the optimized fuzzy controller, in this
case the observed value, which is Yi (signal value), and n represents the total number of
observed samples.

A total of 30 experiments were realized in each non-linear plant without perturbation,
with perturbation of pulse generator with values of amplitude of 1, period (seconds) of 10,
pulse with (% of period) of 30 and phase delay (seconds) of 100, with a second perturbation
of noise limited with value of noise power of 0.5 and sample time of 0.8. Table 4 shows
the results for each model, and the average result for minimum values to find by CSO
algorithm of the six-performance indexes and problem Without Perturbation (Not Applied
Perturbation (Not AP), With Pulse Generator Perturbation (Type-1 Perturbation), and with
Band-Limited Perturbation (Type-2 Perturbation) is presented.

Results on Table 4 show that when a certain level of noise is added in, the model CSO
algorithm presents a stable behavior in the metrics of error. For example, in the first control
problem, the Integral Square Error without noise the average of the error is 2.77 × 10+3,
with the noise pulse generator is 3.00 × 10+3 and with the noise band-limited is 3.38 ×
10+3. Thus, errors remain similar even when a high level of noise is added; this is possible
due to the exploitation ability that CSO algorithm presents. In the case of the third control
problem the best average in RMSE is with the noise of band-limited perturbation.

Table 5 shows the results for each model, best result of the fitness function MSE to find
by CSO algorithm with the metrics of best, worst, average, standard deviation, and Without
Perturbation (Not Applied Perturbation (Not AP), With Pulse Generator Perturbation (Type-
1 Perturbation), and with Band-Limited Perturbation (Type-2 Perturbation) is presented.
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Table 4. Results of average performance index of minimums values found by the
CSO algorithm.

Control
Problem

Performance
Index

Types of Experiment

Not AP Type-1
Perturbation

Type-2
Perturbation

Water Tank
Controller

ITAE 2.77 × 10+5 2.94 × 10+5 3.05 × 10+5

ITSE 7.26 × 10+5 7.80 × 10+5 8.27 × 10+5

IAE 1.08 × 10+3 1.15 × 10+3 1.23 × 10+3

ISE 2.77 × 10+3 3.00 × 10+3 3.38 × 10+3

RMSE 2.43 × 10−1 6.86 × 10−1 7.27 × 10−1

Inverted
Pendulum
Controller

ITAE 2.23 × 10+2 2.23 × 10+2 2.84 × 10+2

ITSE 5.59 × 10+2 5.58 × 10+2 6.07 × 10+2

IAE 2.78 × 10+1 2.77 × 10+1 3.12 × 10+1

ISE 6.93 × 10+1 6.94 × 10+1 7.02 × 10+1

RMSE 1.48 × 100 1.48 × 100 8.76 × 10−1

Autonomous
Mobile Robot

Controller

ITAE 3.37 × 10+2 3.41 × 10+2 3.41 × 10+2

ITSE 1.38 × 10+2 1.42 × 10+2 1.41 × 10+2

IAE 1.44 × 10+1 1.46 × 10+1 1.46 × 10+1

ISE 6.07 × 100 6.28 × 100 6.21 × 100

RMSE 2.06 × 10−1 2.14 × 10−1 2.03 × 10−1

Table 5. Results of metrics of Mean Square Error (MSE) values to found by CSO algorithm.

Control
Problem

Performance
Index

Types of Experiment

Not AP Type-1
Perturbation

Type-2
Perturbation

Water Tank
Controller

BEST 8.22 × 10−4 2.34 × 10−1 2.19 × 10−1

WORST 8.17 × 10−2 9.25 × 10−1 7.69 × 10−1

AVERAGE 3.61 × 10−2 4.21 × 10−1 5.05 × 10−1

STANDARD
DEVIATION (σ) 2.35 × 10−2 1.86 × 10−1 1.09 × 10−1

Inverted
Pendulum
Controller

BEST 4.67 × 10−1 4.80 × 10−1 5.79 × 10−1

WORST 5.98 × 100 5.69 × 100 1.77 × 100

AVERAGE 2.29 × 100 2.35 × 100 8.59 × 10−1

STANDARD
DEVIATION (σ) 1.84 × 100 1.79 × 100 3.66 × 10−1

Autonomous
Mobile Robot

Controller

BEST 3.87 × 10−5 7.56 × 10−3 3.81 × 10−4

WORST 1.44 × 100 2.16 × 100 3.48 × 10−1

AVERAGE 1.35 × 10−1 1.79 × 10−1 6.99 × 10−2

STANDARD
DEVIATION (σ) 2.63 × 10−1 4.18 × 10−1 8.63 × 10−2

Results on Table 5 shows an stabilization when level of noise are added in two control
problems; inverted pendulum and autonomous mobile robot. For example, in the second
control problem the average with band-limited perturbation is 8.59 × 10−1 compared to
the average without perturbation is 2.29 × 100; similarly, for the third control problem the
average value is 6.99 × 10−2 with band-limited perturbation more stable that the value
of 1.79 × 10−1 with pulse generator perturbation and the value of 1.35 × 10−1 without
perturbation in the model.

With the goal to analyze the convergence in each control problem, Figure 18 shows
the best results in fitness function that the CSO algorithm finds in the results.
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Figure 18. Convergence of Best Results. (a) Water Tank Controller, (b) Inverted Pendulum Controller and (c) Autonomous
Mobile Robot Controller.

The best distribution in the MFs for the FLS that the CSO algorithm finds for each
control problem is presented in Figures 19–21, respectively.

Figure 19. Best FLS that CSO algorithm finds for the Water Tank Controller.
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Figure 20. Best FLS that the CSO algorithm finds for the Inverted Pendulum Controller.

Figure 21. Best FLS that CSO algorithm finds for the Autonomous Mobile Robot Controller.

6. Comparative Analysis and Discussion of Results

This section presents a comparative analysis of the results when perturbations are
added in the model. Also, a visualization of the different metrics that were used in this
paper to evaluate the performance of the CSO algorithm is analyzed.

Figures 22–24 illustrate the behavior of proposed implementation of the CSO algorithm
in the design of the MFs to create the FLS for the fitness function (MSE) and RMSE of the
30 experiments for each control problem, respectively.



Axioms 2021, 10, 30 20 of 26

Figure 22. Comparative results of best (a) MSE and (b) RMSE for Water Tank Controller.

Figure 23. Comparative results of best (a) MSE and (b) RMSE for the Inverted Pendulum Controller.
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Figure 24. Comparative results of best (a) MSE and (b) RMSE for the Autonomous Mobile
Robot Controller.

The results of Figure 22 show a better behavior without perturbation in the model,
in this case this benchmark problem is considering a simple control problem. For the
second case in the inverted pendulum (Figure 23), for both metrics when the band-limited
perturbation is added the better results are found by CSO algorithm. This benchmark
problem presents an efficient stabilization with the proposed implementation of CSO algo-
rithm. Finally, the control problem of controlling the trajectory in an autonomous mobile
robot shows a similar behavior even when perturbation is added in the model (Figure 24),
whereby, this result allows evaluation of the efficiency and excellent performance of the
CSO algorithms in the stabilization of fuzzy controllers.

Figure 25 shows the best trajectory of the autonomous mobile robot found by CSO al-
gorithm in the design of the MFs of the FLS simulated for each type of experiment; without
perturbation, with pulse generator and with band-limited perturbation, respectively.

Figure 25. Cont.
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Figure 25. Comparative of trajectories for the Autonomous Mobile Robot Controller. (a) Initial FIS,
(b) CSO algorithm without perturbation, (c) CSO algorithm with Pulse Generator Perturbation, and
(d) CSO algorithm with Band-Limited Perturbation.

Figure 25 shows the efficiency of the CSO Algorithm when perturbation is added in the
model, a stabilization of the fuzzy controller is illustrated when band-limited perturbation
is added.

Table 6 shows a comparative with the BCO algorithm for the Water Tank Controller
and Autonomous Mobile Robot Controller, the minimum and maximum values for the
Fitness Function of MSE are presented, and the average RMSE is shown. This comparison
was realized for 30 experiments in both works.

Table 6. Comparison of results with Bee Colony Optimization (BCO) algorithm.

Method Control Problem Minimum Maximum Average RMSE Population Iterations (BCO)—
Generations (CSO)

Proposed CSO
Algorithm

Water Tank
Controller 8.22 × 10−4 8.17 × 10−2 2.43 × 10−1 30 40

BCO Algorithm [65] Water Tank
Controller 5.50 × 10−2 1.47 × 10−1 5.60 × 10−1 50 30

Proposed CSO
Algorithm

Autonomous
Mobile Robot

Controller
3.87 × 10−5 1.44 × 100 2.06 × 10−1 20 15

BCO Algorithm [65]
Autonomous
Mobile Robot

Controller
2.00 × 10−3 1.40 × 10+1 2.26 × 10+1 50 30
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Results in Table 6 show minimal errors in the simulations with CSO algorithm. For
example, in the case of water tank controller the minimal error is 8.22 × 10−4 and for BCO
algorithm is 5.50 × 10−2.

7. Conclusions

An efficient implementation of the CSO algorithm for the design of the Membership
Functions for three control problems is presented in this paper. The proposed structure to
find the optimal distribution of the MFs in each control problem demonstrates that when
perturbation is added in the model, the CSO algorithm allows controlling a stabilization
in three control problems; water tank, inverted pendulum and autonomous mobile robot
controllers. The exploration and exploitation abilities in the CSO algorithm are an important
aspect that is analyzed and reflected in the good results obtained. Several metrics were
implemented, including ITAE, ITSE, ISE, IAE, MSE and RMSE, to evaluate of performance
of the CSO algorithm.

The proposed implementation of CSO algorithm shows that it can be an excellent tool
to find an optimal design in the MFs for the FLS to control and stabilize fuzzy controllers.
Results in Tables 4 and 5 show minimal errors in the simulations. Figures 22–24 show that
the convergence of CSO algorithm is fast and the minimal errors are obtained with few
generations, this is due to its capacity of exploitation that presents this algorithm.

An interesting future work in this paper could be the implementation in the design
of the MFs for an interval type-2 FLS. Also, it can be used for other fuzzy controllers; for
example, flight simulations, and dynamic trajectories in autonomous mobile robots.
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