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Abstract: A quasiperiod of a finite or infinite string is a word whose occurrences cover every part
of the string. An infinite string is referred to as quasiperiodic if it has a quasiperiod. We present
a characterisation of the set of infinite strings having a certain word q as quasiperiod via a finite
language Pq consisting of prefixes of the quasiperiod q. It turns out its star root ∗

√
Pq is a suffix code

having a bounded delay of decipherability. This allows us to calculate the maximal subword (or
factor) complexity of quasiperiodic infinite strings having quasiperiod q and further to derive that
maximally complex quasiperiodic infinite strings have quasiperiods aba or aabaa. It is shown that,
for every length l ≥ 3, a word of the form anban (or anbban if l is even) generates the most complex
infinite string having this word as quasiperiod. We give the exact ordering of the lengths l with
respect to the achievable complexity among all words of length l.
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1. Introduction

In his tutorials [1–3] Solomon Marcus dealt with several properties of infinite words.
Among them he considered quasiperiodicity and its influence on measures of symmetry
like complexity, recurrence or entropy. One topic of interest was their subword complexity
(or factor complexity [4]). Besides the asymptotic behaviour of the factor complexity, also
known as their topological entropy ([4], Section 4.2.2) or [5] Marcus was also interested in
the behaviour of the complexity function f (ξ, n) assigning to a natural number n ∈ N the
number of subwords of the infinite word (ω-word) ξ. Here he was also concerned with
recurrences in ω-words and their influence to subword complexity. A well-known fact
established by Grillenberger is that the asymptotic subword complexity (or topological
entropy) of an almost periodic (or uniformly recurrent) ω-word can be arbitrarily close
(but not equal) to the maximal subword complexity (see [4], Theorem 4.4.4).

The present paper summarises results on the subword complexity of infinite words
obtained in [6–8]. We study in detail the structure of the set of infinite words having a
certain word q as quasiperiod and how this is connected with the set of finite words with
the same quasiperiod. Moreover, we address a question raised in [9] about the maximally
achievable subword complexity of a quasiperiodic infinite word.

A first result shows that for every word q there is a value λq, 1 ≤ λq < 2, such that,
for every infinite word ξ with quasiperiod q, the complexity function f (ξ, n) is bounded
by O(1) · λn

q , and this bound is achieved for certain infinite words having quasiperiod
q. The maximally possible value for λq is λq = tP ≈ 1.324718, where tP is the smallest
Pisot-Vijayaraghavan number, that is, the unique real root tP of the cubic polynomial
x3 − x− 1.

As a generalisation of the above-mentioned questions [2,9] we estimate, for every
length n ≥ 3, the values λn = max{λq : |q| = n}, their ordering and the words q, |q| = n,
for which λq = λn. It appears that a two letter alphabet is sufficient for achieving the
maximal complexity λn.
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In order to prove these properties we start with a general investigation of quasiperiod-
icity of words (as e.g., in [10–12]) and infinite words.

The paper is organised as follows. After introducing some notation we derive in
Section 3 a characterisation of quasiperiodic words and ω-words having a certain
quasiperiod q. Moreover, we use the finite basis sets Pq and its dual Rq (L(q) and R(q)
in [12]) from which the sets of quasiperiodic words or ω-words having quasiperiod q can
be constructed. In Section 4 it is then proved that the star root of Pq is a suffix code having
a bounded delay of decipherability and, dually, the star root of Rq is a prefix code.

This much prerequisites allow us, in Section 5, to estimate the number of subwords
of the language Qq of all quasiperiodic words having quasiperiod q. It turns out that
cq,1 · λn

q ≤ f (Qq, n) ≤ cq,2 · λn
q where f (Qq, n) is the number of subwords of length n

of words in Qq and 1 ≤ λq ≤ tP depends on q. We construct, for every quasiperiod
q, a quasiperiodic ω-word ξq with quasiperiod q whose subword complexity f (ξq, n)
is maximal.

The values λq turn out to be maximal positive roots of polynomials associated with
the star root ∗

√
Pq. Section 6 deals with the properties of those polynomials. This allows to

compare the roots λq.
The following Sections 7 and 8 deal with the proof of the above mentioned results on

the values λq and λn = max{λq : |q| = n}. Here we derive also the complete ordering of
the values λn.

2. Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By N =
{0, 1, 2, . . .} we denote the set of natural numbers. Let X be an alphabet of cardinality
|X| = r ≥ 2, and let throughout the paper a, b ∈ X, a 6= b, be two different letters. By X∗

we denote the set of finite words on X, including the empty word e, and Xω is the set of
infinite strings (ω-words) over X. Subsets of X∗ will be referred to as languages and subsets
of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets L ⊆ X∗ and B ⊆ X∗ ∪ Xω . For a language L
let L∗ :=

⋃
i∈N Li, and by Lω := {w1 · · ·wi · · · : wi ∈ L \ {e}} we denote the set of infinite

strings formed by concatenating words in L. The smallest subset of a language L which
generates L∗ is called its star root ∗

√
L [13]. It holds

∗√L = (L \ {e}) \ (L \ {e})2 · L∗ .

Furthermore |w| is the length of the word w ∈ X∗ and pref(B) is the set of all finite
prefixes of the strings in B ⊆ X∗ ∪ Xω . We shall abbreviate w ∈ pref(η) (η ∈ X∗ ∪ Xω) by
w v η.

We denote by B/w := {η : w · η ∈ B} the left derivative of the set B ⊆ X∗ ∪ Xω. As
usual, a language L ⊆ X∗ is regular provided it is accepted by a finite automaton. An
equivalent condition is that its set of left derivatives {L/w : w ∈ X∗} is finite.

The sets of infixes of B or η are infix(B) :=
⋃

w∈X∗ pref(B/w) and infix(η) :=⋃
w∈X∗ pref({η}/w), respectively. In the sequel we assume the reader to be familiar with

basic facts of language theory.
We call a word w ∈ X∗ \ {e} primitive if w = vn implies n = 1, that is, w is not the

power of a shorter word, and we call w ∈ X∗ \ {e} overlap-free if none of its proper prefixes
is a suffix of w. The following facts are known (e.g., [14,15]).

Fact 1. Every word w ∈ X∗ \ {e} has a unique representation w = vn where v is primitive.

Fact 2. Let q, v, w ∈ X∗, 0 < |v| < |q|. If v · q = q · w then v = u · u′, q = (u · u′)κ · u and
w = u′ · u for some u, u′ ∈ X∗, u 6= e, and κ ∈ N. In particular, q is not overlap-free.

Fact 3. If w · v = v · w, w, v ∈ X∗ then w, v are powers of a common (primitive) word.
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As usual a language L ⊆ X∗ is called a code provided w1 · · ·wl = v1 · · · vk for
w1, . . . , wl , v1, . . . , vk ∈ L implies l = k and wi = vi. A code L is said to be a prefix
code (suffix code) provided no codeword is a prefix (suffix) of another codeword.

3. Quasiperiodicity
3.1. General Properties

The notion of quasiperiodicity can be formalised in the following manner. A finite
or infinite word η ∈ X∗ ∪ Xω is referred to as quasiperiodic with quasiperiod q ∈ X∗ \ {e}
provided that for every j < |η| ∈ N∪{∞} there is a prefix uj v η of length j− |q| < |uj| ≤ j
such that uj · q v η, that is, for every w v η the relation u|w| @ w v u|w| · q is valid.
Informally, η has quasiperiod q if every position of η occurs within some occurrence of q in
η [11,12].

Let for q ∈ X∗ \ {e}, Qq be the set of quasiperiodic words with quasiperiod q. Then
{q}∗ ⊆ Qq = Q∗q and Qq \ {e} ⊆ X∗ · q∩ q ·X∗. In order to describe the set of quasiperiodic
strings having a certain quasiperiod q ∈ X∗ \ {e} the following definition is helpful.

Definition 1. A family
(
wi
)`

i=1, ` ∈ N ∪ {∞}, of words wi ∈ X∗ · q is referred to as a q-chain
provided w1 = q, wi @ wi+1 and |wi+1| − |wi| ≤ |q|.

It holds the following.

Lemma 1.

1. w ∈ Qq \ {e} if and only if there is a q-chain
(
wi
)`

i=1 such that w` = w.
2. An ω-word ξ ∈ Xω is quasiperiodic with quasiperiod q if and only if there is a q-chain(

wi
)∞

i=1 such that wi @ ξ.

Proof. It suffices to show how a family
(
uj
)|η|−1

j=0 can be converted to a q-chain
(
wi
)`

i=1 and
vice versa.

Consider η ∈ X∗ ∪ Xω and let
(
uj
)|η|−1

j=0 be a family such that uj · q v η and j− |q| <
|uj| ≤ j for j < |η|.

Define w1 := q and wi+1 := u|wi | · q as long as |wi| < |η|. Then wi v η and |wi| <
|wi+1| = |u|wi | · q| ≤ |wi|+ |q|. Thus

(
wi
)`

i=1 is a q-chain with wi v η.

Conversely, let
(
wi
)`

i=1 be a q-chain such that wi v η and set

uj := maxv
{

w′ : ∃i(w′ · q = wi ∧ |w′| ≤ j)
}

, for j < |η| .

By definition, uj · q v η and |uj| ≤ j. Assume |uj| ≤ j− |q| and uj · q = wi. Then
|wi| ≤ j < |η|. Consequently, in the q-chain there is a successor wi+1, |wi+1| ≤ |wi|+ |q| ≤
j + |q|. Let wi+1 = w′′ · q. Then uj @ w′′ and |w′′| ≤ j which contradicts the maximality of
uj.

Lemma 1 yields the following consequences.

Corollary 1. Let u ∈ pref(Qq). Then there are words w, w′ ∈ Qq such that w v u v w′ and
|u| − |w|, |w′| − |u| ≤ |q|.

Corollary 2. Let ξ ∈ Xω. Then the following are equivalent.

1. ξ is quasiperiodic with quasiperiod q.
2. pref(ξ) ∩Qq is infinite.
3. pref(ξ) ⊆ pref(Qq).
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3.2. Finite Generators for Quasiperiodic Words

In this part we consider the finite languages Pq and Rq (L(q) andR(q) in [12]) which
generate the set of quasiperiodic words as well as the set of quasiperiodic ω-words having
quasiperiod q.

We set

Pq := {v : e @ v v q @ v · q} = {v : ∃v′(v′ @ q ∧ v · v′ = q)} . (1)

Then we have the following properties.

Proposition 1.

1. q ∈ Pq and Pq = {q} if and only if q is overlap-free.
2. Qq = P∗q · q ∪ {e} ⊆ P∗q
3. pref(Qq) = pref(P∗q ) = P∗q · pref(q)

Proof. 1. q ∈ Pq is obvious and and the equivalence follows immediately from the defini-
tion of Pq.

2. In order to prove Qq ⊆ P∗q · q ∪ {e} we show that wi ∈ P∗q · q for every q-chain(
wi
)`

i=1. This is certainly true for w1 = q. Now proceed by induction on i. Let wi =
w′i · q ∈ P∗q · q and wi+1 = w′i+1 · q. Then w′i · vi = w′i+1. Now from wi @ wi+1 we obtain
e @ vi v q @ vi · q, that is, vi ∈ Pq.

Conversely, let vi ∈ Pq and consider v1 · · · v` · q. Since q v vi · q the family (v1 · · · vj ·
q)`j=0 is a q-chain. This shows P∗q · q ∪ {e} ⊆ Qq.

3. is an immediate consequence of 2.

Proposition 1 and Corollary 2 imply the following characterisation of ω-words having
quasiperiod q.

{ξ : ξ ∈ Xω ∧ ξ has quasiperiod q} = Pω
q (2)

Proof. Since Pq is finite, Pω
q = {ξ : ξ ∈ Xω ∧ pref(ξ) ⊆ pref(P∗q )}.

A dual generator of Qq is obtained by the right-to-left duality of reading words using
the suffix relation ≤s instead of the prefix relation v.

Rq := {v : e <s v ≤s q <s q · v} = {v : ∃v′(v′ <s q ∧ v′ · v = q)} . (3)

Analogously to Proposition 1 we obtain

Proposition 2.

1. q ∈ Rq and Rq = {q} if and only if q is overlap-free.
2. Qq = q · R∗q ∪ {e} ⊆ R∗q , and
3. pref(Qq) = pref(q) ∪ q · pref(R∗q).

The proof of Items 1 and 2 is similar to the proof of Proposition 1 using the reversed
version of q-chain, and Item 3 then follows from Item 2. A slight difference appears with
an analogy to Equation (2).

{ξ : ξ ∈ Xω ∧ ξ has quasiperiod q} = q · Rω
q ⊆ Rω

q (4)

Here the last inclusion might be proper, e.g., for q = aba where Rω
aba = {ba, aba}ω 6=

aba · Rω
aba.

An alternative derivation of the languages Pq and Rq can be found in Definition 2
of [12]. Here the borders, that is, prefixes which are simultaneously suffixes of the
quasiperiod q, are used:
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Pq = {v : ∃w(w @ q ∧ w <s q ∧ q = v · w)} , and

Rq = {v : ∃w(w @ q ∧ w <s q ∧ q = w · v)} .

In the subsequent sections we focus on the investigation of Pq due to the left-to-right
direction of ω-words.

3.3. Combinatorial Properties of Pq

We investigate basic properties of Pq using simple facts from combinatorics on words
(see e.g., [14–16]).

Proposition 3. v ∈ Pq if and only if |v| ≤ |q| and there is a prefix v̄ @ v such that q = vk · v̄ for
k =

⌊
|q|/|v|

⌋
.

This is an immediate consequence of Fact 2.

Corollary 3. v ∈ Pq if and only if |v| ≤ |q| and there is a k′ ∈ N such that q v vk′ .

Now set q0 := minv Pq. Then in view of Proposition 3 and Corollary 3 we have the
following canonical representation.

q = qk
0 · q̄ where k =

⌊
|q|/|q0|

⌋
and q̄ @ q0 . (5)

We will refer to q0 as the repeated prefix and to k as the repetition factor. If |q0| > |q|/2,
that is, if k = 1 we will refer to q as irreducible. (Reducible words are also known as periodic
words [10,11].)

Corollary 4. Every word v ∈ ∗
√

Pq is primitive.

Proof. Assume v = vl
1 for some v ∈ ∗

√
Pq and l > 1. Then q v vk′ = vl·k′

1 , and, according
to Corollary 3 v1 ∈ Pq contradicting v ∈ ∗

√
Pq.

Proposition 4. Let q ∈ X∗, q 6= e, q0 = minv Pq, q = qk
0 · q̄ and v ∈ P∗q \ {e}.

1. If w v q then v · w v q or q v v · w.
2. If w · v v q then w ∈ {q0}∗.

Proof. From Proposition 1.2 we know v · q ∈ P∗q · q ⊆ Qq ⊆ q · X∗. Consequently, q v v · q.
Then v · w v v · q implies v · w v q or q v v · w according to whether |w · w| ≤ |q| or not.

Since q0 v v, it suffices to prove the second assertion for q0. First one observes that,
w v q and |w| ≤ |q| − |q0|. Thus w v qk−1

0 · q̄. Therefore, we have w · q0 v q and q0 ·w v q
which implies w · q0 = q0 · w and, according to Fact 3, w and q0 are powers of a common
word. The assertion follows because q0 is primitive.

Next we derive a lower bound on the lengths of words in Pq \ {q0}∗.
To this end, we use the Theorem of Fine and Wilf.

Theorem 1 ([17]). Let v, w ∈ X∗. Suppose vm and wn, for some m, n ∈ N, have a common
prefix of length |v|+ |w| − gcd (|v|, |w|). Then v and w are powers of a common word u ∈ X∗ of
length |u| = gcd (|v|, |w|). (Here gcd (k, l) denotes the greatest common divisor of two numbers
k, l ∈ N.)

Proposition 5. Let q ∈ X∗, q 6= e, q0 = minv Pq, q = qk
0 · q̄ and v ∈ Pq \ {q0}∗. Then

|v| > |q| − |q0|+ gcd (|v|, |q0|).
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Proof. If q0, v ∈ Pq Corollary 3 and Equation (5) imply that q is a common prefix of qk+1
0

and vk′ for some k′ ∈ N. If |v| ≤ |q| − |q0|+ gcd (|v|, |q0|) then by Theorem 1 q0 and v are
powers of a common word, that is, v is a power of the primitive word q0.

Corollary 5. ∗
√

Pq = Pq \ q2
0 · {q0}∗

Proof. It suffices to show Pq ∩ P2
q · P∗q ⊆ {q0}∗. To this end observe that in view of

Proposition 5 |v · v′| > |q| whenever v ∈ Pq \ {q0}∗ or v′ ∈ Pq \ {q0}∗.

As an immediate consequence we obtain that ∗
√

Pq = Pq if and only if q is an irre-
ducible quasiperiod. Moreover, Proposition 5 shows that

∗
√

Pq ⊆ {q0} ∪ {v′ : v′ v q ∧ |v′| > |q| − |q0|+ gcd (|v′|, |q0|)} . (6)

3.4. The Reduced Quasiperiod q̂

Next we investigate the relation between a quasiperiod q = qk
0 · q̄ where q0 = minv Pq

and q̄ @ q0 and its reduced quasiperiod q̂ := q0 · q̄. Since q ∈ Qq̂, we have Qq̂ ⊇ Qq.
We continue with a relation between Pq and Pq̂. It is obvious that qi

0 ∈ Pq for every
i = 1, . . . , k and Pq̂ ⊆ {v : q̂0 v v v q̂} . (7)

Lemma 2 ([7], Lemma 2.2). Let q ∈ X∗, q 6= e, q0 = minv Pq, q = qk
0 · q̄ and q̂ = q0 · q̄ the

reduced quasiperiod of q. Then

Pq = {qi
0 : i = 1, . . . , k− 1} ∪ {qk−1

0 · v : v ∈ Pq̂} .

Proof. Consider v ∈ Pq̂. Then v v q0q̄ @ v · q0q̄, and, consequently, qk−1
0 · v v qk

0 · q̄ @

qk−1
0 · v · q0q̄ @ qk−1

0 · v · qk
0 · q̄, that is, qk−1

0 · v ∈ Pq.
Conversely, let v′ ∈ Pq and v′ /∈ {qi

0 : i = 1, . . . , k− 1}. Then, according to Proposition 5
there is a unique v 6= e such that v′ = qk−1

0 · v. Now v′ = qk−1
0 · v v q = qk

0 · q̄ @ v′ · q =

qk−1
0 · v · qk

0 · q̄ implies v v q0 · q̄ @ v · qk
0 · q̄. Since |v| ≤ |q0 · q̄| and q0 · q̄ v qk

0 · q̄, we have
v v q0 · q̄ @ v · q0 · q̄.

Together with Corollary 5 this implies

Pq \ {q0}∗ = ∗
√

Pq \ {q0}∗ = qk−1
0 · (Pq̂ \ {q0}) . (8)

Moreover, we have the following.

Corollary 6. | ∗
√

Pq| = 1 if and only if q ∈ {q0}∗ and q0 is overlap-free.

Proof. Since q0 ∈ ∗
√

Pq, | ∗
√

Pq| = 1 is equivalent with ∗
√

Pq = {q0} or, according to
Equation (8), with Pq̂ = {q0}. This amounts to q̂ = q0 and, following Proposition 1.1 q̂ = q0
has to be overlap-free.

For the repeated prefix q̂0 of q̂ we have the obvious relation |q̂0| > |q̄|. In case q̂0 6= q0
we can improve this.

Lemma 3. Let q = qk
0 · q̄ with k ≥ 2, q̄ @ q0 and q̂ = q0 · q̄. If q̂0 6= q0 then

q̄ @ q̂0 @ q0 and |q̂0| > |q̄|+ gcd (|q0|, |q̂0|) ,

and there is a nonempty suffix v 6= e of q0 such that v @ q̂0 and v · q̄ @ q̂2
0.

Proof. We have q̄ v q0 and, since q0 ∈ Pq̂, also q̂0 v q0. Moreover, q̂ v q2
0 and q̂ v q̂k′

0 for some
k′ ∈ N. Since q0 6= q̂0 and both prefixes are primitive words, in view of Theorem 1 as a common
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prefix of q2
0 and q̂|q0|

0 the word q̂ = q0 · q̄ has to satisfy |q̂| < |q0|+ |q̂0| − gcd (|q0|, |q̂0|), that
is, |q̂0| > |q̄|+ gcd (|q0|, |q̂0|). The assertion q̄ @ q̂0 @ q0 now follows from a comparison of
the lengths of q̄, q̂0 v q0.

Now, let v be the suffix of q0 defined by q̂k′
0 · v = q0 @ q̂k′+1

0 . Then v @ q̂0 and
v · q̄ @ (q̂0)

2.

3.5. Primitivity and Superprimitivity

In this section we consider the inclusion relations between the languages Qq, q 6= e.
Analogously to the primitivity of words in [10–12] a word was referred to as superprimitive
if it is not covered by a shorter one. This leads to the following definition.

Definition 2 (superprimitive). A non-empty word q ∈ X∗ \ {e} is superprimitive if and only
if Qq is maximal w.r.t. “⊆” in the family {Qq : q ∈ X∗ \ {e}}.

The next proposition relates the irreducibility of quasiperiods to superprimitivity.

Proposition 6 ([12], Remark 4). If q ∈ X∗ \ {e} is superprimitive then |minv Pq| > |q|/2, and
if |minv Pq| > |q|/2 then q is primitive.

Proof. If q0 = minv Pq and |q0| ≤ |q|/2 then q = qk
0 · q̄ for some q̄ @ q0. Thus q ∈ Qq0 q̄ and

q0q̄ /∈ Qq.
As q = q′m with m > 1 implies |q0| ≤ |q′| ≤ |q|/2, the other assertion follows.

The converse of Proposition 6 is not valid.

Example 1. Let q = abaabaababaab. Then Pq = {abaabaab, abaabaababa, q}, and |minv Pq| =
8 > 13/2 but as abaabaababaab ∈ Qabaab the word q is not superprimitive.

The word q = ababa is primitive but q0 = ab has |q0| ≤ |q|/2.

In contrast to the fact that the word q0 = minv Pq is always primitive, it need not
satisfy |minv Pq0 | > |q0|/2 let alone be superprimitive..

Example 2. q = aabaaabaaaa has q0 = aabaaabaa which, in turn has Pq0 = {aaba, aabaaaba, q0}
with |aaba| = 4 < |q0|/2.

It turns out that every language Qv is contained in a unique maximal Qq. To this end
we derive the following lemma (cf. also [10,11]).

Lemma 4. Let v ∈ Qq and u ∈ infix(v) ∩ q · X∗ ∩ X∗ · q. Then u ∈ Qq.

For the sake of completeness we give a proof.

Proof. We use a maximal q-chain (wi)
n
i=1 with wn = v. Assume v = u1 · u · u2. Since u has

q as prefix and suffix, there are 1 ≤ j ≤ l ≤ n such that wj = u1 · q and wl = u1 · u. Let, for

1 ≤ i ≤ l − j + 1, the words w′i be defined by wi+j−1 = u1 · w′i . Then (w′i)
l−j+1
i=1 is a q-chain

with wl−j+1 = u, that is, u ∈ Qq.

Corollary 7. If v ∈ Qq ∩Qu and |q| < |u| then Qu ⊆ Qq.

The corollary shows that every language Qv is contained in a unique maximal Qq and
that two languages Qu, Qq are either disjoint or compatible w.r.t. set inclusion. The latter is
not true for ω-languages.

Example 3. Let q = aabaa and u = aabaaa. Then qω /∈ Pω
u , uω /∈ Pω

q but Pω
u ∩ Pω

q ⊇
aa · {baaa, baaaa}ω.
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4. Pq and Rq as Codes

In this section we investigate in more detail the properties of the star root of Pq. It turns
out that ∗

√
Pq is a suffix code which, additionally, has a bounded delay of decipherability.

This delay is closely related to the largest power of q0 being a prefix of q.
According to [14,18–20] a subset C ⊆ X∗ is a code of a delay of decipherability m ∈ N if

and only if for all v, v′, w1, . . . , wm ∈ C and u ∈ C∗ the relation v ·w1 · · ·wm v v′ · u implies
v = v′. Observe that C ⊆ X∗ is a prefix code if and only if C has delay 0.

First we show that ∗
√

Pq is a suffix code. This generalises Proposition 7 of [12].

Proposition 7. ∗
√

Pq is a suffix code, and ∗
√

Rq is a prefix code.

Proof. Assume u = w · v for some u, v ∈ ∗
√

Pq , u 6= v. Then u v q and Proposition 4 (2) proves
w ∈ {q0}∗ \ {e}. Consequently, |v| ≤ |q| − |q0|. Now Proposition 5 implies v ∈ {q0}∗ and
hence u ∈ {q0}∗. Since u, v ∈ ∗

√
Pq, we obtain u = v = q0 contradicting u 6= v.

Using the duality of Pq and Rq one shows in an analogous manner that ∗
√

Rq is a
prefix code.

An easy consequence of Proposition 7 is the Left and Right Normal Form of a quasiperi-
odic string ([12], Proposition 8).

Corollary 8 (Normal Form). Every word w ∈ Qq has a unique factorisation w = v1 · v2 · · · vn
into words vi ∈ ∗

√
Pq ( ∗

√
Rq, respectively).

Since ∗
√

Rq is a prefix code while the words v ∈ Pq are prefixes of each other, we
obtain | ∗

√
Pq ∩ ∗

√
Rq| = 1 generalising Remark 5 of [12]. In fact ∗

√
Pq ∩ ∗

√
Rq = {q} or

∗√Pq ∩ ∗
√

Rq = {q0} depending on whether q 6= qk
0 or not.

We continue this part by investigating the delay of decipherability of ∗
√

Pq. We prove
that the delay depends on the repetition factor k.

Theorem 2. Let q ∈ X∗ \ {e}, q0 = minv Pq, and | ∗
√

Pq| > 1. Then ∗
√

Pq is a code having a
delay of decipherability of k or k + 1.

Proof. If | ∗
√

Pq| > 1 then in view of Proposition 5 there is a q′ ∈ ∗
√

Pq with |q′| > |q| − |q0|.
Since q′ ∈ Pq, we have q v q′ · q0 v q′ · q. Consequently, q0 · qk−1

0 v q v q′ · q0, that is, the
delay of decipherability is at least k.

To prove the converse we show that for q v qm
0 the delay cannot exceed m.

Assume the contrary, that is, v ·w1 · · ·wm+1 v v′ ·u for some words v, v′, w1, . . . , wm+1 ∈
∗√Pq, v 6= v′, and u ∈ P∗q . From Proposition 4 (1) we obtain u v q or q v u and, since
|wi| ≥ |q0|, also q v w1 · · ·wm+1.

If v @ v′, in view of the inequality |v| + |q| ≥ |v′| + |q0| our assumption yields
v′ · q0 v v · q. Therefore, w · q0 v q for the word w 6= e with v · w = v′ and, according to
Proposition 4 (2) w ∈ {q0}∗. This contradicts the fact that ∗

√
Pq is a suffix code.

If v′ @ v, then |u| > |w1 · · ·wm+1| ≥ |q|, and via |v′| + |q| ≥ |v| + |q0| we obtain
v · q0 v v′ · q from our assumption. This yields the same contradiction as in the case v @ v′.

The observation q v qk+1
0 finishes the proof.

For q = qk
0 the preceding proof shows the following.

Corollary 9. If q = qk
0 and | ∗

√
Pq| > 1 then ∗

√
Pq has a delay of decipherability of exactly k.

Thus, if | ∗
√

Pq| > 1 and q 6= qk
0 the code ∗

√
Pq may have a minimum delay of

decipherability of k or k + 1. We provide examples that both cases are possible.

Example 4. Let q := aabaaaaba. Then q0 = aabaa, k = 1 and ∗
√

Pq = Pq = { q0, aabaaaab, q }
which is a code having a delay of decipherability 2.
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Indeed aabaaaabaa = q0 · q0 v q · q0 or
aabaaaabaa = q0 · q0 v aabaaaab · q0 .

Moreover, in Example 4, q · q0 /∈ Qq. Thus our example shows also that q · P∗q need not
be contained in Qq.

Example 5. Let q := aba. Then k = 1 and Pq = {ab, aba} is a code having a delay of decipherabil-
ity 1.

Since ∗
√

Rq is a prefix code, every ω-word ξ ∈ Rω
q has a unique factorisation into

words w ∈ ∗
√

Rq. For suffix codes the situation is, in general, different. Consider e.g., the
suffix code {b, ba, aa}. Property 4 (ii) of [20] (see also ([21], Proposition 1.9)) shows that
codes of bounded delay of decipherability also admit a unique factorisation of ω-words.
Thus we obtain from Theorem 2.

Lemma 5 (Normal Form for quasiperiodic ω-words). Every ω-word ξ ∈ Pω
q has a unique

factorisation ξ = v1 · v2 · · · vi · · · into words vi ∈ ∗
√

Pq.

5. Subword Complexity

In this section we investigate upper bounds on the the subword complexity function
f (ξ, n) for quasiperiodic ω-words. If ξ ∈ Xω is quasiperiodic with quasiperiod q then
Proposition 3 and Corollary 3 show infix(ξ) ⊆ infix(P∗q ). Thus

f (ξ, n) ≤ |infix(P∗q ) ∩ Xn| for ξ ∈ Pω
q . (9)

Similar to ([22], Proposition 5.5) let ξq := ∏v∈P∗q \{e} v. This implies infix(ξq) =

infix(P∗q ). Consequently, the tight upper bound on the subword complexity of quasiperi-
odic ω-words having a certain quasiperiod q is fq(n) := f (ξq, n) = |infix(P∗q ) ∩ Xn|.
Observe that in view of Propositions 1 and 2 the identity

infix(P∗q ) = infix(R∗q) = infix(Qq) (10)

holds.
The asymptotic upper bound on the subword complexity fq(n) is obtained from

λq = lim sup
n→∞

n
√
|infix(P∗q ) ∩ Xn| , (11)

that is, for large n, fq(n) ≤ λ̂n whenever λ̂ > λq.
The following facts are known from the theory of formal power series (cf. [23,24]).

As infix(P∗q ) is a regular language the power series ∑n∈N fq(n) · tn is a rational series and,
therefore, fq satisfies a recurrence relation

fq(n + k) = ∑k−1
i=0 ai · fq(n + i)

with integer coefficients ai ∈ Z. Thus fq(n) = ∑k′−1
i=0 gi(n) · θn

i where k′ ≤ k, θi are pairwise
distinct roots of the polynomial tn −∑k−1

i=0 ai · ti and gi are polynomials of degree not larger
than k.

In the subsequent parts we estimate values characterising the exponential growth
of the family

(
|infix(P∗q ) ∩ Xn|

)
n∈N. This growth mainly depends on the root of largest

modulus among the θi and the corresponding polynomial gi.
First we show that, independently of the quasiperiod q, the root θi of largest modulus

is always positive and the corresponding polynomial gi is constant.
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In the remainder of this section we use, without explicit reference, known results from
the theory of formal power series, in particular about generating functions of languages
and codes which can be found in the literature, e.g., in [14,23,24].

5.1. The Subword Complexity of a Regular Star Language

The language P∗q is a regular star-language of special shape. Here we show that,
generally, the number of subwords of regular star-languages grows only exponentially
without a polynomial factor. We start with some easily derived relations between the
number of words in a regular language and the number of its subwords.

Lemma 6. If L ⊆ X∗ is a regular language then there is an m ∈ N such that

|L ∩ Xn| ≤ |infix(L) ∩ Xn| ≤ m ·∑2m
i=0 |L ∩ Xn+i| (12)

If the finite automaton accepting L has m states then for every w ∈ infix(L) there are
words u, v of length ≤ m such that u · w · v ∈ L. Thus as a suitable m one may choose the
number of states of an automaton accepting the language L ⊆ X∗.

A first consequence of Lemma 6 is that the identity

lim sup
n→∞

n
√
|L ∩ Xn| = lim sup

n→∞

n
√
|infix(L) ∩ Xn| (13)

holds for regular languages L ⊆ X∗.
In order to derive the announced exponential growth we use Corollary 4 of [25] which

shows that for every regular language L ⊆ X∗ there are constants c1, c2 > 0 and a λ ≥ 1
such that

c1 · λn ≤ |pref(L∗) ∩ Xn| ≤ c2 · λn . (14)

A consequence of Lemma 6 is that Equation (14) holds also (with a different constant
c2) for infix(L∗).

5.2. The Subword Complexity of Qq

In this part we estimate the value λq of Equation (11). In view of Equations (10) and
(14) the value λq satisfies the inequality c1 · λn

q ≤ |infix(P∗q ) ∩ Xn| ≤ c2 · λn
q .

As P∗q is a regular language Equations (11) and (13) show that

λq = lim supn→∞
n
√
|P∗q ∩ Xn|

which is the inverse of the convergence radius rad s∗q of the power series s∗q(t) := ∑n∈N |P∗q ∩
Xn| · tn. The series s∗q is also known as the structure generating function of the language P∗q .

Since ∗
√

Pq is a code, we have s∗q(t) = 1
1−sq(t)

where sq(t) := ∑v∈ ∗
√

Pq
t|v| is the

structure generating function of the finite language ∗
√

Pq. As s∗q has non-negative coeffi-
cients Pringsheim’s theorem shows that rad s∗q = λ−1

q is a singular point of s∗q . Thus λ−1
q

is the smallest root of 1− sq(t). Hence λq is the largest positive root of the polynomial
pq(t) := t|q| −∑v∈ ∗

√
Pq

t|q|−|v|.

Remark 1. If the length of q0 = minv Pq does not divide |q| then pq(t) is the reversed polynomial
of 1− sq(t), that is, has as roots exactly the the inverses of the roots of 1− sq(t).

If |q0| divides |q| then q /∈ ∗
√

Pq (cf. Corollary 5) and pq(t) has additionally the root 0 with
multiplicity |q| − |q′| where q′ is the longest word in ∗

√
Pq.

Summarising our observations we obtain the following.
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Lemma 7. Let q ∈ X∗ \ {e}. Then there are constants cq,1, cq,2 > 0 such that the structure
function of the language infix(P∗q ) satisfies

cq,1 · λn
q ≤ |infix(P∗q ) ∩ Xn| ≤ cq,2 · λn

q

where λq is the largest (positive) root of the polynomial pq(t).

Remark 2. One could prove Lemma 7 by showing that, for each polynomial pq(t), its largest
(positive) root has multiplicity 1. Referring to Corollary 4 of [25] (see Equation (14)) we avoided
these more detailed considerations of a particular class of polynomials.

Now we are able to formulate our main theorem.
As quasiperiods q, |q| ≤ 2, have trivially P∗q = {q0}∗, that is, λq = 1, in the sequel we

confine our considerations to quasiperiods q of length |q| ≥ 3, and we will always assume
that the first letter of a quasiperiod q is a ∈ X.

Define Qmax := {anban : n ≥ 1} ∪ {anwan : |w| = 2, w 6= aa, n ≥ 1}.

Theorem 3 (Main theorem). Let q ∈ a · X∗, |q| ≥ 3, q /∈ Qmax, be a quasiperiod and n =

b |q|−1
2 c. Then λq < λanban or λq < λanbban according to whether |q| is odd or even.

Moreover, λw < λaba = λaabaa if w ∈ a · X∗ \ {aba, aabaa}.

6. Polynomials

Before proceeding to the proof of our main theorem we derive some properties of
polynomials of the form p(t) = tn − ∑i∈M ti, where M ⊆ {i : i ∈ N ∧ i < n}. This class
of polynomials includes the polynomials pq(t) whose maximal roots λq characterise the
growth of infix(P∗q ) as described in Lemma 7. We focus in results which are useful for
comparing their maximal roots.

The polynomials p(t) ∈ P̂ :=
{

tn − ∑i∈M ti : ∅ 6= M ⊆ {0, . . . , n − 1}
}

have the
following easily verified properties.

p(0) ≤ 0, p(1) ≤ 0, p(2) ≥ 1 and p(t) < 0 for 0 < t < 1 . (15)

If ε > 0 and p(t′) ≥ 0 for some t′ > 0 then p
(
(1 + ε) · t′

)
> 0 . (16)

Since p(1) ≤ 0 and p(2) ≥ 1 for p(t) ∈ P̂ , Equation (16) shows that once p(t′) ≥
0, t′ ≥ 1, the polynomial p(t) has no further root in the interval (t′, ∞) and p(t) ∈ P̂ has
exactly one root in the interval [1, 2). This yields the following fundamental property.

Property 1. If t0 is the positive root of the polynomial p(t) ∈ P̂ in [1, 2) and 1 ≤ t′ < 2 then
p(t′) ≤ 0 if and only if t′ ≤ t0.

For the roots of maximal modulus we have the following theorem.

Theorem 4 (Cauchy). Let p(t) = ∑n
i=0 ai · ti be a complex polynomial. Then every root t′ of p(t)

satisfies |t′| ≤ t0 where t0 is the maximal root of the polynomial |an| · tn −∑n−1
i=0 |ai| · ti.

This implies the following property of polynomials p(t) ∈ P̂ .

If p(t) = 0 then |t| ≤ t0 . (17)

From Property 1 we derive the following criterion to compare the maximal roots of
polynomials in P̂ .

Criterion 1. Let p1(t), p2(t) ∈ P̂ have maximal roots t1 and t2, respectively. Then p2(t1) > 0 if
and only if t1 > t2.
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We conclude this section with a bound on the maximal root of certain polynomials
in P̂ .

Lemma 8. Let p(t) = tn −∑m
i=0 ti, n > m ≥ 1. Then p(t) < 0 for 1 ≤ t ≤ 2n−m

√
(m + 1)2 and

p(t) > 0 for n−m
√

m + 1 ≤ t.

Proof. The assertion follows from the inequality tn − (m + 1) · tm < p(t) < tn − (m +
1) · tm/2 when t > 1. The part p(t) < tn − (m + 1) · tm/2 uses the arithmetic-geometric-

means inequality ∑m
i=0 ti > (m + 1) · m+1

√
∏m

i=0 ti = (m + 1) · tm/2, and the other part is
obvious.

The following special case is needed below in Lemma 12.

Corollary 10. If p(t) = tn −∑n−3
i=0 ti, n ≥ 4, then p(t) < 0 for 1 ≤ t ≤ n+3

√
(n− 2)2.

The subsequent sections are devoted to the proof of our main theorem.

7. Irreducible Quasiperiods

We start with irreducible quasiperiods.

7.1. Extremal Polynomials

The polynomials pq(t) of irreducible quasiperiods have non-zero coefficients only for

|q| and i < |q|
2 . Therefore we investigate the set

P :=
{

tn −∑i∈M ti : n ≥ 2∧∅ 6= M ⊆ {i : i ≤ n−1
2 }

}
.

Let pn(t) := tn −∑
b n−1

2 c
i=0 ti ∈ P .

Property 2. Let p(t) ∈ P a polynomial of degree n ≥ 3. Then pn(t) ≤ p(t) for t ∈ [1, 2], and
pn(t) has the largest positive root among all polynomials of degree n in P .

Proof. This follows from tn − ∑
b n−1

2 c
i=0 ti < p(t) for p(t) ∈ P \ {pn(t) : n ≥ 3} when

1 < t ≤ 2 and Criterion 1.

Observe that, for n ≥ 1,

p2n+1(t) = t2n+1 −∑n
i=0 ti and p2n+2(t) = t2n+2 −∑n

i=0 ti .

Moreover, the words anban ∈ Qmax and anwan ∈ Qmax, w ∈ {xb, bx}, x ∈ X are the
quasiperiods corresponding to the extremal polynomials p2n+1(t) ∈ P and p2n+2(t) ∈ P ,
respectively.

Lemma 9. Qmax := {q : q ∈ a · X∗ ∧ |q| ≥ 3∧ pq(t) = p|q|(t)}

Proof. If q ∈ Qmax then obviously pq(t) = p|q|(t). Conversely, if pq(t) = t|q|−
∑v∈ ∗
√

Pq
t|q|−|v| = p|q|(t) then ∗

√
Pq = {v : v v q ∧ |v| > |q|

2 }. Then, in view of q v v · q,

every prefix w v q of length |w| < |q|
2 is also a suffix of q. This is possible only for q ∈ Qmax

or q ∈ {a}∗.

In the sequel the positive root of pn(t) is denoted by λn. From Criterion 1 we obtain
immediately.

Property 3. Let t ≥ 1. We have t < λn if and only if pn(t) < 0.
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Then Property 2 implies the following.

Theorem 5. If q ∈ a · X∗, |q| ≥ 3, is an irreducible quasiperiod then λq ≤ λ|q|, and λq = λ|q| if
and only if q ∈ Qmax.

7.2. The Ordering of the Maximal Roots λn

Before we proceed to the case of reducible quasiperiods we determine the ordering of
the maximal roots λn. This will not only be interesting for itself but also useful for proving
λq < λ|q| when q is reducible (see Equation (28) below).

The extremal polynomials pn(t), n ≥ 2, satisfy the following general relations (By
convention, ∑m

i=k ai = 0 if k > m).

t · p2n(t)− 1 = p2n+1(t) , (18)

p2n+2(t)− t2 · p2n(t) = tn+1 − t− 1 , (19)

tn−2 · p2n+1(t)− (tn + 1) · p2n−1(t) = ∑n−3
i=0 ti, and (20)

tn−2 · p2n+3(t)− (tn+1 + 1) · p2n(t) = −tn + ∑n−3
i=0 ti . (21)

Lemma 10. The polynomials t3 − t− 1 and t5 − t2 − t− 1 = (t2 + 1) · (t3 − t− 1) have largest
positive roots λ3 = λ5 among all polynomials in P , λ5 > λ4 and λ2n−1 > λ2n+1 > λ2n for
n ≥ 3.

Proof. From Equation (18) we have p2n+1(λ2n) = −1 < 0 and, therefore, λ2n < λ2n+1
when n ≥ 1.

Similarly, Equation (20) yields p2n+1(λ2n−1) = λ
−(n−2)
2n−1 · ∑n−3

i=0 λi
2n−1 > 0 which im-

plies λ2n+1 < λ2n−1 for n ≥ 3 and λ3 = λ5 when n = 2.

The largest (positive) root λ3 of the polynomial t3− t− 1 is also known as the smallest
Pisot-Vijayaraghavan number.

So far we have ordered the ‘odd’ roots: λ3 = λ5 > λ7 > λ9 > · · · . Next we are going
to investigate the ordering of the ‘even’ roots λ2n, n ≥ 2.

To this end we derive the following bounds.

Lemma 11.

1. 3n+1√n2 ≤ λ2n ≤ n+1
√

n and 3n−1√n2 ≤ λ2n−1 ≤ n
√

n for n ≥ 2.
2. Let n ≥ 5. Then λ2n ≥ n−1

√
2.

Proof. 1. follows from Lemma 8.

2. We calculate p2n(
n−1
√

2) = 4 · n−1
√

4 − ∑n−1
i=0

n−1√2i ≤ 4 · 4
√

4 − (2 + (n − 1)) =

4 ·
√

2− (n + 1) < 0 if n ≥ 5 and the assertion follows with Property 1.

Remark 3. The lower bound of Lemma 11.2 does not exceed the lower bound in
Lemma 11.1. However, the latter is more convenient for the purposes of Lemma 12.

Lemma 12. If n ≥ 5 then λ2n−2 > λ2n and λ2n > λ2n+3.

Proof. If t ≥ n−1
√

2 then tn − t − 1 ≥ t − 1 > 0. Consequently, Equation (19) and
Lemma 11.2 imply p2n−2(λ2n) < 0 whence λ2n < λ2n−2.

If n ≥ 5 we have n+1
√

n ≤ n+3
√
(n− 2)2 and, following Lemma 11.1 λ2n ≤ n+3

√
(n− 2)2.

Then Equation (21) yields −λ2n · p2n+3(λ2n) = λn
2n − ∑n−3

i=0 λi
2n, and Corollary 10 shows

p2n+3(λ2n) > 0 whence λ2n > λ2n+3.
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Since p8(
3
√

2) > 0, the proof of Lemma 12 cannot be applied to lower values of n. Thus
it remains to establish the order of the λi for i ≤ 13. To this end, we consider some special
identities and use Criterion 3 and Lemma 12.

p12(t)− (t8 + t5 + t4 + t2 + t) · p4(t) = t2 − 1 , and (22)

p13(t)− t · (t8 + t5 + t4 + t2 + t) · p4(t) = t3 − t− 1 = p3(t) . (23)

Lemma 13. λ8 > λ10 > λ13 > λ4 > λ12

Proof. Lemma 12 shows λ8 > λ10 > λ13. Equation (22) yields p12(λ4) = λ2
4 − 1 > 0

whence λ4 > λ12, and Equation (23) yields p13(λ4) = p3(λ4) < 0, that is, λ13 > λ4. This
shows our assertion.

For the remaining part we consider the identities

t2 · p11(t)− (t5 + 1) · p8(t) = −t4 + t + 1 = −p4(t) , (24)

p11(t)− (t5 + 1) · p6(t) = t3 · p4(t) , and (25)

t · p9(t)− (t4 + 1) · p6(t) = −t3 + 1 . (26)

Lemma 14. λ9 > λ6 > λ11 > λ8

Proof. We use Equations (24)–(26). Then p11(λ8) = −p4(λ8) < 0 implies λ11 > λ8,
p11(λ6) = λ3

6 · p4(λ6) > 0 implies λ6 > λ11, and, finally, λ6 · p9(λ6) = −λ3
6 + 1 < 0 implies

λ9 > λ6.

Now Lemma 10, 12–14 yield the complete ordering of the values λn.

Theorem 6. Let λn, n ≥ 3, be the maximal root of the polynomial pn(t). Then the overall ordering
of the values λn starts with

λ3 = λ5 > λ7 > λ9 > λ6 > λ11 > λ8 > λ10 > λ13 > λ4 > λ12

and continues as follows λ2n+1 > λ2n > λ2n+3, n ≥ 7.

In connection with Proposition 6 and Corollary 7 we obtain that the Pisot-Vijayaraghavan
number λ3 = λ5 is an overall upper bound on the values λq.

Corollary 11. If q ∈ X∗, |q| ≥ 3, then λq ≤ λ3 = λ5.

From Lemma 11.1 we obtain immediately.

Corollary 12. Let M ⊆ N \ {0, 1, 2} be infinite. Then inf{λi : i ∈ M} = 1.

8. Reducible Quasiperiods

Reducible quasiperiods q have a repeated prefix q0 = minv Pq with |q0| ≤ |q|/2 and
a repetition factor k ≥ 2 such that q = qk

0 · q̄ where q̄ @ q0. Moreover |q̄| < |q0| ≤ |q|/2.
Observe that q0 is primitive.

We shall consider three cases depending on the relation between the lengths n = |q|,
` = |q0|, the length of the suffix |q̄| < |q0| and the repetition factor k ≥ 2.

IN the first case |q0| + |q̄| ≤ 2, in view of q̄ @ q0, we have necessarily q̄ = e and
q ∈ a∗ ∪ {ab}∗, a, b ∈ X, a 6= b and, therefore, Qq = {q0}∗ and λq = 1.

Let now |q0|+ |q̄| ≥ 3. We divide the remaining cases according to the additional
requirement |q| − 2|q0| ≥ 3 and its complementary one |q| − 2|q0| ≤ 2. In the latter case
we have necessarily k = 2 and |q̄| ≤ 2.



Axioms 2021, 10, 306 15 of 18

8.1. The Case |q0|+ |q̄| ≥ 3∧ |q| − 2|q0| ≥ 3

Thus, the preceding consideration shows that we have |q̄| ≥ 3 (in particular, if
q = q2

0 · q̄) or the repetition factor k ≥ 3. This implies |q| = 7 (where q = (ab)3a) or |q| ≥ 9.
From Equation (6) we have

∗
√

Pq ⊆ {q0} ∪ {v : v v q ∧ |v| > |q| − |q0|+ 1} (27)

This implies that for |q0| ≤ |q|/2 the polynomials pq(t) have non-zero coefficients
only for |q| = n, |q| − |q0| = n − ` and i < |q0| − 1, that is, are of the form pq(t) =

tn − tn−` −∑i∈Mq ti where Mq ⊆ {i : i < `− 1}. Therefore, in the sequel we consider the
positive roots of polynomials in

Pred :=
{

tn − tn−` − ∑
i∈M

ti : n ≥ 1∧ ` ≤ n
2
∧M ⊆ {i : i < `− 1}

}
Let pn,`(t) := tn− tn−`−∑`−2

i=0 ti ∈ Pred and λn,` be its maximal root. (In the preceding
paper [8] we used a slightly different definition of Pred, and, therefore, of pn,`(t) and λn,`.)
Similar to Property 2, Criterion 3 and Theorem 5 we have the following.

Property 4. Let n ≥ 3, ` ≤ n
2 and p(t) ∈ Pred. Then p(t) ≥ pn,`(t) for t ∈ [1, 2], and pn,`(t)

has the largest positive root among all polynomials of degree n and parameter ` in Pred.

Lemma 15. If q, |q| = n, is a quasiperiod with |q0| = ` ≤ n/2 then pq(t) ≥ pn,`(t) for t ≥ 1, in
particular, λq ≤ λn,`.

Remark 4. In contrast to Property 2 not for every polynomial pn,`(t) there is a quasiperiod q such
that pn,`(t) = pq(t), see Remark 5 below.

We have the following relation between the polynomials pn(t) and pn,`(t).

pn(t)− t` · pn−2`(t) = pn,`(t)− t`−1, for n− 2` ≥ 3 (28)

This yields

Corollary 13. Let n− 2 · ` ≥ 3. If λn < λn−2` then λn,` < λn.

Proof. If λn < λn−2` then pn−2`(λn) < pn−2`(λn−2`) = 0. Thus pn,`(λn) = −λ`
n ·

pn−2`(λn) + λ`−1
n > 0, that is, λn > λn,`.

Next we show the relation λq < λ|q| for all quasiperiods q having |q0| ≤ |q|/2 and
|q0|+ |q̄| ≥ 3.

Lemma 16. Let |q| − 2|q0| ≥ 3 and |q0|+ |q̄| ≥ 3. Then λq < λ|q|.

Proof. Above we have shown that |q| − 2|q0| ≥ 3 and |q0| + |q̄| ≥ 3 imply |q| ≥ 7 or
|q| ≥ 10 according to whether |q| is odd or even.

The ordering of Theorem 6 and Corollary 13 show λn > λn,` for all odd values n ≥ 7
and for all even values n ≥ 12.

It remains to consider the exceptional case when n = |q| = 10. Here |q| − 2|q0| ≥ 3 and
|q0|+ |q̄| ≥ 3 imply ` = |q0| = 3. Consider p10,3(t) = t10 − t7 − t− 1 = p10(t)− t2 · p5(t).

From λ5 > λ10 and p10(λ10) = 0 we have p10,3(λ10) = −λ2
10 · p5(λ10) > 0, that is,

λ10,3 < λ10.
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Remark 5. Equation (6) shows that for n = |q| = 10 and ` = |q0| = 3 we have ∗
√

Pq = {q0, q},
that is, pq(t) = t10 − t7 − 1. Thus there is no quasiperiod q such that pq(t) = p10,3(t) =
t10 − t7 − t− 1.

8.2. The Case |q0|+ |q̄| ≥ 3∧ |q| − 2|q0| ≤ 2

This amounts to |q| = 2 · |q0|+ |q̄| where |q̄| ∈ {0, 1, 2}.
Here we have to go into more detail and to take into consideration also the reduced

quasiperiod q̂ = q0 · q̄ of q and its repeated prefix q̂0 = minv Pq̂. Observe that both repeated
prefixes q0, q̂0 are primitive.

For q = qk
0 · q̄, k ≥ 2, we have from Equations (7) and (8)

pq(t) ∈
{

t|q| − t|q|−|q0| −∑i∈M ti : M ⊆ {0, . . . , |q̂| − |q̂0|}
}

.

Observe that |q̂0| > |q̄| (in view of Lemma 3 even |q̂0| > |q̄|+ 1 if q̂0 6= q0) and thus
|q̂| − |q̂0| = |q0| − (|q̂0| − |q̄|) < |q0|.

Let P ′red :=
{

tn − t` − ∑i∈M ti : n > ` > j ∧ M ⊆ {0, . . . , ` − j}
}

and pn,`,j(t) =

tn − t` −∑
`−j
i=0 ti. Here the parameter j corresponds to the value |q̂0| − |q̄|. Then similar to

Property 4 and Lemma 15 we have

Property 5. Let n, ` ≥ 3, ` ≤ n
2 , ` > j, and p(t) ∈ P ′red. Then p(t) ≥ pn,`,j(t) for t ∈ [1, 2],

and pn,`,j(t) has the largest positive root among all polynomials of degree n and parameters ` and j
in P ′red.

Lemma 17. If q, |q| = n, is a quasiperiod with |q0| = ` ≤ n/2 and |q̂0| − |q̄| ≥ j then
pq(t) ≥ pn,`,j(t) for t ≥ 1, in particular, λq ≤ λn,`,j.

We consider the cases |q̄| ∈ {0, 1, 2} separately. In the sequel we shall make use of the
relation

t3 − t2 − 1 ≤ t2 − t− 1 < 0 for 1 ≤ t ≤ λ3 = max{λn : n ∈ N} . (29)

8.2.1. The Case q = q2
0 ∧ |q̄| = 0

As shown above the case |q0| ≤ 2 and |q̄| = 0 amounts to λq = 1. Thus we may
consider only the case when |q0| ≥ 3. Here we have the following relation between p2`(t)
and p2`,`,3(t).

p2`(t)− p2`,`,3(t) = t`−2(t2 − t− 1) (30)

Lemma 18. If q = q2
0 and |q0| = ` ≥ 3 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 3. Then |q̂0| − |q̄| ≥ 3, and Property 5 and Lemma 17 yield
pq(t) ≥ p2`,`,3(t) for t ∈ [1, 2]. Now Equations (29) and (30) show pq(λ2`) ≥ p2`,`,3(λ2`) =

−λ`−2
2` (λ2

2` − λ2` − 1) > 0, that is λq < λ2`.
It remains to consider 1 ≤ |q̂0| ≤ 2. If q̂0 ∈ a∗ then q0 = a` which is not primitive. Thus

q̂0 = ab and, since q0 is primitive, q0 = (ab)ma, m ≥ 1 whence q = q2
0 = (ab)ma · (ab)ma.

We obtain ∗
√

Pq = {(ab)ma · (ab)i : i = 0, . . . , m} and, consequently, pq(t) = t4m+2 +

∑m
i=0 t2i+1. Then (Observe again ∑m

i=k ai = 0 if k > m).

pq(t)− p4m+2(t) = −t2m+1 +
m
∑

i=0
t2i = −t2m+1 + t2m + t2m−2 +

m−2
∑

i=0
t2i

= −t2m−2 · (t3 − t2 − 1) +
m−2
∑

i=0
t2i ,

and from Equation (29) we obtain pq(λ4m+2) ≥ −λ2m−2
4m+2(λ

3
4m+2 − λ2

4m+2 − 1) > 0.
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8.2.2. The Case q = q2
0 · q̄ ∧ |q̄| = 1

Here we have the following relation between p2`+1(t) and p2`+1,`,2(t).

p2`+1(t)− p2`+1,`,2(t) = t`−1(t2 − t− 1) (31)

Lemma 19. If q = q2
0 · a, a ∈ X, then λq < λ|q|.

Proof. First we suppose |q̂0| − |q̄| ≥ 2. Then ` = |q0| ≥ |q̂0| ≥ 3, and Property 5 and
Equation (31) yield pq(λ2`+1) ≥ p2`+1,`,2(λ2`+1) = p2`+1(λ2`+1)− λ`−1

2`+1(λ
2
2`+1 − λ2`+1 −

1). The assertion pq(λ2`+1) > 0, that is λq < λ2`+1 follows from Equation (29).
It remains to consider |q̂0| = 2. By Lemma 3 q̂0 = q0 implies |q̂0| > |q̄|+ 1 = 2. Hence

q̂0 = q0 = ab, q = ababa and pq(t) = t5 − t3 − 1 = t2 · p3(t) + t2 − 1. Then λababa < λ5
follows from λ5 = λ3 and pq(λ5) = λ2

5 − 1 > 0.

8.2.3. The Case q = q2
0 · q̄ ∧ |q̄| = 2

Here we have the following relation between p2`+2(t) and p2`+2,`,2(t).

p2`+2(t)− p2`+2,`,2(t) = t`−1(t3 − t− 1) = t`−1 · p3(t) (32)

Lemma 20. If q = q2
0 · q̄ with |q̄| = 2 then λq < λ|q|.

Proof. First we suppose |q̂0| ≥ 4. Then Property 5, Equation (32) and λ2`+2 < λ3 yield
pq(λ2`+2) ≥ p2`+2,`,2(λ2`+2) = −λ`−1

2`+2 · p3(λ2`+2) > 0, that is, λq < λ2`+2.
It remains to consider |q̂0| = 3. If q̂0 6= q0 Lemma 3 implies |q̂0| > |q̄|+ 1. Conse-

quently, q̂0 = q0. Then |q0| = 3 and |q| = 8, and Equation (6) yields ∗
√

Pq ⊆ {q0, v, q}
where v @ q and |v| = |q| − 1 = 7. Thus pq(t) ≥ t8 − t5 − t− 1 = p8(t)− t2 · p3(t) for
1 ≤ t ≤ λ3.

This shows pq(λ8) ≥ −λ2
8 · p3(λ8) > 0, that is, λq < λ8.

Summarising, the results of Section 8 yield

Theorem 7. If q ∈ X∗, |q| ≥ 3, is a reducible quasiperiod then λq < λ|q|.

Our main theorem (Theorem 3) then follows from Theorems 5 and 7.
Together with Corollary 12 our theorem yields a new proof of a theorem of [5] which

shows that multi-scale quasiperiodic infinite words have zero topological entropy. In [5] a
multi-scale quasiperiodic infinite word is a quasiperiodic infinite word which admits infinitely
many quasiperiods.

9. Concluding Remark

In this paper we dealt with the function f (ξ, n) = |infix(ξ) ∩ Xn| for quasiperi-
odic ω-words. Their factor complexity (or topological entropy) is defined as τ(ξ) :=

limn→∞
log|X| |infix(ξ)∩Xn |

n (e.g., [4], Section 4.2.2 or [5,22]). Thus the upper bound for ξ ∈ Pω
q

is log|X| λq ≤ log|X| tP which is bounded away from the value 1 for almost periodic ω-
words.

Along with the subword complexity in [5] the Kolmogorov complexity of quasiperi-
odic ω-words was addressed. Obviously, subword complexity upper bounds Kolmogorov
complexity (e.g., [22]). Since the ω-languages Pω

q are regular ones, the results of [22] show
that there are ω-words ξ ∈ Pω

q whose Kolmogorov complexity achieves their subword com-
plexity. Moreover, as Pω

q = q · Rω
q where Rω

q is a finite prefix code, the results of [22,26,27]
give more detailed bounds for most complex quasiperiodic ω-words w.r.t. several notions
of Kolmogorov complexity [28].
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