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Abstract: In this work, a new medical image encryption/decryption algorithm was proposed. It is
based on three main parts: the Jigsaw transform, Langton’s ant, and a novel way to add deterministic
noise. The Jigsaw transform was used to hide visual information effectively, whereas Langton’s
ant and the deterministic noise algorithm give a reliable and secure approach. As a case study,
the proposal was applied to high-resolution retinal fundus images, where a zero mean square
error was obtained between the original and decrypted image. The method performance has been
proven through several testing methods, such as statistical analysis (histograms and correlation
distributions), entropy computation, keyspace assessment, robustness to differential attack, and key
sensitivity analysis, showing in each one a high security level. In addition, the method was compared
against other works showing a competitive performance and highlighting with a large keyspace
(>1 × 101,134,190.38). Besides, the method has demonstrated adequate handling of high-resolution
images, obtaining entropy values between 7.999988 and 7.999989, an average Number of Pixel Change
Rate (NPCR) of 99.5796%± 0.000674, and a mean Uniform Average Change Intensity (UACI) of
33.4469%± 0.00229. In addition, when there is a small change in the key, the method does not give
additional information to decrypt the image.

Keywords: medical image; image encryption and decryption; Jigsaw transform; Langton’s ant;
deterministic noise; retinal fundus images

1. Introduction

Nowadays, digital medical images such as X-ray radiography, ultrasound, magnetic
resonance imaging or computed tomography play an important role in diagnosis and
treating diseases. They are used in many modern hospitals and they involve patients’
private information as well as confidential and sensitive data [1,2].

On the other hand, there are several applications that require storing and transmitting
medical images over vulnerable to security attack channels, for example, the internet.
Therefore, it is necessary to protect the patients’ information including the medical im-
ages data. In this sense, cryptography, a sub-field of mathematics and computer science,
has generated schemes such as the standards DES (Data Encryption Standard) and AES
(Advanced Encryption Standard), which have been used to protect text data through and
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robust encryption and decryption approaches. However, these approaches have some
disadvantages for large volume data present in medical images, such as a high computing
time, high redundancy, and a strong correlation in neighbor pixels [2].

In different medical technologies such as Telemedicine and Tele-surgery, the use,
storage, and transmission of ultrasound, computed tomography, retinal fundus image,
and other images plays a vital role. Moreover, the network transmission of these images,
via the internet or the hospital intranet, between doctors, specialists, or researchers poses
serious security problems, making them vulnerable to malicious tampering and privacy
leakage. Therefore, the development of efficient medical image encryption methods is an
active area.

On the other hand, both in natural and medical images, the encryption methods must
try to preserve the quality of the decrypted image concerning the original one. The above
becomes more relevant in medical diagnosis, where the integrity of anatomical or functional
information may affect medical interpretation.

Many encryption schemes are based on position scrambling (permutation) to secure
image data, other methods use the chaos theory, which has unpredictability and ergodicity
properties [2]. Nevertheless, some cryptanalysis works are showing that some encryption
schemes have the risks of being broken [3–5]. On the other hand, due to the limitations
of the used chaotic systems, for example, the pseudorandom number generators, some
chaos-based cryptography systems have low security levels [6,7].

Therefore, it is necessary to develop new cryptography systems that ensure image
visual data integrity, being robust against recent cryptanalysis techniques, and improving
the current chaos-based cryptography systems.

Some methods combine chaos theory and permutation techniques to improve the en-
cryption results. For example, in [8] the authors proposed a chaos-based image encryption
method and imitating the Jigsaw technique as a scrambling scheme, its proposal consists
of three steps, a pre-processing, encryption, and post-processing stage, in pre-processing
and post-processing stages the hyperchaotic Lorenz system is used to generate the con-
trol sequences of revolving and shifting image blocks, whilst in the encryption process,
the skew tent system is applied to revolving image blocks. In [9] an image encryption
system using the Jigsaw transform (JT) and the iterative finite field cosine transform is
presented. Hua et al. [1] presented a medical image encryption scheme, it first inserts
random data in the input image, then, two stages scrambling and pixel adaptive diffusion
(bitwise XOR and modulo arithmetic) are applied. In [10] a hybrid digital cryptosystem
was presented, it uses the Jigsaw transform to scramble the watermark. Then, the wa-
termark was inserted in the DCT (Discrete Cosine Transform) domain of an input image
previously scrambled by a chaotic scrambling algorithm. Kanso and Ghebleh [2] pro-
posed a selective chaos-based image encryption method for medical image applications,
it consists of a shuffling phase by chaotic cat maps and a masking phase, both block-
based. On the other hand, Wang and Xu [11] presented Langton’s ant (LA), a cellular
automaton, to scramble the image, where through and intertwining logistic map defined
the steps and next position of the ant. Additionally, the authors used a Piecewise Linear
Chaotic Map (PWLCM) as the final step to diffuse the image. Stoyanov and Kordov [12]
proposed an image encryption algorithm based on the pseudo-random bit generators:
Chebyshev map and rotation equation. Aryal et al. [13] proposed an integrated model of
block-permutation-based encryption using block scrambling, block-rotation/inversion,
negative–positive transformation, and the color component shuffling. In addition, a his-
togram shifting method was adopted as reversible data hiding. Jaroli et al. [14] proposed a
color image encryption based on four-dimensional differential equations chaotic map and
Arnold map. In [15] Gao et al. presented an encryption scheme based on fractional-order
hyperchaotic systems and multi-image fusion, where the authors performed an analysis
of the circuit and the dynamic of the chaotic system. Wang and Chen [16] proposed a
method for image scrambling and diffusion, which combines one-dimensional (Logistic)
and two-dimensional chaotic map systems (2D Logistic-adjusted-Sine) to generate chaotic
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sequences. Then, an L-shaped method based on the dynamic block is used to scramble the
image, followed by a diffusion stage at the bit level. In [17] Wang and Zhang presented a
dynamic encryption algorithm both for the scrambling and diffusion stages. The dynamic
behavior is reached by changing the pseudo-random number generated by the chaotic
system in each round. The chaotic system consists of a compound one-dimensional nested
sine map. Enayatifar et al. [18] reported a 3D chaotic function (3-D logistic map) to generate
a synchronous permutation-diffusion encryption method. The first dimension of the logis-
tic map joint with a Deoxyribose Nucleic Acid (DNA) sequence are used to permute the
pixel. While that the second and third dimensions are associated with the DNA operator to
alter the pixel value. In [19] Ibrahim and Alharbi presented an image encryption scheme
based on the Henon map by a dynamic substitution box (S-box) confusion and an elliptic
curve cryptosystem. In [20] Azam et al. proposed a fast, public-key, and two-phase image
encryption scheme based on elliptic curves. First, the plain text is masked by using random
numbers. Then the pixels are scrambled by using a dynamic S-box. Laiphrakpam and
Khumanthem [21] presented an image encryption scheme based on a chaotic system and
elliptic curve over a finite field. It consists of a chaotic diffusion phase, a substitution
phase using S-boxes, a diffusion phase based on the Logistic map, and a block permutation
operation. Hayat and Azam [22] proposed a two-phase image encryption method by con-
structing S-boxes and pseudo-random numbers using a total order on an elliptic curve over
a prime field. First, the image is diffused by masking it by the proposed pseudo-random
number, which is then confused by a proposed dynamic S-box. Wan et al. [23] proposed
an algorithm that uses genetic optimization to optimize chaos parameters, which are then
applied to the result of permuting the pixels of an image. Liang et al. [24] reported an
improvement to Arnold transform (AT), using a double scrambling encryption algorithm
based on AT which modifies both the position of the pixels and their gray values. This
method can get the desired results faster than the traditional AT while remaining as prac-
tical as the original AT. Kaur et al. [25] presented a watermarking technique combined
with RSA (Rivest–Shamir–Adleman) and fractal image coding, which enhances the secu-
rity against attacks such as cutting, random noise attack, and JPEG compression. Kumar
Sinha et al. [26] employed Arnold transformation to produce a confused image and S-box
transformation and XOR operation are used to provide diffusion. Ballesteros et al. [27]
reported a method that uses variable length codes based on Collatz conjecture for trans-
forming the content of the image into non-intelligible audio. The scrambling and diffusion
processes are performed simultaneously in a non-linear way. Swathika et al. [28] proposed
a technique based on chaos theory known as Confusion and Diffusion. The confusion step
uses block scrambling and modified zigzag transformation and the Diffusion step uses
3D logistic map and key generation followed by the additive cipher. In [29] Folifack et al.
studied the dynamic properties of a Jerk system as well as DNA coding with the purpose
of the implementation of an encryption technique.

In regard to medical image cryptography, for example the fundus photographs en-
cryption, in the work of Mehta et al. [30], the authors proposed a lossless cryptosystem for
fundus images based upon chaotic theory using a combination of scrambling and substitu-
tion architecture. On the other hand, Gamal et al. [31] presented a hybrid encryption scheme
using chaotic maps and 2D Discrete Wavelet Transform (DWT) steganography, with ap-
plication to transmit securely retinal fundus medical images. In [32] Moafimadani et al.
presented an algorithm based on chaotic systems to protect medical images against attacks.
It uses a high-speed permutation process followed by an adaptive diffusion. Javan et al. [33]
proposed a medical image encryption method based on multi-mode synchronization of
hyper-chaotic systems, where their main contribution was to encrypt medical images based
on robust adaptive control. In [34] Xue et al. proposed an image protection algorithm
based on the deoxyribonucleic acid chain of dynamic length. The method encrypts the
image by DNA dynamic coding, DNA dynamic chain, and dynamic operation of row
chain and column chain. The authors tested their method against three kinds of medical
images. Kumar and Gupta [35] presented an encryption algorithm for medical images
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based on the 1D logistic map associated with pseudo-random numbers. For the logistic
map, the authors analyzed the effect of its initial values and parameters, which are involved
in the shuffling and substituting processes. In addition, the method was tested both natural
as medical images, such as the human brain, MRI, and lungs. In [36] Nematzadeh et al.
reported a medical image encryption method based on a modified genetic algorithm and
coupled lattice map. The coupled lattice map improves the cipher, while the modified
genetic algorithm includes a new local search method and a stop condition, accelerating
the convergence. Cao et al. [37] presented a medical image encryption algorithm based on
edge maps, which includes a bit-plane decomposition, a generator of a chaotic sequence
using a Sine map, and a scrambling method. Sarosh et al. [38] presented an algorithm
that circularly shifts the pixels of an image, then the Most Significant Bit (MSB) plane is
replaced by a plane resulting from the XOR operation between the MSB plane and the
seventh intermediate significant bit plane. The result is then scrambled using pseudo
random numbers generated with logistic map. Then, the result is XORed with a key
image was generated using the Piecewise Linear Chaotic Map. Finally a Chebyshev map is
used to permute the pixels. Salama et al. [39] fused the wavelet-induced multi-resolution
decomposition capacity of the Discrete Wavelet Transform with the energy compaction
of the Discrete Cosine Transform for a technique that outperforming existing methods in
terms of imperceptibility, security, and robustness. Ravichandran et al. [40] proposed an
algorithm based in the Integer Wavelet Transform, DNA computing, and shuffling. Ge [41]
proposed an encryption algorithm called ALCencryption, which applies an improved
Arnold map to gray images using the optimal number of iteration, then the algorithm uses
Logistic and Chebyshev map cross-diffusion. This improved Arnold map is generalized for
images of any size. Color images are encrypted by cross-diffusion of double chaotic map.
Carey et al. [42] presented an algorithm utilizing two biometrics of the user, the iris and
the fingerprint, which are hashed through the Indexing First One hashing which are then
used as two different keys in a two-round Advanced Encryption Standard Cipher Block
Chaining system to encrypt medical images, improving in many existing schemes based on
biometrics. Additionally, the process is lossless, which is necessary for a medical encryption
system. Li et al. [43] proposed an algorithm for protecting key regions on the image. Firstly,
coefficients to measure the variation are used to identify the key regions (when a lesion
is present for example), and the texture complexity is analyzed. Then, the data-hiding
algorithm embeds lesion area contents into a high-texture area and an Arnold transforma-
tion is used to protect the original lesion information. Finally, the authors use image basic
information cipher-text and decryption parameters to generate a QR code associated with
the original key regions. In [44] Sangavi and Thangavel presented a Multi-dimensional
Medical Image Encryption scheme exploiting the chaotic property of the Rossler dynamical
system and Sine map. Siddartha et al. [45] proposed an efficient data masking technique
based on chaos and on the DNA code used for the encryption for securing the healthcare
data images. Chai et al. [46] reported a medical image encryption scheme combining Latin
square and chaotic system. Banik et al. [47] proposed an encryption scheme for multiple
medical images using an elliptic curve analog ElGamal cryptosystem and Mersenne Twister
pseudo-random number generator. This strategy decreases the encryption time and solves
the problem of data expansion associated with the ElGamal cryptosystem. In [48] Pankaj
and Dua proposed a one-dimensional Tangent over Cosine Cosine (ToCC) chaos map
method to encrypt medical images. First, padding is performed on the input image to hide
the original dimension. The second step consists of the generation of two different chaotic
sequences using the ToCC and Chebyshev-Chebyshev chaotic maps, respectively. In the
third stage, a modified High-Efficiency Scrambling (mHES) that uses the ToCC chaotic
map-generated sequence is applied to perform first-level scrambling. Finally, modified
Simultaneous Permutation and Diffusion Operation (mSPDO) that exploits the Chebyshev-
Chebyshev chaotic map is used to implement second-level scrambling to obtain the final
encrypted image. Elamir et al. [49] reported an encryption scheme for hiding patient infor-
mation in medical images.The strategy uses the Least Significant Bit algorithm, involving
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hiding data in the least bit of image pixels. The image is then compressed with a key
generated by chaotic maps and DNA encoding rules.

In this paper, we propose a new hybrid encryption system applied to high-resolution
fundus photographs. It uses Jigsaw transforms and cyclic permutations to scramble the
image hiding the visual information. Additionally, it uses Langton’s ant and a novel
deterministic noise algorithm to obtain a high-level secure encrypting image. To test the
performance of the proposed method, we performed several tests over the encrypted
image, including statistical analyses as the histogram comparison and pixel neighborhood
correlation, entropy computing, the keyspace universe determination, a differential attack
testing, and a key sensitivity studying.

The rest of the paper is organized as follows: Section 2.1 presents the medical image
dataset used in this work. Section 2.2 describes the Jigsaw transform, Section 2.3 presents
an image spatial cyclic permutation technique, the Langton’s ant concept is shown in
Section 2.4, and Section 2.5 defines a deterministic noise algorithm. Sections 2.6 and 2.7
develop the image encryption and decryption proposal using the Jigsaw transform, the de-
terministic noise and Langton’s ant. The experimental results are presented in Section 3.
Section 4 presents a discussion about the results obtained in this work, as well as a compar-
ison with other works. Finally, Section 5 concludes the paper and presents future work.

2. Materials and Methods
2.1. Dataset Description

The image dataset used in this paper is composed of 20 RGB fundus photographs,
10 from healthy patients and 10 from ill patients with retinopathy. Figure 1 shows the
complete image dataset, where each image has a spatial resolution of 4000× 6000 pixels
with 24 bits per pixel. The first two rows in Figure 1 correspond to healthy patients and
the last two rows to non-healthy patients. In each original image, firstly, we scanning the
rows and columns to delimited an ROI (Region of Interest) containing the area closer to
the eyeball, removing a large area of black pixels around it. At present, the dataset is not
publicly available.

Figure 1. Complete image dataset. Healthy patients (rows 1 and 2). Non-healthy patients (rows 3
and 4).
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2.2. Jigsaw Transform

The Jigsaw transform (J{}) is a nonlinear operator which randomly juxtaposes differ-
ent sections of a complex image. It has the advantage of encrypting and decrypting the
image using the same algorithm [50].

Let I(x, y, τ) a multi-spectral digital image N bands, with x, y as its spatial coordinates
and τ = τ1, . . . , τN representing the index for the N bands.

First, the I(x, y, τ) image is broken up into M non-overlapping subsections of k1× k2
pixels for x and y in all bands. Then, each block is relocated using some random permuta-
tion. The Jigsaw transform is unitary, which holds the energy both for the direct JM{} and
the inverse transform J−M{}. Thus, it satisfies the relation shown in Equation (1):

I(x, y, τ) = J−M

{
JM

{
I(x, y, τ)

}}
. (1)

Figure 2 shows a RGB image (Lena image) and the Jigsaw transform result for
M = 16, 64, 1024, generating resulting non-overlapping subsections of 64× 64, 32× 32,
and 8× 8 pixels respectively.

(a) (b)

(c) (d)

Figure 2. Examples of the Jigsaw transform on an RGB image by varying the number of subsections
(M). (a) RGB image. (b) M = 16, blocks of 64× 64 pixels. (c) M = 64, blocks of 32× 32 pixels.
(d) M = 1024, blocks of 8× 8 pixels.

2.3. Image Spatial Cyclic Permutation

A cyclic permutation (CP) shifts all elements of a finite set S composed of L elements
by a offset k, where the elements from the end (or beginning) of the set are inserted
at the beginning (or ending) in a cycle way, this mapping operation can be written as
ai → ai+k (mod L), where k (mod L) is the modulo operation [51]. Let A = {a0, a1, . . . , aL−1},
where for k ≥ 1 we would obtain a right cyclic permutation and for k ≤ 1 a left cyclic
permutation. Thus, a cyclic permutation of one place to the right (k = 1) would generate
the set Ak=1 = {aL−1a0, a1, . . . } and similarly for k = −1 (left cyclic permutation) we
would obtain the set Ak=−1 = {a1, . . . , aL−1, a0}.
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For the case of a multi-spectral digital image I(x, y, τ), we can applied the cyclic
permutation CP{kx, ky} both to the spatial coordinate x and y by the mapping operation of
Equation (2):

CP{kx, ky} = I
(

x + kx (mod X), y + ky (mod Y), τ
)

, (2)

where X and Y are the horizontal and vertical dimensions of I(x, y, τ); and kx and ky are
the horizontal and vertical offsets, respectively.

In Figure 3a, we show the Lena image, a multi-spectral digital image I(x, y, τ) of
256× 256 pixels, Figure 3b shows the left horizontal cyclic permutation CP{kx = −150, ky = 0}
applied, Figure 3c the vertical upward cyclic permutation CP{kx = 0, ky = 150} resulting,
and Figure 3d the left cyclic permutation CP{kx = −100, ky = 0} followed by a upward
cyclic permutation CP{kx = 0, ky = −100} over the image.

(a) (b)

(c) (d)

Figure 3. Examples of a cyclic permutation over the Lena image. (a) RGB image of Lena. (b) Left
horizontal cyclic permutation CP{kx = −150, ky = 0} result. (c) Vertical upward cyclic permutation
CP{kx = 0, ky = 150} result. (d) Left cyclic permutation CP{kx = −100, ky = 0} followed by a
upward cyclic permutation CP{kx = 0, ky = −100} applied.

2.4. Langton’s Ant

Langton’s ant is a cellular automaton invented in the 1980s by Christopher Lang-
ton [52]. It has been studied in many fields as artificial life, computational complexity,
cryptography, emergent dynamics, Lorents lattice gas, etc. In particular, its study has
been motivated due to the hardness of predicting its macroscopic behavior starting from a
determinate microscopic initial configuration [53].

Langton’s ant is a 2D universal Turing machine with two main characteristics: (i) a
simple set of rules and (ii) a complex emergent behavior. Langton’s ant consists of an
infinite grid of cells, which have two states: ON and OFF. An imaginary ant is placed in
one of the cells, which will walk through the grid following two rules: (i) if it is in a cell
turned OFF, it will rotate 90 degrees clockwise, turn ON the cell and move to the cell in
front of it. (ii) On the other hand, if it is in a cell that is turned ON, it will rotate 90 degrees
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counterclockwise, turn OFF the cell, and move to the cell in front of it. The first four steps
of an ant following these rules is shown in Figure 4.

(a) (b) (c) (d)

Figure 4. The first 4 iterations of an ant on a 3 × 3 grid. The black cells are OFF, the rest are ON.
(a) First iteration. (b) Second iteration. (c) Third iteration. (d) Fourth iteration.

Initially, the ant’s behavior seems chaotic, but eventually the ant stabilizes in a 104-step
pattern called “the highway” that will continue indefinitely unless there is a turned ON
cell in its path as shown in Figure 5. This behavior appears when the ant is placed
on the all-white vertices, so the ant stays in an area of 45 × 48 by around 10,000 steps,
and unpredictably it starts dancing a highway of 104 steps. In the highway pattern, the ant
moves diagonally with a speed of 2/52. For years this phenomenon has taken place with no
exception, generating the highway conjecture: “By starting from any initial configuration
with finite support, the highway must eventually appear” [53].

Figure 5. The ant (white cell), after 11,538 iterations, is stuck in “The Highway”.

The above rules apply only to an infinite grid, if it is finite the rules must be modified
to tell the ant what to do when it encounters an edge, as is the case in digital images.

In the work of Wang and Xu [11], the authors used the originals rules of Langton’s ant
generating the values of the grid through an intertwining logistic map and performing an
adjustment of coordinates and rotation directions due to the finite grid of a digital image.

In our case, we will consider that if the ant has to cross one edge it will reappear on
the opposite edge, topologically equivalent to the ant being on a torus surface. In this way,
if the highway is generated, the pattern will be interrupted because its path will always
have obstacles, causing the ant to continue its chaotic movement.

It is trivial that the ant’s movement is reversible. To reverse its trajectory it is only
necessary to locate the final position and orientation of the ant, rotate it 180 degrees, and let
it walk the same number of steps that it originally took.

Unlike Wang and Xu [11], where the original rules were used for digital images, we
considered the gray level of the image, thus, for an image of 8 bits (with values between
0 and 255), first we will separate the color channels of the image, applying the ant to each
channel, and then we will apply the rules. We have adapted the rules since each channel
has 256 possible values in each cell instead of 2 states as in the original version of Langton’s
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ant: (i) If the ant is at an even pixel it will move as if it were a turned OFF cell, (ii) if the
pixel is odd it will move as if it were a turned ON cell. To change the state of the current
pixel 47 will be added to the value of the pixel, thus changing it’s parity. If the result of the
sum is greater than 256, the modulo 256 of the result is taken. When the ant has already
walked through the three channels, we put them together to form the encrypted image.
To decrypt the image, we separate the channels, let the ant walk from the final coordinates
it had during the encryption on each channel, rotated 180 degrees, and taking the same
number of steps, and put the channels together.

In Figure 6, we show the result of encrypting the Lena image with different amounts
of steps. These examples show the ant’s main problem: it requires a large number of steps
to reach all the pixels in the image. The larger the image, the more steps it will need.

(a) (b)

(c) (d)

Figure 6. Examples of Lanton’s ant. (a) Input RGB image. (b) Result after 100,000 steps. (c) Result
after 300,000 steps. (d) Result after 1,500,000 steps.

It is possible for the ant to enter a highway-like pattern under certain conditions in
the initial image, but in any other case the ant will be able to chaotically move an almost
arbitrary number of steps.

In this proposal, we will use the ant by dividing the image into four sections (upper
left, upper right, lower left, and lower right), repeat these divisions on the resulting sections
a p amount of times giving us 4p sections. If the number of pixels of the image is not suitable
for dividing it perfectly into those sections, the dimensions of the sections are rounded.
Then, we give a starting coordinate for the ant (looking up) and we let it walk some amount
of steps on all the sections and on all of their channels. For simplicity we will consider that
the ant always takes 100 steps. Even though the starting coordinate will be the same for all
sections, given the chaotic movement of the ant they will have different final coordinates
and orientations. We save those coordinates and orientations as our decryption key.

2.5. Deterministic Noise

Both the Jigsaw transform and spatial cyclic permutation do not modify the image’s
histogram since they only modify the position of the pixels. On the other hand, Langton’s
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ant does not completely modify all the pixels because it would have to take a large number
of steps. Therefore, to successfully hide the histogram, a possible solution is to add deter-
ministic noise to the image. To achieve this, we design a function that, from three natural
numbers, generates pseudo-random natural numbers that will be added to the image.

The details of how the deterministic noise works are the following: given an RGB
image A and the RGB image B that will be its version with noise, and given the parameters
p1, p2, p3, one for each color band, we can calculate the noise that will be added to row i.
We multiply the three parameters by i and get the variables z1, z2, z3 respectively. Next,
given the jth element of the row of the image A we can calculate B(i, j, 1), B(i, j, 2), and
B(i, j, 3) as is shown in Equations (3)–(5):

B(i, j, 1) = mod
(

A(i, j, 1) +
⌊

z1 ∗ i + j
z2 + z3

⌋
, 256

)
, (3)

B(i, j, 2) = mod
(

A(i, j, 2) +
⌊

z2 ∗ i + j
z1 + z3

⌋
, 256

)
and (4)

B(i, j, 3) = mod
(

A(i, j, 3) +
⌊

z3 ∗ i + j
z2 + z1

⌋
, 256

)
. (5)

Since each color channel is an 8-bit image, the resulting value must be between 0
and 255, hence why modulo 256 is used. Next, we will modify the values of z1, z2, and
z3 by calculating first some auxiliary variables q1, q2, q3 that will be defined as is given in
Equations (6)–(8):

q1 = mod
(⌊

z1 ∗ i + j
z2 + z3 + 1

⌋
, 256

)
, (6)

q2 = mod
(⌊

z2 ∗ i + j
z1 + z3 + 1

⌋
, 256

)
and (7)

q3 = mod
(⌊

z3 ∗ i + j
z2 + z1 + 1

⌋
, 256

)
. (8)

Then we can recalculate z1, z2, and z3 as observed in Equation (9):

zτ = mod(qτ + z′τ , 256) + 1, (9)

where τ = 1, 2, 3 and z′τ is the previous value of zτ .
While we are in row i we continue this process until we have to change to the next

row, when this happens we use p1, p2, and p3 again to calculate z1, z2, and z3, and continue
with the process. In Figure 7 shows the result of applying this deterministic noise to a black
RGB picture. It can be seen that, while the picture is clearly affected, there are some areas
where the noise does not distort the image completely. The noise seems to work better after
the first 300 rows and before 120 columns. Therefore we modified the noise to add 300 to i
if its value is less than 300 and to recalculate z1, z2, and z3 using the parameters p1, p2, and
p3 multiplied by i. The result of this modified noise applied to a black image can be seen in
Figure 8.

It should be noted that when we are on a determined row, the first time we recalculate
the values of z1, z2, and z3 we get three numbers in the interval [1, 256], and these values
determine every next value for the row, which means that after the first pixel of noise has
been calculated for the row, there are 2563 possible rows that could follow. It should also
be noticed that if a set of parameters p1, p2, and p3 generates a set of z1, z2, and z3 for a row,
and another set of parameters p′1, p′2, and p′3 generates a the same set of z1, z2, and k3 for the
same row, the variables for the next row could still be different sets. In other words, if we
use some parameters and calculate the values for a row, the values for the next rows are not
determined by those values. One example is shown in Figure 9 where our deterministic
noise is applied two times to a black picture using a different set of parameters p1, p2, and
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p3 in a way that the first row of both results is identical (except obviously for the first
element of the row) and the other rows are different.

(a) (b)

Figure 7. The result of the first version of the deterministic noise. (a) Black image. (b) Deterministic
noise added to (a).

(a) (b)

Figure 8. The result of the second version of the deterministic noise. (a) Black image. (b) Determinis-
tic noise added to (a).

(a) (b)

Figure 9. Zoom on the first 10 rows and 11 columns of a black picture with deterministic noise added.
(a) Using the parameters p1 = 65, p2 = 31, and p3 = 18. (b) Using the parameters p1 = 210, p2 = 133,
and p3 = 97.

To remove this deterministic noise to image B added with the parameters p1, p2, and
p3 we do the exact same algorithm but replace Equations (3)–(5) with Equations (10)–(12)
respectively:
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A(i, j, 1) = mod
(

B(i, j, 1)−
⌊

z1 ∗ i + j
z2 + z3

⌋
, 256

)
. (10)

A(i, j, 2) = mod
(

B(i, j, 2)−
⌊

z2 ∗ i + j
z1 + z3

⌋
, 256

)
. (11)

A(i, j, 3) = mod
(

B(i, j, 3)−
⌊

z3 ∗ i + j
z2 + z1

⌋
, 256

)
. (12)

2.6. Encryption Algorithm

Our encryption algorithm uses the previously defined algorithms of the Jigsaw trans-
form, cyclic permutation, Langton’s ant and deterministic noise. It can be divided into six
steps, as illustrated in Figure 10. The first step is to use the Jigsaw transform (Section 2.2) to
scramble the image and hide its visual information. The second step is to add the determin-
istic noise defined in Section 2.5, hiding most of the histogram of the image. The parameters
used to add this noise will be determined by the picture as it will be detailed later. This
noise leaves some sections of the image almost unaltered, which could give slight hints
of the original colors of the picture. That is why it is needed to re-scramble the image to
add more noise. The third step then is to use cyclic permutation, described in Section 2.3,
on the image; and the fourth is to use another Jigsaw transform as a consequence of using
the cyclic permutation we scramble a different set of pixel blocks in this second Jigsaw
transform. The fifth step is to add more deterministic noise (using now parameters given
by the user). Finally, the sixth step is to use Langton’s ant (Section 2.4).

Figure 10. The six steps of the encryption algorithm.

The parameters p1, p2, and p3 used for the first deterministic noise on an X×Y RGB
image I(x, y, τ) are defined as is shown in Equation (13):

pτ = mod

(
X

∑
i=1

Y

∑
j=1

A(i, j, τ)(jX− X + i), XY

)
, (13)

where τ = 1, 2, 3.
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This algorithm guarantees that encrypting two images different only in the value of
one pixel will have very different results, since they will have a different deterministic
noise applied to them.

The parameters needed to decrypt the image are the block size used for JT, the original
index of each block of the first JT, the original index of each block of the second JT, the three
parameters used for the first deterministic noise, the three parameters used for the second
deterministic noise, the two parameters used for the cyclic permutation, and a key for each
one of the 4p ants used, each key containing the final coordinate of the ant and it’s previous
coordinate (to indicate orientation), for each of the three color channels.

2.7. Decryption Algorithm

The decryption algorithm uses the inverse function of all the algorithms used for
encrypting as illustrated in Figure 11. First, we use the final coordinates and orientations
of all the ants from step 6 and we apply Langton’s ant to all the sections of the image using
those parameters with the ant rotated 180 degrees before. Next, we use the inverse of
the deterministic noise using the same parameters that were used for adding the noise.
We then perform the inverse of the Jigsaw transform of step 4, the inverse of the cyclic
permutation of step 3, the inverse of the deterministic noise of step 2, and finally the inverse
of the Jigsaw transform of step 1.

Figure 11. The six steps of the decryption algorithm.

3. Results

This section presents the results of the proposed hybrid encryption system on high-
resolution fundus photographs. We divided it into six stages: Section 3.1 shows some
results of the encryption/decryption system for both healthy and non-healthy patients,
whilst Section 3.2 presents a statistical analysis between the encrypted and original image,
including visual comparison of histograms and the correlation calculation of neighboring
pixels, Section 3.3 shows an entropy analysis of the encrypted image, Section 3.4 defines
the keyspace universe of the proposed system, Section 3.5 presents a differential attack
testing, and finally, Section 3.6 shows a key sensitivity studying.

The encryption and decryption results were obtained on a PC AMD Ryzen 5 3500U
running at 21,000 MHz with 12 GB of RAM. The algorithm of encryption has a time-
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consuming of 152.58 s and 167.24 s for the decryption algorithm using a fundus photograph
of 4224× 3616 over eight cores using parallel computing. For smaller images, the calcula-
tion time is considerably reduced, thus using the same equipment and a 512× 512 image,
subdividing it into 46 sections for Langton’s ant, it takes 1.8694 s to encrypt and 1.8496
to decrypt. When a 256× 256 image is subdivided into 45 sections, it takes 0.5153 s to
encrypt and 0.5171 to decrypt. The number of subsections for Langton’s ant was chosen to
get subsections of a similar dimension to the size of the subsections used for the fundus
pictures (around 64 pixels).

3.1. Encryption Results

In this section, we show some results of the proposed encryption scheme. For this,
we encrypted 2 images, image number 6 from the healthy patients and image number 15
from the sick subset. We used subsections of 16× 16 for the Jigsaw transform, a cyclic
permutation of 2005 columns and 2007 rows, 49 sections for Langton’s ant (placing the ants
of the red channels on the first row and second column, the ants of the green channels on
the second row and second column, and the ants of the blue channels on the third row
and second column) and p1 = 530, 530, p2 = 120, 120, p3 = 350, 350 as the parameters
for the second deterministic noise. The results obtained are shown in Figures 12 and 13,
respectively.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 12. Results of the encryption algorithm applied to image 6 from the healthy patients.
(a) Original image. (b) First step: Jigsaw transform. (c) Second step: deterministic noise. (d) Third
step: cyclic permutation. (e) Fourth step: Jigsaw transform. (f) Fifth step: deterministic noise.
(g) Sixth step: Langton’s ant.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 13. Results of the encryption algorithm applied to image 15 from the sick patients. (a) Original
image. (b) First step: Jigsaw transform. (c) Second step: deterministic noise. (d) Third step: cyclic
permutation. (e) Fourth step: Jigsaw transform. (f) Fifth step: deterministic noise. (g) Sixth step:
Langton’s ant.

It is necessary to say that the Root Mean Square Error (RMSE) between the decrypted
and the original images is zero in all cases, showing that the encryption/decryption process
is fully reversible when the security key is known.

3.2. Statistical Analysis

This section presents a statistical analysis of the results of the proposed encryption
method. First, we show the histograms of each channel before and after the encryption
process, both of original and encrypted image, allowing us visually comparing the global
decorrelation between the intensity levels. Second, we analyze the correlation of neighbor-
ing pixels to evaluate the grade of local dependence of pixels in the encrypted image.

3.2.1. Histogram Comparison

Due to the nature of the fundus images, both for healthy and non-healthy patients,
where the tone and saturation change drastically in each one of them (see Figure 1), It is
necessary to carry out a visual comparison between the histograms before and after the
encryption process. For this purpose, we used image number 6 from healthy patients
and image number 15 from sick patients, which have different histograms, allowing us
to qualitatively evaluate the flatness of the resulting histograms concerning the original
ones. In this way, in Figures 14 and 15 we show the set of histograms before and after the
encryption process for the healthy patient and non-healthy patient, respectively.
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Figure 14. Histograms of image number 6 (healthy patient). (a) Original image, red channel.
(b) Original image, green channel. (c) Original image, blue channel. (d) Encrypted image, red
channel. (e) Encrypted image, green channel. (f) Encrypted image, blue channel.

0

0.5

1

1.5

2

2.5

3

10
5

0 50 100 150 200 250

0

1

2

3

10
5

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

10
5

0 50 100 150 200 250

(a) (b) (c)

0

5

10

10
4

0 50 100 150 200 250

0

5

10

10
4

0 50 100 150 200 250

0

5

10

10
4

0 50 100 150 200 250

(d) (e) (f)

Figure 15. Histograms of image number 15 (sick patient). (a) Original image, red channel. (b) Orig-
inal image, green channel. (c) Original image, blue channel. (d) Encrypted image, red channel.
(e) Encrypted image, green channel. (f) Encrypted image, blue channel.

3.2.2. Correlation Distributions

The histogram flatness analysis presented in Section 3.2.1 only shows the global
decorrelation level of the intensify levels in each channel in the encrypted image, however,
it is also necessary to assess the degree of intensity local dependence of neighboring pixels.
The above can be measured by computing the correlation of adjacent pixels in some spatial
direction. To calculate a correlation distribution of each channel, we made a plot showing
the intensity level of 1000 random pixels against their corresponding adjacent pixels in the
vertical direction. In Figures 16 and 17 we show the correlation distributions for each of
the color channels of image number 6, image number 15, respectively.

3.3. Entropy Analysis

Entropy is a scientific concept commonly used to measure a state of disorder, ran-
domness, or uncertainty. In the case of an image encryption algorithm, it could give us
information about the randomness of the pixels of the resulting image.

Thus, the entropy Hq of an information source q is defined as is given in Equation (14):

Hq =
R−1

∑
i=0

p(qi) log2
1

p(qi)
, (14)

where R is the number of symbols qi of q and p(qi) is the probability of occurrence of the
symbol qi. Thus, from Equation (14), the entropy for 256 equiprobable symbols correspond-
ing to an image of 8 bits per channel or 256 intensity levels, is 8.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Correlation distributions of image number 6 (healthy patient). (a) Original image, red
channel. (b) Original image, green channel. (c) Original image, blue channel. (d) Encrypted image,
red channel. (e) Encrypted image, green channel. (f) Encrypted image, blue channel.

(a) (b) (c)

(d) (e) (f)

Figure 17. Correlation distributions of image number 15 (sick patient). (a) Original image, red
channel. (b) Original image, green channel. (c) Original image, blue channel. (d) Encrypted image,
red channel. (e) Encrypted image, green channel. (f) Encrypted image, blue channel.

For our algorithm applied in image number 6 (healthy patient) the average entropy for
its three channels was of 7.999988 and for image number 15 (sick patient) it was 7.999989.

3.4. Keyspace

The keyspace is defined as the universe of every possible combination of the security
keys used to encrypt an image.

For the Jigsaw transform dividing the image into M subsections, there are M! possible
JT permutations, for example for M = 64 subsections we obtain 64! = 1.2689× 1089
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possible ways to decrypt the image. Thus, the keyspace for the Jigsaw transform is given
by KJ = M!.

Regarding the deterministic noise, which is determined given the parameters p1, p2, p3,
one for each color band, and added to row i, the keyspace KN is unknown but larger
than 2563.

For the cyclic permutation, the keyspace for a X×Y image is given by KP = XY.
In the case of Langton’s ant, the image is divide into four regions: upper left, upper

right, lower left, and lower right. Each section is then divided into four sections again.
If we repeat the process p times, we will obtain 4p regions. Then, an ant in each region,
starting in a coordinate given, walks 100 steps, and it stops; the final set of coordinates will
be saved and will be our decryption key. Therefore, the keyspace for a image divided in 4p

sections would be given by Equation (15):

4p

∏
i=1

Di, (15)

where Di is the keyspace for the section i. Since Di is composed of three color channels
and the keyspace of each channel is determined by the final position and orientation of
the ant, for a section with dimensions m× n, Di = (4mn)3. For simplicity we consider the
case where all sections have the same dimensions. Therefore if our complete image has
dimensions X×Y and is divided into 4p sections, then the dimension m× n of a section
would be determined as given by Equations (16) and (17):

m =

⌊
X
2p

⌋
and (16)

n =

⌊
Y
2p

⌋
. (17)

Then, they keyspace for Langton’s ant (KL) of the image is given by Equation (18):

KL =
4p

∏
i=1

(
4
⌊

M
2p

⌋⌊
N
2p

⌋)3
=

(
4
⌊

M
2p

⌋⌊
N
2p

⌋)3∗4p

. (18)

Therefore, the keyspace K for a X×Y RGB image is given by Equation (19):

K = K2
J K2

NKPKL. (19)

Then if our image is divided into M sections of k1× k2 pixels for the Jigsaw transforms,
and divided in 4p sections for Langton’s ant, the final keyspace is shown in Equation (20):

K >

(
XY
k1k2

!
)2

(2566)(XY)
(

4
⌊

X
2p

⌋⌊
Y
2p

⌋)3∗4p

. (20)

For example, if we use a 4224× 3616 RGB picture and divide it in sections of 16× 16
for the Jigsaw transform and into 49 sections for Langton’s ant, then K > 1× 101134190.38.
Since this number was too big to be calculated with a calculator, we instead calculated the
logarithm base 10 of the keyspace, which can be obtained by using the logarithm base 10 of
the variables involved and the laws of logarithms and exponents, once we get the result
we raise 10 to the number obtained to get the keyspace.

3.5. Differential Attack

The metrics of the number of pixels change rate (NPCR) and the unified average
changing intensity (UACI) are commonly used to test how strong is an encryption system
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against a differential attack [12]. Given a single-band image A(x, y) and a single-band
image B(x, y) both of size X×Y, the NPCR is calculated using Equation (21):

NPCR =
∑X

x=1 ∑Y
y=1 D(x, y)

X×Y
× 100, (21)

where

D(x, y) =

{
0 if A(x, y)− B(x, y) = 0
1 in any other case.

(22)

Meanwhile, UACI is calculated using Equation (23):

UACI =
∑X

x=1 ∑Y
y=1|A(x, y)− B(x, y)|

255(X×Y)
× 100. (23)

If two similar images are encrypted and their NPCR is close to 100% and the UACI
is close to 33% the metrics will confirm that a small change in the initial picture lead to a
considerable change in the encrypted picture [12].

To use these metrics we take an RGB picture called A(x, y, 3), we chose a pixel ran-
domly, modify the pixel and save the result as B(x, y, 3). Then we encrypt both A(x, y, 3)
and B(x, y, 3) with the same encryption key and compare the results with NPCR and UACI,
taking the average results of the three color channels.

We made a hundred for each of the 20 images shown in Figure 1 with the same
parameters used in Section 3. Table 1 shows the results for the complete dataset both for
healthy (H) and non-healthy (NH) patients.

Table 1. Results for NPCR and UACI values both for healthy (H) and non-healthy (NH) patients.

NPCR (%) UACI (%)
Image Set Min Max Mean Min Max Mean

1 HP 99.575 99.584 99.579 33.433 33.464 33.449
2 HP 99.575 99.584 99.580 33.429 33.465 33.448
3 HP 99.576 99.587 99.581 33.432 33.462 33.450
4 HP 99.574 99.584 99.580 33.437 33.465 33.450
5 HP 99.574 99.585 99.580 33.423 33.457 33.443
6 HP 99.575 99.585 99.580 33.431 33.460 33.444
7 HP 99.575 99.584 99.580 33.424 33.462 33.446
8 HP 99.574 99.587 99.580 33.426 33.467 33.447
9 HP 99.574 99.583 99.579 33.430 33.462 33.450
10 HP 99.575 99.586 99.580 33.426 33.460 33.443
11 NHP 99.573 99.584 99.579 33.416 33.462 33.447
12 NHP 99.574 99.584 99.580 33.424 33.464 33.446
13 NHP 99.575 99.585 99.579 33.429 33.468 33.447
14 NHP 99.576 99.585 99.580 33.421 33.464 33.446
15 NHP 99.574 99.586 99.580 33.418 33.462 33.445
16 NHP 99.574 99.586 99.581 33.421 33.461 33.445
17 NHP 99.575 99.585 99.579 33.426 33.467 33.449
18 NHP 99.576 99.589 99.581 33.427 33.467 33.448
19 NHP 99.575 99.583 99.579 33.429 33.464 33.450
20 NHP 99.533 99.582 99.578 33.416 33.467 33.447

MEAN 99.5726 99.5849 99.5796 33.426 33.4635 33.4469
± STD 0.009355 0.00162 0.000675 0.0056 0.00289 0.002298
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3.6. Key Sensitivity

To analyze the key sensitivity we encrypted image number 15 (sick patient) with the
same parameters used in previous sections and then decrypted them with a slight change
in the decryption key. Then, we compare the resulting image with the original image and
measure their NPCR (taking the average NPCR of the three color channels).

When we use the wrong key for the first Jigsaw transform, we get an NPCR of
97.9205%. Using the wrong key for the first deterministic noise (increasing one of the
parameters by one) we get 98.2366%. Permuting one extra column in the cyclic permutation
gives 99.2293%. Using the wrong key for the second Jigsaw transform gives us 99.6065%.
For the second deterministic noise we get 98.2941%. Using the wrong starting positions for
the ants of the last step gives us 75.5331%. The resulting images can be seen in Figure 18.

(a) (b) (c)

(d) (e) (f)

Figure 18. Correlation distributions of image number 15 (sick patient). (a) Wrong key for the
first Jigsaw transform. (b) Wrong key for the first deterministic noise. (c) Wrong key for the
cyclic permutation. (d) Wrong key for the second Jigsaw transform. (e) Wrong key for the second
deterministic noise. (f) Wrong key for Langton’s ant.

4. Discussion

In Section 3.2.1, we calculate and show the histogram from a healthy and non-healthy
patient (Figures 14 and 15), where we can see that the corresponding encrypted histograms
are flat in all cases, showing no similarity with the original histograms, and also, the result-
ing histogram of the healthy patient is indistinguishable from the one of the sick patient,
making it impossible to know the condition of the person that the picture belongs to.

Regarding correlation distributions both original and encrypted images (Section 3.2.2),
in Figures 16 and 17 we show that the correlation distributions for the original images
shows a strong correlation between the adjacent pixels in the vertical directions (linear
behavior), while the encrypted images show a weak correlation (random behavior). Similar
results were obtained for other directions and for other images.

In Section 3.3, we calculated the entropy for a healthy patient obtaining an aver-
age for its three channels of 7.999988, while for a non-healthy patient, it was 7.999989.
From Equation (14), for an 8-bit gray level image with 256 equiprobable symbols, the ideal
entropy value would be 8. The entropy values obtained show that the proposed encryp-
tion method generates images close to a random distribution with a uniform probability
density function.

From Table 1, we can see that the mean NPCR obtained was 99.5796%± 0.000674,
with values mean from 99.5726%± 0.00935 to 99.5849%± 0.00161. If we separate the pa-
tients into healthy and non-healthy, we obtained a mean NPCR value of 99.5796%± 0.000489
for healthy patients and 99.5796%± 0.000849 for non-healthy patients. Concerning the
UACI value, from Table 1 we obtained a mean value of 33.4469%± 0.00229, with min-
imum and maximum values varying from 33.4259% ± 0.00564 to 33.4635% ± 0.00289.
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In addition, the UACI mean values were 33.4470%± 0.00291 for healthy patients and
33.4468%± 0.00162 for non-healthy patients.

Both for healthy and non-healthy patients, the NPCR and UACI values show that the
proposed encryption approach equally hides the visual information of fundus photographs
regardless of patient condition and indicating that the encrypted image is resistant to
differential attacks.

In addition, the key sensitivity analysis presented in Section 3.6 shows that if we
perform a small change in the key and we vary the part of the key attacked, the original
image is not decrypted.

To compare our proposal, we have selected four related works based on nonlinear
chaotic models. Where two proposals present general approaches, and two are focused on
protecting medical images. Within the first methods, Stoyanov and Kordov [12] proposed a
chaos-based image encryption scheme that uses a multiple round substitution-permutation
model, which uses rotation equations and a Chebyshev map as pseudo-random bit genera-
tors, where the images used were selected from the Miscellaneous volume of the USC-SIPI
image database [54]. Second, Vilardy et al. [9] presented an encryption approach using
the Jigsaw transform and the iterative cosine transform over a finite field, the authors
used the standard images: a woman wearing a hat, mandrill, peppers, and bridge. On the
other hand, concerning the medical images cryptography methods, Moafimadani et al. [32]
proposed a two-stage encryption algorithm: (i) a permutation process using the SHA-256
function and shift array circularly rule, and (ii) an adaptive diffusion. They used their
RGB images acquired using the Medipix3RX chip technology, a device used today in
spectroscopic imaging systems. While Javan et al. [33] defined an encryption method
based on multi-mode synchronization of Chen hyper-chaotic systems applied to medical
images, the authors used both standard benchmark images and their X-ray and CT images
of COVID-19 patients, but they only reported the entropy values and the NPCR and UACI
metrics for the CT image dataset. To show the differences of the datasets of each work,
in Table 2 we show the imaging modality, the number of images, the color composition
(RBG or grayscale), and the image sizes in pixels (px) of each image dataset used by the
authors to be compared. We have divided the image dataset information of Table 2 into two
groups. In the first group (first three rows), we include the image dataset corresponding
to grayscale images, whilst in the second group (last three rows), we list the RGB image
datasets. Comparing the characteristics of all image datasets, we can see that the dataset
used by [12] contains the larger grayscale images, while our proposal corresponds to the
highest resolution RGB images.

In Table 3, we compared our proposal with the works shown in Table 2. As evaluation
metrics, we show the average entropy and the averages of the number of pixels change
rate (NPCR), and the unified average changing intensity (UACI). In those cases where
the authors did not report these averages, we calculate them using the published results.
Although the image sizes are not the same, the metrics used do not depend on the size.
Thus, entropy directly depends on the level of randomness of the pixels, and the NPCR
and UACI metrics are normalized metrics by the image size. In addition, we show the
keyspace domain for each method.

Table 2. Main modalities and differences of the image datasets used by the authors to be compared.

Method, Year Number, Modality Size (px)

[12], 2015 28, grayscale (natural) 256× 256 (6), 512× 512 (19)
1024× 1024 (3)

[9], 2019 4, grayscale (natural) 512× 512
[33], 2021 10, grayscale (CT) 300× 300

[12], 2015 16, RGB (natural) 256× 256 (8), 512× 512 (8)
[32], 2019 4, RGB (spectroscopy) 256× 256
Proposal, 2021 20, RGB (fundus images) 4224× 3616
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Table 3. Average values results of entropy, NPCR, UACI, and the keyspace domain for the proposed
method and the four comparison methods.

Method Entropy NPCR (%) UACI (%) keyspace

[12] (grayscale) 7.99769 99.6002 33.5334 2298

[9] (grayscale) 7.99860 99.6150 33.4900 (64!)2(25664) ,
[33] (grayscale) 4.99529 99.6104 33.4609 not given

[12] (RGB) 7.99759 not given not given 2298

[32] (RGB) 7.99957 99.6147 33.4901 (1056)(2128)
Proposed (RGB) 7.99998 99.5796 33.4469 > 1 × 101,134,190.38

From Table 2, we can see that the proposal of [12] has a dataset with more images, both
grayscale and RGB. However, our proposed method has a comparable number of images,
and it has the highest spatial resolution. On the other hand, from Table 3, we observe that
our proposal obtains the best entropy value. Regarding the NPCR and UACI percentages,
the methods of [9,12] are the best proposals, respectively, but the NPCR and UAIC values
that we obtained are comparable with them. Finally, our proposal is the safest proposal,
being the largest keyspace of all.

Finally, Table 4 shows a comparison of the encryption time for the works of Tables 2 and 3,
where does not exist a consensus regarding the size of the image, the architecture, and the
platform used to report the encryption time. Additionally, only [9] and the present work
report the computer architecture, the platform, image size, and the encryption time, but for
a 1024× 1024 grayscale image in [9] and for 512× 512 and 256× 256 RGB images in our
case. Hence it is not possible to draw conclusions concerning the fastest method.

Table 4. Encryption computation time comparisons.

Method Architecture Platform Size Image (px) Time (ms)

[12] 2.40 GHz Intel Core i7 not given 512× 512 95
[9] 2.70 GHz Intel Core i7 Matlab 1024× 1024 487

[33] not given not given 300× 300 not given

[12] 2.40 GHz Intel Core i7 not given 512× 512× 3 290
[32] 3.4GHz Intel Core i7 Matlab 256× 256× 3 not given
Proposed 2.1 GHz AMD Ryzen 5 Matlab 512× 512× 3 1869
Proposed 2.1 GHz AMD Ryzen 5 Matlab 256× 256× 3 515.3

5. Conclusions

In this paper, we present a new image encryption and decryption algorithm. We use
Langton’s ant, the Jigsaw transform, and a novel deterministic noise method. Moreover,
as a case of study, we applied this proposal to high-resolution retinal fundus images.
The Jigsaw transform allowed hides the visual information of a picture effectively, whereas
that Langton’s ant process leads to a very secure and reliable approach. The proposed
method is fully reversible, giving identical images (RMS equals zero) in the encryption-
decryption process when the encryption key is known. In a particular way, the proposed
encryption and decryption method has no problem working with big pictures.

Besides, to our knowledge, this is the first time that the Langton’s ant and the Jigsaw
transform have been used to encrypt fundus images efficiently and securely. On the other
hand, by examining our results and comparing them with other methods, we observed that
our proposal overcomes those methods concerning several and critical factors, for example,
the high-resolution images handled, the entropy values and the keyspace obtained, while
its performance is comparable with these methods in other metrics as uniformity of the
histogram, the correlation distributions, and the NPCR and UACI values.
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The analysis of the algorithm showed that it is resistant to statistical analysis tech-
niques and that the encrypted images of sick and healthy patients are indistinguishable.
A considerable advantage of our proposal is the keyspace domain, which is very large,
and it far exceeds other techniques making this method extremely secure. On the other
hand, according to the results of Section 3.6, Langton’s ant could be the weakest part of the
algorithm, but the original image is not decrypted, and only a diffuse figure is obtained.
To overcome this, we can increase the number of steps the ant gives, which results in the key
sensitivity could improve significantly. Further research is required for our design of the
deterministic noise, to calculate its exact keyspace, analyze its weaknesses and strengths,
especially because it proved to be one of the strongest parts of the algorithm.

Since this algorithm is the first time Langton’s ant has been used directly on the pixels
of the image to modify their value, time efficiency was not taken into consideration when
writing the code. We hope this new approach can inspire more research on this method to
make it more efficient or to explore similar ideas.
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AES Advanced Encryption Standard
AT Arnold Transform
CP Cyclic Permutation
CT Computer Tomography
DCT Discrete Cosine Transform
DES Data Encryption Standard
DNA Deoxyribose Nucleic Acid
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DWT Discrete Wavelet Transform
HP Healthy Patients
JT Jigsaw Transform
LA Langton’s Ant
mHES Modified High-Efficiency Scrambling
MSB Most Significant Bit
mSPDO Simultaneous Permutation and Diffusion Operation
NHP Non-Healthy Patients
NPCR Number of Pixels Change Rate
PWLCM Piecewise Linear Chaotic Map
RMSE Root Mean Square Error
ROI Region of Interest
RSA Rivest–Shamir–Adleman
S-box Substitution Box
ToCC Tangent over Cosine Cosine
UACI Unified Average Changing Intensity
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