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Abstract: Spatial documentation is exponentially increasing given the availability of Big Data in the
Internet of Things, enabled by device miniaturization and data storage capacity. Bayesian spatial
statistics is a useful statistical tool to determine the dependence structure and hidden patterns in
space through prior knowledge and data likelihood. However, this class of modeling is not yet
well explored when compared to adopting classification and regression in machine-learning models,
in which the assumption of the spatiotemporal independence of the data is often made, that is an
inexistent or very weak dependence. Thus, this systematic review aims to address the main models
presented in the literature over the past 20 years, identifying the gaps and research opportunities.
Elements such as random fields, spatial domains, prior specification, the covariance function, and
numerical approximations are discussed. This work explores the two subclasses of spatial smoothing:
global and local.

Keywords: Bayesian spatial models; Bayesian inference; probability and statistical methods

1. Introduction

Digital transformation technologies have generated massive amounts of data over
the past few decades, which is the concept known as Big Data, in which data storage
grows exponentially and requires an advanced analytical tool to explore and answer
research questions. The technical advance has opened the door to inferential models of
complex phenomena, such as spatial trends and heterogeneity in information conditioned
on space and time [1,2]. Thus, adopting spatial methods in daily observed data can lead to
more intelligent cities and to urban information to identify and prevent high-risk regions
using the Internet of Things (IoT) [3]. Spatial dependencies have long been identified as
a component that could hinder model precision and increase bias. Subsequent efforts to
account for these errors have a research line in spatial statistics.

Space-based observation is an essential resource for IoT data, as it helps data prediction
and analysis. Applications vary in complexity and are frequently carried out in risk surface
detection, healthcare, agriculture, urban planning, economics, engineering, and rarely,
smart appliances that learn based on location. This complex structure is accommodated in
a flexible class of models related to observed data and spatial dependencies. Frequentist
(classical) and Bayesian analytical methods have been used to analyze spatially varying
phenomena. However, the Bayesian method is a better choice because it presents the
characteristic of accommodating information from different sources. In the Bayesian frame-
work, questions are answered through an estimation procedure by combining multiple
sources of information, such as previous knowledge (prior) and the acquired information
in the data (likelihood) [4].

In the field of neuroscience, the area of neurorehabilitation and the technological
advances made in neuro-navigation have grown, thus personalizing the definition of tran-
scranial accuracy [5,6]. Recently, there has been a growing interest in using Bayesian spatial
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models in the meta-analysis of brain imagery to locate regions of consistent activation in
the brain for diagnosis and treatment [7,8]. Another example is in epidemiology, in which
patterns across geographical spaces are used to identify the areas of potentially elevated
risk and create disease maps to quantify the underlying risk surface [9]. The same is
true in the fields of geostatistics, solid and fluid mechanics, materials science, agriculture,
Earth sciences, environmental science, etc. For instance, the Bayesian approach has been
adopted to identify and map fish species richness and abundant hotspots for management
and conservation of fish stocks [10]; for the calibration of computer models to quantify
model uncertainty and evaluate model adequacy [11,12]; in the analysis of the performance
of electrical capacitance tomography for the exploration of solid flow [13]; for multiple
output separable Gaussian process emulation for a dynamic simulator to tackle problems
in uncertainty and sensitivity analysis and the calibration of dynamic models [14]; for the
identification of elastoplastic material parameters and incorporating model uncertainty
through a Gaussian random process with a stationary covariance function [15]. Moreover,
the medical literature provides detailed motivations and descriptions of spatial smoothing
methods by explaining the concepts, defining the technical terms, and demonstrating
various visualizations of spatial models.

The basic idea of Bayesian spatial statistics is an extension of the generalized linear
model, including a spatial latent field, commonly referred to as a random field, which
accounts for spatial dependencies across a spatial domain D. A random field is a stochastic
process indexed in space D that takes values from a high-dimensional space and is defined
over a parameter space of a dimensionality of at least one. The spatial latent field is modeled
as a stochastic process whose uncertainty is represented by a random field probability
density function, fspat, which accounts for the spatial correlation or heterogeneity over
a region (not necessarily delimited). The most commonly used stochastic process is the
Gaussian field. In the context of spatial statistics, the Gaussian field is a stochastic process
indexed by the space in which any finite collection of random variables has a multivariate
normal distribution, whose covariance matrix is a function of the distance between these
locations in space. Thus, a multivariate normal distribution can be referred to as a Gaussian
random field.

For the interpolation task, the estimate of fspat is nonlinearly interpolated across the
unsampled spatial region with a specified resolution to identify the hotspot regions and
provide intuition into the event chain. Kriging is one of the most frequently used tech-
niques for spatial interpolation [16] governed by prior covariance, which gives unbiased
projections on the unsampled region using a linear combination of neighboring values.
A recently developed technique for spatial interpolation is the stochastic partial differential
equation [17]. It is increasingly used as it is easily incorporated into a generalized hierar-
chical mixed-effect modeling framework and uses some bases function to make projections
into unsampled regions. However, the approach is different from the frequently used
spatial econometric models, which estimate spatial dependencies as a global correlation
parameter across a spatial domain [18].

In the kernel of each random field model, there is a correlation matrix that quantifies
the dependencies between random variables at different spatial locations and determines
the full covariance structure of the stochastic process. The correlation matrix, a function
of the kernel, has an enormous impact on spatial smoothing, and the challenge is how to
choose its specification. A frequently used technique in epidemiology [19] and economet-
rics [20] to derive the spatial dependence through the covariance matrix governing the
spatial field is the weight matrix with a first-order rook, bishop, or queen kind of binary
neighborhood structure, which assigns one or zero depending on whether the spatial
locations are immediate neighbors or not, which simplifies the complex spatial pattern.
However, in many fields, a geostatistical model is often adopted, which considers the
domain of exploration as a continuous spatial domain. In this manner, the uncertainty
in the stochastic process is completely determined by a covariance function, such as the
Matern or Gaussian covariance function. The model complexity can be approximated and
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transcribed through a covariance structure. A highly dense covariance matrix implies a
highly correlated spatial field and a more complex model.

Hernández-Lemus [21] discussed the historical origin and association between ran-
dom fields and the joint probability function representation. As a special case, Markov
random fields are visualized as a graphical model such as Markov networks or Bayesian
networks (undirected and directed graphs).

1.1. Aim

A Bayesian spatial statistic aims to quantify spatial patterns and provide insight
into the process of generating a pattern. Given the technological advances and, precisely,
the storage capacity, georeferenced data acquisition is commonly present in domain sets
currently. The Bayesian method is typically used to analyze these sets and to identify
spatial patterns. Consequently, spatial statistics has received considerable attention in
recent years, and numerous spatial models have been proposed and applied in diverse
research fields. The systematic review of these models has received little attention and has
specifically been conducted in epidemiology [22–24].

This systematic review focuses on the progressive development and content analysis
of the Bayesian spatial models and aims to bridge the discontinuities in the literature. It
aims to provide an overview and a basic knowledge of the concepts and the improvements
over the last 20 years and identify the key research directions and areas of opportunity in
the Bayesian spatial methodology.

1.2. Outline

R. A. Fisher identified the implication of spatial dependence in statistical analysis [25].
He introduced blocking in a completely randomized design to mitigate the error induced
by spatial dependencies. For several years, there have not been many changes to the basic
idea of Fisher’s characterization of spatial dependencies, that is nearby locations/regions
have a similar tendency without much interrelation complexity. Thus, we aimed to clarify
this vital topic towards the popularization and development of the spatial modeling field.

This systematic review is structured into three main parts. In the section entitled
Survey Methodology, we describe the guidelines adopted in this work. The section called
Conceptual Scheme for Spatial Models describes the main spatial models found in the Bayesian
spatial literature. Then, the Analyses Section shows the empirical results obtained from the
meta-analysis in papers published over the last 20 years. Finally, the conclusions are drawn
in the last section.

1.3. Spatial Modeling Overview

Let us consider a spatial domain of an 8× 16 rectangular lattice and a variable zi, i =
1, 2, . . . , n, and n = 27. Each zi is a latent variable in a unit square area of the spatial domain
D, as shown in Figure 1a. Let the latent variable zi ∈ R be modeled as:

zi = xT
i β + γi, (1)

in which xi is a p× 1 spatial covariate predicting zi, β ∈ Rp is an unknown regression coef-
ficient, γ = (γ1, γ2, . . . , γn)T ∈ Rn is a Gaussian Markov Random Field (GMRF) denoted
as γ ∼ N(0, Q−1(α)), and Q−1(α) ∈ Rn×n is a covariance matrix with hyperparameter
α ∈ R. Figure 1b shows the rook neighborhood type.
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Figure 1. (a) A 2-dimensional topology divided into an 8× 16 regular rectangular spatial domain
D. Each square box is represented by a latent variable z. At these locations, we intend to determine
zi, i = 1, 2, . . . , (8× 16), which explains the overall pattern in the spatial domain. To do so, we
observe noisy samples yi at each spatial site. The observed samples are denoised and used to predict
z. Rectangular lattice data of this nature are common in agriculture science, environmental science,
neuroimaging, etc. (b) A 1st-order rook type of spatial dependence for the field z1. The illustrative
diagram shows the relationship between z1 and its four neighbors (z2, z3, z4, z5). In the neighborhood
structure, the jth entry of the binary neighborhood matrix is set to 1, j ∈ {2, 3, 4, 5}. The total number
of neighbors is four ∀i, except those at the edges, which have either two or three neighbors.

Let us suppose we observe an outcome yi at each spatial site i, i = 1, 2, . . . , n with
additive noise ei independent of γi, then:

yi = zi + ei, (2)

and ei ∼ N(0, τ−2) for all i. By this model specification, the density of y is a Gaussian
distribution with mean E(yi|β, γi) = xT

i β + γi, and for y = (yi, y2, . . . , yn)T , the covariance
matrix var(y|β, γ) = τ−2 I. In a simple case, the GMRF precision matrix Q can be specified
assuming the rook neighborhood spatial structure in Figure 1b. In this case, Q(α) =
1
α (D−W), in which W is an n× n matrix of entries wij = 1 if site i and j are neighbors and
zero otherwise. The diagonal elements of W are set to zero as each site is not considered a
neighbor of itself. D is an n× n diagonal matrix with entry dii (the number of neighbors of
spatial site i). In this example, dii = 4, ∀i except those i (dii = 2 or dii = 3) at the edges of D,
and α ∈ R+.

The main interest is to estimate the uncertainties about β and γ and make predictions
of the latent variable z. In a Bayesian framework, for the prior distribution on β, τ, σ2,
and α are either elicited depending on the available information or are assigned vague
priors, allowing the data to decide. In this example, suppose β ∼ N(0, σ2 I) and φ =
{α, σ2, τ}. Usually, the elements of φ or reparameterized φ are assigned an appropriate
prior distribution. For instance, α and σ2 can be assigned an inverse gamma distribution
and τ a gamma distribution eliciting its hyperparameters from expert knowledge or data.

However, for this example, assume that it is known (fixed), for simplicity. Thus,
the derivation of the conditional posterior distributions from the joint posterior is trivial.
The joint posterior distribution and posterior conditional distribution for β and γ are
respectively given as:

f (β, γ|y, φ) ∝ N(XT β + γ, τ−2 I) ∗ N(0, Q−1(α)) ∗ N(0, σ2 I),

β | y, γ, φ ∼ N
(

τ2 I
(

Xτ2 IXT + σ−2 I
)−1

X(y− γ),
(

Xτ2 IXT + σ−2 I
)−1

)
,

γ | y, β, φ ∼ N
(

τ2 I
(

τ2 I + Q(α)
)−1

(y− XT β),
(

τ2 I + Q(α)
)−1

)
,

(3)
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in which X is a p× n matrix. The marginal posterior distribution is easily obtained using
the Gibbs sampling algorithm.

In some applications, the process could have a multiplicative noise (yi = ziei), binary
outcome y, non-Gaussian error ei, non-Markov Gaussian field γ, non-Gaussian field γ, or
irregular or continuous spatial domainD. In these cases, the modeling framework becomes
more complicated than the specification given in the example.

In general, let yi be the observed outcome having a probability distribution function
f (.|θi), with parameter θi = (θ1

i , . . . , θ
q
i ) ∈ Rq, ∀i. Suppose that θ

j
i ∈ X , a component of θi,

defined by (βi, γi), is of interest and the remaining components (θ−j
i ) are hyperparameters

(i.e., φi and the others that will be discussed in the sequence). The structural linear predictor
is formulated as:

g(θ j
i ) = xT

i β + γi, i = 1, 2, . . . , n, (4)

in which g(.): X → R is a link function and X is the parameter space of θ
j
i , ∀i. x is the

fixed-effect design vector. β is the unknown fixed-effect vector. γ is a random field, whose
uncertainty is to be quantified. The choice of the probability distribution assumed for
f (y|θ) guides the researcher on the choice of g(.). Examples of commonly used canonical
link functions include the identity (g(θ) = θ), logit (g(θ) = log(θ/(1 − θ))), and log
(g(θ) = log(θ)).

The spatial effect is assigned a random field model fspat(γ|ψ, Q(α)) over D, in which
ψ is the vector of hyperparameters accounting for dispersion, and the spatial information
is coded in the correlation matrix Q(α), which accounts for the spatial dependencies of
γ across a spatial domain with hyperparameter α. In the Bayesian framework, fspat(., .)
is usually multidimensional, representing the prior knowledge on the spatial latent field,
and assumes a probability density function (not necessarily an exponential family) such as
Gaussian; thus, γ is referred to as the Gaussian random field. Other common probability
distributions include asymmetric Laplace, Student-t, and log-Gamma. The choice of the
density of γ is informed by the level of spatial detail and the process complexity. Thus, it
is not straightforward to choose the right model to learn the spatial process. For instance,
in Figure 1a, an increase in the grid resolution might give a minimal model uncertainty as
more samples would be drawn, but leading a to higher dimension of γ, thus increasing
the model complexity. The choice of the prior distribution is not general, but informed
by the objective of the study and the stochastic process governing γ. α is a vector of
hyperparameters that controls the spatial range and smoothness of the covariance function
defining the covariance matrix of the spatial model. It is a global smoothing if the same set
of α smooths the entire spatial region, whereas it is a local smoothing if different sets smooth
the spatial region. Additionally, the spatial process can be modeled in a semiparametric
framework, such as the spatial mixture model, and the Dirichlet process.

In the frequentist paradigm, the model parameters are fixed and inferences are made
by maximizing the joint log-likelihood over the parameter space. However, inference in
the Bayesian framework is based on the Bayes theorem, which allows the uncertainty
representation of the model parameters by a probability distribution and is updated
as more information becomes available. Thus, the model parameters are considered
random. Suppose that β | Σ ∼ f (·|Σ) is a centered distribution with dispersion matrix
Σ representing the uncertainty about covariables/features as fixed effects (β) and f (γ | .)
is the spatial effect model, i.e., spatial prior for γ before observing the data (based on the
prior distribution or expert prior knowledge). Let φ = {θ−j, ψ, Σ} and α be assigned a joint
prior distribution f (φ) and f (α), respectively. The Bayes update is given as:

f (β, γ, φ, α|y) =
f (α) f (φ) f (β|Σ) f (γ|ψ, Σ(α)) f (y|θ−j

i β, γ)∫
f (α) f (φ) f (β|Σ) f (γ|ψ, Σ(α)) f (y|θ−j

i β, γ)dy
, (5)
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Inferences about the spatial component γ are derived from the marginal posterior
distribution:

f (γ|y) =
∫

f (β, γ, φ, α|y)dβdφdα,

f (β|y) =
∫

f (β, γ, φ, α|y)dγdφdα.
(6)

The hyperparameters ofthe prior distributions are elicited from the expert opinion.
The elicitation allows experts, practitioners, and nonstatisticians to contribute with their
judgments about the spatial process, which are scientifically incorporated into a probability
distribution. For example, experts could be asked to provide summary statistics (mean,
mode, and quantiles) of the process, which are translated into a complete probability
distribution. The elicitation technique minimizes the uncertainty of the parameters and
leads to better inference. In addition, the power prior is a standard technique to construct
an informative prior distribution from historical data and has been useful in clinical
research [26]. The elicitation technique for a high-dimensional spatial process is not a trivial
task. The level of difficulty increases for nonstationary stochastic processes, and caution
is required as the wrong elicitation could lead to misleading inference. Different choices
of priors are the weakly informative priors and objective priors, in which the former
uses minimal subjective information to encode a prior distribution and the latter is not
subjectively elicited.

In some cases, the parameter α of the correlation function defined for the spatial
model is fixed and f (α) is excluded from Equation (5). “Fixed” means that they are first
estimated from the data before performing Bayesian inference. This is done to minimize
the model complexity. For example, the maximum likelihood estimate of the Matern
covariance function parameters can be obtained from the data to determine the process’s
spatial range and smoothness ([27], p. 58). These estimates are used as hyperparameters
Σ(α) in Bayesian inference.

2. Research Methodology

The data collected in this study aimed to determine the field in which Bayesian spatial
statistics was most applied, as well as the current stage of development of these spatial
models, identifying their trends and contributions to the Bayesian spatial literature. The col-
lection and reporting methods were based on the guidelines of the Preferred Reporting
Item for Systematic Review and Meta-Analysis (PRISMA) [28,29]. This procedure includes
an electronic search strategy, a clear objective to define the inclusion and exclusion criterion,
and an appropriate method for reporting the findings.

An online electronic search was conducted on 10 June 2020, in the following four
databases: Elsevier’s Scopus, Science Direct, Thompsom Reuters Web of Science, and the
American Mathematical Society’s MathSciNet database. Queries of the word “Bayesian
Spatial” and “Bayesian spatial” were performed, using the Boolean operator “OR”, through-
out 2001–2020. Title, abstract, and keywords were used in Scopus and Science Direct,
the topic (which entails title, abstract, and keywords) in Web of Science, and “Anywhere”
in MathSciNet.

The time frame was chosen to capture the diversification of the application of Bayesian
spatial models in various fields due to the improvement in technology for data collection
and computation. The Mendeley Windows application was used to remove duplicate
articles. The resulting set was further examined manually looking for more duplicates
not identified by Mendeley’s application. The titles and abstracts of the articles included
(after removing duplicates) were first screened for the Bayesian spatial methodology before
applying the following inclusion criteria:

• Search results that were written in English and articles published in peer-reviewed
journals available online. We excluded books, dissertations/theses, conference pro-
ceedings, and reviews (or any other form that was not an article);
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• Articles that specifically implemented Bayesian spatial models, excluding the ones
that only mentioned Bayesian spatial models.

Articles that did not meet the two inclusion criteria were excluded from the review.
The search flowchart is presented in Figure 2. Using the search keywords mentioned earlier,
586 articles were retrieved from Scopus, 129 from Science direct, 492 from Web of Science,
and 73 from MathSciNet. After excluding duplicated ones, 590 articles were assessed for
eligibility, and 38 were further excluded based on the two exclusion criteria, leaving 552
articles selected for conceptual classification.

Figure 2. Flowchart of the systematic review search procedure in the Scopus, Science Direct, Web of
Science, and MathSciNet databases. From 1280 articles, based on the queries words, 728 articles were
removed (duplicate papers, non-English written, not peer-reviewed, nor Bayesian spatial modeling),
and 552 remained to be analyzed. Then, information such as the authors’ names, journal titles,
publication year, and the conceptual classification scheme were explored.

As a structure of the dataset, 552 articles that met the eligibility criteria were classified
into the following categories:

• Names of all authors;
• Publication year;
• Journal title;
• Response to the ten items of the conceptual classification scheme on Bayesian spa-

tial models.

This survey was divided into two parts: theoretical models and empirical analyses
of the published articles. These analyses scrutinized the results from the last 20 years, as
given in the next section. In the first part, we discuss the different approaches under the
statistical innovation and their differences, divided into eight topics: fields of application,
spatial domains, spatial priors, response variables, statistical models, prior specification,
computation techniques, simulation, and validation. We present several applications that
adopted spatial models using the systematic methodology presented in Section 2.

3. Conceptual Scheme for Spatial Models

This research focused on content analysis in a Bayesian spatial model to systematically
assess the content of a large volume of recorded information in this field. It aimed to
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provide an in-depth insight into the contributions and identify key research directions
and opportunities in the Bayesian spatial methodology. To accomplish this, we applied a
conventional approach to content analysis [30] by scrutinizing samples of the articles to
clearly define the characteristics that better explain the scope and richness of the literature,
identifying the key concepts and patterns. The first step was to cluster similar characteris-
tics. We analyzed all the articles, always following the idea of subsequent updates in the
clustering, that is new classes were added whenever new data that did not fit the defined
characteristics were found. This approach made room for the literature to be classified
without an a priori presumption.

Every Bayesian spatial analysis aims to estimate the spatial pattern over an extended
geographical region to identify regions with extreme realization. In Bayesian hierarchical
models, the spatial pattern is represented with a component that uses the same set of
smoothing parameters across the entire study region. This type of smoothing is referred to
as global smoothing. In some geographical settings, global smoothing may be inappropriate
due to the complexity of the geographical settings, and the spatial pattern is likely to exhibit
a localized behavior. Thus, localized regions are smoothed using different parameters,
and this is referred to as local smoothing [31].

In the review process, as a research methodology, we first classified each article into
one of the two disjoint classes, “theoretical” and “applied”. The theoretical methods
involve investigating the fundamental principles and reasons for the occurrence of an
event, random phenomenon, or process. On the contrary, applied research involves solving
a particular problem with known or accepted theories and principles.

3.1. Spatial Statistics Fields of Application

Bayesian spatial statistics is a useful tool to determine the dependence structure and
hidden patterns in space, through the prior knowledge and data likelihood. In some cases,
the hypotheses of interest of a random phenomenon do not directly relate to the effect of
spatial dependencies. However, it is crucial to adjust for spatial variation [32]. Adjustment
for spatial patterns in modeling random occurrence has been practiced across various
fields such as agriculture, medicine, biology, epidemiology, geography, geology, economics,
climatology, and ecology, among others [33]. Moreover, spatial dependence in agriculture
has long received consideration. Ronald A. Fisher identified spatial variations and used
them to establish (random) blocks in the experiments in order to mitigate the effect of
spatial dependencies in a randomized experimental design [25,34].

In many biological and medical experiments, such as gene classification and brain
mapping, the randomized blocking technique may not be a viable alternative. Moreover,
in demography, disease mapping, image analysis, remote sensing, manufacturing engi-
neering, and species detection, the variation due to spatial proximity cannot be neglected.
It may result in bias and inconsistent estimates. Responses at a close range tend to have
a similar behavior and variation. The homogeneity of the variation depreciates with the
increased distance. An efficient procedure to tackle the effect of spatial proximity is to
consider random field statistical models. Random field statistical models, known as spatial
models, describe the distribution of a random phenomenon over a spatial domain.

Spatial models have long been applied in various fields. In 1949, Isard described the
general theory of the spatial formation of economic activities focusing on the geographic
distribution of the costs, prices, and location of industries [35]. Spatial statistics applied
to economics, often referred to as spatial econometrics, have gained more attention in
recent years to analyze economic data over a wide range of spatial domains [36]. Similarly,
in 1950, D.A. Krige took advantage of nearby variations to pursue the spatial prediction
of the gold distribution in South Africa, basing the predictions practically on lognormal
de Wijsian spatial models [37]. In epidemiology and public health, spatial statistics have
gained increasing importance in predicting disease outbreaks [38–42]. The problems that
arose in these fields motivated several intuitions to improve the existing spatial models in
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the literature. Some of the most advanced models identify, for example, spatial risk factors,
disease surveillance, and spatial predictive models [43].

In this research, the application fields were classified into five major groups: 1. biolog-
ical and medicine: these include research in biology, medicine, epidemiology, and public
health; 2. economics and humanity: these include economics, demography, criminology,
accident analysis; 3. physical science and engineering; 4. agricultural and environmental
science; 5. sports.

Spatial statistical models play a key role in determining the spatial pattern or quan-
tifying the relative positions of biological components, such as DNA, involved in some
biological functions. Some examples include the study of the relative positioning of pri-
mordial and growing follicles in mice to identify the likely source of some regulatory
muscles [44]; determine the spatial patterns, relative position, and interaction of Arabidop-
sis thaliana heterochromatin [45]; for molecular profiling using the Bayesian hierarchical
negative binomial distribution for diagnoses and treatment procedures [46]. Moreover,
it is useful for disease mapping to determine the onset of an epidemic disease. A recent
application includes the analysis of the mortality rate of COVID-19 in Spain and Italy using
a Gaussian process to explain the spatial pattern [47,48]; the spatial mapping of schistoso-
miasis in Tanzania to determine the prevalence and spatial pattern [49]. It is also considered
to be a powerful tool for image analysis in the medical field. An example includes the
multivariate spatial model for characterizing neuroimaging data with a linear combination
of multiscale basis functions to explore traits or symptoms in brain disorders [50].

Bayesian spatial statistics has been embraced in economics to identify the spatial
pattern of a household’s share of economic distress, to understand the formation of new
business, and in studies on consumer and producer behavior. It has been used to identify
the impact of economic, social, and demographic factors on the spatial variability of the
household share of economic distress [51]; identify the spatial structure of the calls to the
Portuguese health line, accounting for the demographics, socio-economic information,
and characteristics of the health systems [52]; identify clustering in severe mobility crash
risk and diagnosing of active transportation safety issues [53]. Moreover, it has been
employed in the analysis of spatial patterns and hotspot detection of violent and property
crimes at a small spatial scale in Toronto, Canada [54]; map the main features of fertility,
such as timing, pace, and scale, and to detect spatial disparity in fertility transition in
Brazil [55].

Moreover, spatial statistics has been increasingly applied in physical and environmen-
tal sciences. It has been used to provide estimates for the curvature of a railway sleeper
supported on compacted ballast, through the multiple output Gaussian process to guide
inference in unobserved regions [56]; to quantify the uncertainty, in spatially varying
material parameters, such as polycrystalline, through a Gaussian random field [57,58]; to
study material properties and spatial variability in elastostatics [59]. In environmental
science, it has been used in extreme value analysis to quantify the uncertainty associated
with an increased risk of flooding in Great Britain [60]; to determine the spatial pattern
of the association of socioeconomic factors to Japanese encephalitis; to understand the
seasonal effect and spatial variability in yield maps in farm precision in Southeastern
Australia [61]; to determine the expected number of scores in a golf game [62].

Gaussian Markov random field models have a long history in image analysis [63,64].
Recently, they have been gaining attention in the machine-learning community for image
processing [65,66]. For instance, Per Siden and Fredrik Lindsten established a connection
between Convolutional Neural Networks (CNNs) and a Gaussian Markov random field,
which the authors applied on temperature data [66]. Vemulapalli et al. [67] proposed a deep
network architecture based on the Gaussian conditional random field for image denoising.
Moreover, Lee et al. [68] developed an exact equivalence of infinitely wide neural networks
and Gaussian processes and further linked the performance of these Gaussian processes to
the theory of signal propagation in random neural networks.
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3.2. Spatial Domains

Geographic reference data, also known as spatial data, is a collection of a stochastic
process indexed by space. In other words, suppose Z(s) is a random process observed
at location s, and the set Z(s) ≡ {z(s), s ∈ D} is spatial data, in which D, a subset of
Rd, is usually, but not necessarily) fixed and represents a spatial domain. According to
Blangiardo [69], the spatial domains are distinguished as follows:

• Area or lattice data: This is a simple way to represent spatial data in the domain
D. In this type of spatial domain, z(s) is a random aggregated realization across an
area s of distinct boundaries. For area data, the boundaries are irregular, such as
administrative divisions, whereas for the lattice, the boundaries are a regular division
of D. For simplicity, it may be necessary to aggregate other types of spatial domain
realizations to form area or lattice data. This process may sometimes be referred to as
a discretization of D;

• Geostatistical or point-reference data: z(s) is a realization at a specific location s in a
continuous spatial domain D. Location s is considered to be a coordinate made up of
longitudes and latitudes and sometimes includes altitudes. Location s could also be
represented in Cartesian coordinates;

• Spatial point pattern: Realization z(s) represents the occurrence or nonoccurrence
of an event at location s. In this case, the location itself is considered to be random.
The random realization is a location indicator of the presence or absence of a phe-
nomenon of interest in the domain D. In agriculture, for example, the interest may be
the distribution of a specific tree species, in which each realization is the presence or
absence of the tree species in domain D. In epidemiology, the realization may be the
house address of a patient that has a particular disease [70,71].

For instance, Reference [60] adopted a Bayesian spatial model on lattice data to identify
patterns for the risk of flooding in Britain; Reference [72] adopted the SPDE model on
geostatistical data to predict the spatial occurrence of fish species; Reference [73] proposed
a Bayesian technique to estimate the spatial point pattern of American sweetgum trees and
Swedish pines.

3.3. Spatial Priors

A prior distribution needs to be elicited or vaguely specified for the posterior dis-
tribution’s complete estimation in an empirical or full Bayesian approach. For example,
in hierarchical models, the prior distribution assumed for a random field (spatial compo-
nent) γ is termed a spatial model. We encountered several types of spatial models (priors)
in the literature, and most were a subclass of the Gaussian Markov Random Field (GMRF)
defined as a Gaussian random field with the Markov property [71,74]. The choice of spatial
model is strongly informed by the study objective and available information. For example,
for area spatial data, the CAR family is a good choice to account for cluster heterogeneity,
whereas the SPDE is appropriate for geostatistical data for identifying hotspots.

In the literature, due to the large class of priors, we collapsed the encountered priors
based on the most frequently used and seldom-used classes, which are the Conditional
Autoregressive (CAR), Besag–York–Mollie (BYM), Leroux CAR, Stochastic Partial Differential
Equation (SPDE), Gaussian Markov Random Fields (GMRF), non-GMRF, and others. See Table 1
for a summary. The details of each model are presented in Appendix A.2. The Lorex CAR
class comprises priors with similar specifications, such as Dean’s and Simpson’s CAR
models. The GMRF class consists of GMRF priors except for the CAR family and the
SPDE stated earlier. The hyperparameters of these stochastic processes are either elicited,
drawn from the previous study, or assigned as a weakly informative or objective prior
distribution. For examples of elicitation technique, see [75,76], and for the objective prior
technique, see [77]. Moreover, Simpson et al. [78] developed a framework to construct
informative priors called the Penalized Complexity (PC) prior. The PC prior has a single
parameter that is subjectively set to control the amount of flexibility allowed in the model.
The construction of the PC prior for the BYM spatial model and Student-t process was
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described in [78]. The PC prior for the Gaussian random fields model is implemented in
R-INLA [79].

Table 1. Summary of the spatial models and their variations.

Spatial Smoothing Gaussian Process Non-Gaussian Process

Spatial Model Article Global Local GMRF Non-GMRF Parametric Semiparametric Nonparametric

CAR
dissimilarity

Lee and Mitchell,
2012 [31] 3 3 3

Intrinsic
CAR/BYM

Besag et al.,
1991 [80] 3 3 3

Proper CAR Besag, 1974 [64] 3 3 3

Leroux Leroux et al.,
2000 [81] 3 3 3

Geostatistical Clements et al.,
2006 [49] 3 3 3

Globalspline Lee and Durbán
(2009) [82] 3 3 3

Simpson CAR Simpson et al. [78] 3 3 3

Dean’s CAR Dean et al. [83] 3 3 3

SPDE
Lindgren, Rue and

Lindström,
2011 [17]

3 3 3

Mixture Model Green and
Richardson [84] 3 3 3

Spatial Partition
Model

Leonhard and
Raßer [18] 3 3 3

Asymmetric
Laplace

Kuzobowski and
Pogorski [85] 3 3 3

Student-t Fonseca [86] 3 3 3

Log-Gamma Bradley et al. [87] 3 3 3

Dirichlet Gelfand et al.,
2005 [88] 3 3 3

The non-GMRF is a large class that consists of nontrivial prior models that use a
spatial correlation function to determine the covariance matrix of the spatial process
in a continuous space, including the asymmetric Laplace, log-Gamma, skewed normal,
Student-t process, and Dirichlet process. We created a class called Others to accommodate
unspecified models and those that do not belong to the aforementioned classes. Each spatial
model is discussed in Appendix A.2. For instance, References [89,90] adopted ICAR and
the BYM model to map the spatial pattern of tuberculosis in South Africa and malnutrition
in Nigeria; Reference [91] adopted a Bayesian hierarchical spatial quantile regression model
with an asymmetric Laplace spatial component to determine the risk factors of the radon-
222 noble gas, which arises naturally from uranium decays; Reference [72] adopted the
SPDE model to predict the spatial occurrence of fish species.

Checking for prior data conflict in Bayesian spatial statistics is an important tech-
nique to measure the adequacy of the adopted prior information and the data likelihood.
The check designs some statistic and compares its observed values to the reference dis-
tribution derived from the prior predictive density of the data [92]. Prior conflict occurs
whenever the prior assigns most of its mass to regions of the parameter space that lie in the
tail of the likelihood. In this case, the source of prior knowledge conflicts with the observed
information. Nott et al. [92] proposed a technique that deals with prior expansion for prior
data conflict checking. Egidi et al. [93] proposed an automatic elicited prior with a mixture
of informative and uninformative components, which favors uninformative components
whenever prior conflict occurs.
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A response variable is a quantity used to describe a random process to relate it
to a deterministic process mathematically. In statistical modeling, the most frequently
used response variables are the discrete (categorical), ordinal, and continuous variables.
The types of variables used in modeling a random phenomenon are intuitive from the
process under study. The statistical models used to describe a random phenomenon vary
depending on the quantity and parameters of interest.

The Bernoulli distribution is often used for modeling the random phenomenon of two
possible outcomes. The Binomial, negative binomial, hypergeometric, and Poisson distri-
butions are frequently used for modeling count cases such as disease occurrence, wildlife,
signals, and more [46,94]. The Poisson distribution has been used to approximate binomial
distributions for a large sample size [95,96]. The equality of the mean to variance restriction
imposed by the Poisson distribution considers the negative binomial a better choice to
model a random variable that exhibits overdispersion [97]. The multinomial distribution is
often used to model a phenomenon of more than two categories usually encountered in
biological experiments [98]. It is a generalization of the binomial distribution.

In the continuous case, a large class of distributions of the exponential family is used,
such as Gaussian, exponential, Student-t, Weibull, Gamma, and more. However, according
to the central limit theorem, the Gaussian distribution is used to approximate both discrete
and continuous distributions for large sample sizes [99].

An analyst’s interest is to quantify the association of a random phenomenon and
explanatory processes, describing a random phenomenon according to a set of explanatory
variables. In the literature, the statistical models encountered are the generalized linear
mixed model, the hierarchical model, the survival model, and spatial econometrics models.
The details of each model are presented in Appendix A. Additionally, we created the pro-
posed, unspeci f ied and others classes to accommodate the proposed and validated models,
as well as unspecified models. The class of others accommodates statistical models outside
the above-listed classes. For instance, Reference [91] adopted a generalized hierarchical
mixed model to determine the risk factors of the radon-222 noble gas; Reference [90] used a
generalized hierarchical mixed model to determine the impact of carbon (IV) oxide on the
prevalence of malnutrition; Reference [100] adopted a survival statistical model to map the
prevalence of hospitalization due to Dengue in Wahidin Hospital in Makassar, Indonesia;
Reference [52] adopted the spatial econometrics model (lag-model) to estimate the global
spatial correlation of the calls to the Portuguese national health line.

An appropriate prior distribution specification in a Bayesian inference continues to
be a challenge in various fields of application. A prior distribution is associated with the
representation of the uncertainty of the parameters of interest before data are observed.
The elicitation of an appropriate prior distribution is a nontrivial task [101], and such
challenges are accumulated in spatial models due to the large number of associated pa-
rameters involved. In our review, we came across four main approaches. One way to set
a prior distribution is to assume ignorance about the appropriate model, that is P(θ ∝ 1),
and allow the data model to carry all the information. Such an approach is not always
advantageous because inference on the parameters can be improved by performing prior
elicitation based on identified characteristics or expert opinion. The elicitation procedure
is termed the elicited prior, which leads to another method, known as prior elicitation.
In elicited priors, convenient prior distributions are sometimes a choice and have spread
across the literature and been set as default priors in most simulation packages. As a result,
subsequent authors used such prior distributions verbatim. However, several authors
did not explicitly state the type of prior used and were classified as not available. For
instance, Reference [8] elicited prior information from expert opinion, from a meta-analysis
of neuroimaging data and a parapsychologist to perform a Bayesian spatial point process
to provide an interpretable model for brain imagining studies, and Reference [102] elicited
prior knowledge from experience for predicting a particular matter.
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3.4. Computational Techniques

In Bayesian inference, the prior information expressed through the prior distribution
P(θ) and the data likelihood P(y|θ) is used for inferences. In simple or convenient cases,
the given posterior distribution is represented by Equation (5). However, in practice,
assessing the posterior distribution to make inferences is not a trivial task, because it
usually contains compound integrands with complicated and analytically nonintegrable
support [103]. Thus, authors have explored different approaches to make inferences.
In the literature, we encountered several computation techniques and classified them into
the Markov Chain Monte Carlo (MCMC), Integrated Nested Laplace Approximation (INLA),
Expectation–Maximization (EM), and Maximum (Penalized quasi-) likelihood method classes.
Details of these techniques are presented in Appendix A. The MCMC class comprises all
numerical approximation that uses the Monte Carlo method. Moreover, the unspecified
class was added to accommodate articles that neither discussed nor stated the approach
used in the estimation procedure. The others class comprises computation techniques that
do not fit into the defined classes. For instance, Reference [90] utilized the INLA interface
for estimating the parameters of a Gaussian latent field model; Reference [91] utilized
the MCMC approach to estimate quantile regression parameters; Reference [104] utilized
the EM algorithm to perform a Bayesian interpolation of nitrogen dioxide, ozone, sulfur
dioxide, and surface iron in public health units in Ontario; Reference [105] compared the
performance of maximum likelihood estimation with different computation techniques for
spatial scan statistics.

3.5. Simulation Study and Validation

A simulation study is a systematic and scientific computer procedure that involves
fixing model parameters to generate data by pseudo-random sampling [106]. It comprises
two main steps: data generation and estimation. In the first step, a set of parameters is
fixed and used to generate pseudo-random data. In the second step, the generated data
are fed back to the model to estimate the “unknown” parameters and check for bias and
model error.

A simulation study is usually carried out for proposed models and methods. The pa-
pers reviewed were classified into two: “yes”, if the paper contained statistical simulation
studies, and “no” if it did not.

In addition to the simulation studies, we also investigated how Bayesian spatial mod-
els were validated using real data. This is a procedure to check overfitting or underfitting.
A model overfits if it performs well in the training set and badly in the test set, whereas it
underfits if it performs poorly in the training set. A classical approach to cross-validation
is to form a disjoint subset of the whole data into training and testing sets. The model is fit
into the former and tested on the later set. Doing this process k times until all observations
in the dataset participate in training and testing once is called k-fold cross-validation.
The whole data are split into k disjoint subsets, in which the combined k− 1 sets serve
as the training set and the remaining set of size nk = n/k serves as the test set, where
n is the data size. A particular case of the k-fold cross-validation is the leave-one-out
cross-validation, in which one observation serves as the test set and the remainder n− 1
serves as the training set. After going through all subsets, the validation measures are
statistically combined to make a valid conclusion.

Since the spatial models are frequently modeled in a Bayesian framework, we in-
cluded the posterior predictive check [107] class. In a predictive posterior check, a statistical
test is chosen and computed for the observed data process. The same statistic is com-
puted for replicated posterior predictions of the process. The model is said to present a
good fit if the posterior prediction average is close to the statistic test for the observed
data [103]. We added the none or not applicable class to accommodate papers that did not
conduct cross-validation and others to accommodate validation methods not mentioned
above. For instance, Reference [104] adopted leave-one-spatial-location-out to validate the
performance of the proposed model for multivariate interpolation of air pollutant gases in
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the health unit of Ontario; Reference [108] utilized the k-fold cross-validation method to
examine the robustness of the adopted model to determine the geographical inequalities
and nutritional status of women and children in Afghanistan; Reference [8] assessed a
Bayesian point process model’s performance to provide an interpretable model for brain
imaging studies.

4. Analyses

As described in the search procedure section, a total of 552 articles were selected after
applying the exclusion criteria (duplication and context). After careful analysis, the papers
were categorized into the first class, labeled as being only an applied paper, theoretical,
or both, in which 4 (1%) of the papers showed no application (only theoretical with synthetic
data), 188 (34%) showed an improvement in the field with real-world application, and 360
(65%) only applied the existing methodologies.

The papers were subdivided into five classes of application fields: agricultural and
environmental science, economics and humanities, medical science, physical science and engineering,
and other. Three fields held the majority of the publications, which were agricultural and
environmental science (30.1%), economics and humanities (30.6%), and medical science, which
includes epidemiology, (33.7%). Moreover, the spatial domain used was also taken into
account: area/lattice, geostatistical, and spatial point patterns.

The area/lattice occurred in 65.6% and geostatistical in 31.2% of the reviewed papers,
and in combination, they held 95.8% of the publications. It is important to note that more
than one spatial domain could be used in an article, such as the 1% observed in this review.
This procedure is common when a continuous spatial domain is discretized in order to
lower the computational burden.

The core part of this review is the spatial priors (models) used in the literature.
Whereas the literature contains numerous spatial priors applied in various problems
across various research fields, this systematic review only presents models encountered
during the review. Gelfand et al. [109] pointed out the first incorporation of a spatial prior
and the gain in the structure of this modeling.

Table 1 summarizes the main spatial models found, which are classified into groups.
Additionally, Table 2 presents the frequency distribution of the spatial models adopted in
the literature versus the statistical modeling, showing that the statistical model most often
adopted is the Generalized Linear Mixed Model (GLMM) and, as for the spatial priors,
the CAR variation.
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Table 2. Crosstab spatial priors used versus the statistical model adopted. The GLMM with a CAR spatial prior family for the spatial component is the most frequently used modeling
structure in the literature, though some alternatives have been growing in the past decade such as the GLMM framework combined with non-GMRF, GLMM with SPDE, and spatial
autoregressive model define dependence matrices.

GLMM Nonparametric Spatial Autoregressive Proposed Survival Models Not Stated Other Total

Conditional Autoregressive models (CARs) 227 1 1 0 9 4 3 245

Non-Gaussian Markov Random Field (non-GMRF) 101 0 49 5 1 1 16 173

Gaussian Markov Random Field (GMRF) 19 0 0 0 0 0 3 22

Stochastic Partial Differential Equations (SPDE) 20 0 0 0 0 0 0 20

Nonparametric 4 0 0 0 0 1 2 7

Not Stated 30 0 2 0 0 9 4 45

New Methodology 17 0 0 0 0 0 23 40

Total 418 1 52 5 10 15 51 552
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Among these spatial models are the CAR family, generally used for spatial area/network
domains, Stochastic Partial Differential Equations (SPDEs), Gaussian Markov Random Field
(GMRF), except for the CAR family, models with an author-specific defined covariance
structure, which are often used for a continuous spatial domain, and finally, nonpara-
metric methods. The CAR family appeared in 44.2% of the published articles reviewed.
From this percentage, the CAR and the BYM model appeared in 96.3%. The SPDE ap-
peared in about 3.9%, and the nonparametric procedure appeared in 1.3% of the articles
reviewed. The GMRF, exempting the CAR family and the SPDE, appeared in the literature
in 4.0% of them. Consequently, several spatial model applications are specified through
the type of covariance structure adopted, based on prior knowledge of the interactions
among the phenomena of interest, which appeared in 31.3% of the reviewed articles. Only
a single documentation of the application of spatial models on robotic technology was
encountered [110]. Other models that did not fit into any of these groups appeared in 7.2%,
and 9.3% of the articles did not describe or state the type of model adopted.

The observation or response variable’s nature dictates the statistical model class to be
adopted to make inferences. In our search, as shown in Figure 3, discrete (countable) was
the most used, followed by the continuous and binary response variable types.

Figure 3. Distribution of the response variable type. Most published studies presented discrete
(countable) response variables. The discrete response variable is frequently used in disease prevalence,
wildlife population studies, accident analysis, crime analysis, etc.

In addition, the most widely adopted statistical model for spatial analysis was GLMM,
considering the Bayesian paradigm class. Due to the integrated complexity of the posterior
marginal distribution, the MCMC estimation method is the most frequently adopted
numerical integration, as depicted in Figure 4.



Axioms 2021, 10, 307 17 of 38

Figure 4. Class of models often using spatial modeling and its numerical estimation method distri-
bution. Given the class of GLMM/hierarchical models, Markov Chain Monte Carlo (MCMC) is the
most used intensive computation technique.

Maybe the most critical question regarding spatial models is related to specifying
the spatial prior. Elucidating events in an area, sometimes even under a few frequencies,
is desirable through direct probabilistic statements that may unravel hidden patterns [9].
The spatial interdependence can be analyzed through spatial correlation, and using the
adoption between spatial fields and the Bayesian approach allows the knowledge of the
information to be allocated in the modeling along with the information contained in the
acquired data. Thus, the results obtained in this systematic review showed that the expert’s
knowledge was used in conjunction with the data information (30.43%), as shown in
Table 3, although this can be better explored.

Table 3. Model prior specified.

Prior Specified Freq.

Elicited from experts or from the problem 168
No explicit use or reference/not applicable 101

Used verbatim from the literature 166
Vague prior (noninformative) 119

The authors who were the most recurrent in the literature over these past 20 years
were James Law, A.C.A. Clements, and Hei Huang. Figure 5 shows the relevant authors in
the Bayesian spatial models’ publication field.
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Figure 5. Most frequent authors on the Bayesian spatial models. The top graph is a tag cloud for the
50 most frequent authors over the past 20 years. The bottom graph is a bar plot displaying the Top
10 authors and their relative frequencies. The most frequently appearing authors are Jane Law and
Archie C. A. Clements. These authors are followed, in order, by Wenbiao Hu, M. Grazia Pennino,
Brian J. Reich, Andrew B. Lawson, Antonio López-Quílez, Montserrat Fuentes, and Kerrie Mengersen.

The top five journals that contained the most papers related to the subject under study
(combining the theoretical methodology with publications of real-world applications) were
Spatial and Spatio-temporal Epidemiology (# 15), Accident Analysis and Prevention (# 14),
PLoS ONE (# 14), Spatial Statistics (# 11), and Environmentrics (# 10), whereas, across time,
the spatial modeling publication rate using the Bayesian approach proliferated, as shown
in Figure 6. The year 2020 covers only the first half of the year.
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Figure 6. Growth in scientific publications related to topics in Bayesian spatial models from 2001 to
June 2020. There was a positive growth over the 20 years considered. The growth could be associated
with the improvement in computational tools and data collection.

5. Concluding Remarks

Spatial statistics has gained tremendous attention in recent years due to the efficiency
in collecting spatial dependence data. Neglecting such dependencies may result in bias
and, consequently, lead to the wrong inference. The Bayesian approach for analyzing
spatial data often outperforms the frequentist approach, given that the prior information
is taken into account. In a Bayesian framework, spatial priors play a significant role in
accounting for space dependencies. With the consistency in the improvement of data
collection and computational tools in analyzing spatial data, Bayesian spatial statistics will
further penetrate numerous fields and become one of the leading tools for analyzing data.

Many authors account for spatial dependencies assuming a Gaussian random field.
In many real data applications, the Gaussian random field may be inappropriate, especially
in extreme data, skewed data, and data with spikes and heavy tails. Examining a different
random field such as the Laplace, Student-t, Pareto, Nakagami-m, and more, may improve
inference. A significant issue of assuming these distributions is the nontrivial method of
eliciting or fixing a prior distribution for the model parameters. For instance, the prior
distribution for the degrees of freedom of the Student-t distribution is not a trivial task.
However, the objective prior and the PC prior were developed in [77,78], respectively.
Regardless of the prior distribution, eliciting priors for the parameters is critical, and when
wrongly assumed, this could lead to misleading results and inference. In order to circum-
vent them, which is also not a trivial task, it is essential to consider objective priors for the
random field parameters and hyperparameters to improve inference.

The Bayesian spatial literature lacks sufficient information on the objective priors,
such as Jeffery’s prior, reference priors, matching priors, and more. These priors stand
out to elicit experts’ ideas that could improve the inferences of the spatial dependencies.
Deriving an objective prior distribution for a spatial random field’s smoothing parameter
is currently an unaddressed problem that needs urgent attention.

The Markov property is a useful tool to lower the computational cost in Bayesian infer-
ential statistics by subjecting to the immediate neighbors’ spatial dependencies. However,
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the occurrence of some random phenomenon exhibits strong spatial dependencies beyond
the immediate neighbors, and truncating such a dependency structure would result in bias
and incorrect inferences. Moreover, there is an insufficient standard approach to determine
the covariance matrix structure of the spatial effects. Thus, spatial smoothing is not trivial
to compare across different models.

In neuroscience, the application of Bayesian spatial statistics to brain experiments has
been gaining interest [7,8,111,112]. The complexity of the brain structure has prevented the
application of classical spatial models. In other words, the primary assumption of spatial
contiguity in the analysis may result in incorrect inference due to the brain’s complexity.
Moreover, a response received at one location on the skull may be due to brain activity in
the opposite location. Beyond complexity, the dynamics of the body system of the subject
influences the experiments. Thus, accounting for such complex structures is a problem that
requires further study.

Despite the increasing availability of Big Data in the Internet of Things, the spatial
model has not received adequate attention as a classification algorithm and regression-
machine-learning model. Applications of machine-learning models to spatial data may
reveal hidden patterns and be applied to navigation problems efficiently by robotic technol-
ogy through information based on georeferencing [110], thus creating new lines of research.
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Appendix A

Appendix A.1

The coding of the characteristics was framed according to the conceptual classification
scheme developed by Hachicha and Ghorbel [113] and applied by Tiago et al. [103]. In this
framework, bias is limited to research data and clarifies reporting results and findings
to draw concrete conclusions. Such classification is useful for researchers as it provides
an overview of the research methodology’s application and can reveal research gaps in
the literature.

This review used a conceptual classification scheme of 10 items presented in Table A1.
For lucidity, each item in the classification scheme is discussed in details.
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Table A1. List of Questions for Conceptual Classification Scheme.

QUESTION 1 Is it only an application?

1.1 Yes
1.2 Both
1.3 No (only method)

QUESTION 2 What is the field of application?

2.1 Medical science
2.2 Economics and humanities
2.3 Physical science and engineering
2.4 Agricultural and environmental science
2.5 Sports

QUESTION 3 What spatial domain was employed?

3.1 Area or lattice
3.2 Geostatistical data
3.3 Spatial point patterns
3.4 Area and geostatistical data

QUESTION 4 What type of spatial priors are used?

4.1 Conditional Autoregressive (CAR)
4.2 Besag–York–Mollié (BYM)
4.3 Leroux CAR
4.4 Gaussian Markov random field (other specifications)
4.5 Covariance function (Not GMRF)
4.6 Other (new methodology/proposed)

QUESTION 5 What type of response variable is used?

5.1 Discrete (countable)
5.2 Continuous
5.3 Combined (mixed)
5.4 Ordinal

QUESTION 6 What is the statistical model used?

6.1 Generalize linear (mixed) model (or hierarchical models)
6.2 Survival and longitudinal models
6.3 Nonparametric models (machine-learning models)
6.4 Spatial econometrics
6.5 Proposed
6.6 Not stated
6.7 Other

QUESTION 7 How are model prior specified?

7.1 Vague prior (noninformative)
7.2 Used verbatim from the literature
7.3 Elicited from experts or from the problem
7.4 No explicit use or reference/not applicable

QUESTION 8 What is the estimation method applied?

8.1 Markov Chain Monte Carlo (MCMC)
8.2 Integrated Nested Laplace Approximation (INLA)
8.3 Expectation–Maximization (EM)
8.4 Maximum (penalized quasi-) likelihood method
8.5 Not stated
8.6 Other

QUESTION 9 Is the model validated through simulation?

9.1 Yes
9.2 No

QUESTION 10 Is the application validated through data-driven procedures?

10.1 Cross-validation and data splitting (K-fold/holdout)
10.2 Leave-One-Out Cross-Validation (LOOCV)
10.3 Posterior predictive check
10.4 Other
10.5 None or not applicable

In the following, we will present an overview of the primary spatial statistical models
explored in this systematic review.
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Appendix A.2. Class of the Gaussian Markov Random Field

In standard form, the covariance matrix of a Gaussian random field is positive definite
and often dense. This restriction makes it difficult to construct an appropriate covariance
matrix. Furthermore, the computational cost is high due to the cost of O(n3) to factorize the
covariance matrix [17]. In order to overcome the aforementioned challenges, a sparse co-
variance matrix of less computational cost needs to be constructed and closely approximate
the dense covariance matrix. A possible choice is to adopt a Markovian property on the
covariance matrix to have a GMRF approximation. It is a discreetly indexed finite random
vector that has a joint Gaussian distribution with a sparse precision matrix. Following the
definition given by Rue [114], the set Z(s) ∈ Rd over a spatial domain s ∈ D is said to
be a GMRF with respect to graph G(V, E), centered at µ and precision matrix Q > 0 and
density of the form:

π(Z|µ, Q) = (2π)−n/2|Q|1/2 exp
(−1

2
(z− µ)TQ(z− µ)

)
, (A1)

in which Qi,j 6= 0 if i and j are considered neighbors, V is a set of vertices, and ξ are the
edges of graph G representing spatial D. Usually, the covariance function is constructed in
a way that it is a function of the relative positions of location i and j in D. Q is considered
stationary when it is only a function of the distance between the locations in D. Let
δi = {z : z is a neighbor of i}, the full conditionals be given as:

π(zi|Z−i) = π(zi|δi), (A2)

for every zi ∈ Z, and Z−i is the vector Z excluding zi. Some of the subclasses of GMRF
identified in the literature for spatial smoothing are the proper and Intrinsic Conditional Au-
toregressive (ICAR), Besag–York-Mollie (BYM and BYM2), Leroux CAR, and Dean’s CAR.

–Conditional Autoregressive (CAR)
Let the spatial domain D be partitioned into n disjointed areas E such that D = ∪n

i=1Ei.
E could be regular or not, as in Lattice or area respectively. Let zi be a random variable
observed at Ei and the vector Z = (zi, . . . , zn)T with µ = (µ1, . . . , µn). Let Z−i be a (n− 1)
dimensional vector in a way that Z−i = (z1, . . . , zi−1, zi+1, . . . , zn)T , the full conditionals of
a proper CAR model are given as:

π(zi|δi, σ2, µi) ∼ N
(

µi + ∑
{j:zj∈δi}

cij(zj − µj), κ−2
i

)
, (A3)

in which δi = {z : z ∈ Ej is a neighbor of Ei, j = 1, 2, . . . , n}, κ−2
i > 0 ∀ i = 1, . . . , n and

cij is a function of the adjacency between Ei and Ej. To make π(◦) a proper distribution,
C = (cij) and κ are carefully chosen. A frequent choice for C is a function of contiguity
between the areas. Let A = (aij) be an n× n matrix, in a way that aii = 0, aij = 1 if zj ∈ δi
for i 6= j, and 0 otherwise. Notice that A is symmetric, since if Ej is a neighbor of Ei, then

Ei is a neighbor of Ej. We define cij = ρ
aij
di

, κ2 = di
σ2 and di = ∑j aij [64,114,115]. The full

conditionals and the joint distribution of (A3) are given by:

π(zi|δi, σ2, µi) ∼ N
(

µi + ρ ∑
{j:zj∈δi}

aij(zj − µj)

di
,

σ2

di

)
Z ∼ Nn

(
µ, σ2(I− C)−1M

)
,

(A4)
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in which M = diag( 1
d1

, . . . , 1
d1
). and |ρ| < 1 is chosen in a way that (I− C)−1 > 0. Besag,

York, and Mollie [80] proposed the intrinsic CAR (ICAR), by setting ρ = 1, then cij =
aij
di

.
The full conditionals of the ICAR:

π(zi|δi, σ2, µi) ∼ N
(

µi +
∑{j:zj∈δi} aij(zj − µj)

di
,

σ2

di

)
, (A5)

The model inferred that the conditional expectation of zi equals the weighted deviations of
its neighbors in addition to its mean.

–Besag–York–Mollie (BYM)
The BYM, proposed by Besag [80], is a variant of the CAR model that incorporates an

additional term to control for overdispersion in spatial data. Suppose z is partitioned in a
way that zi = ui + vi, the unstructured term v is modeled as:

vi ∼ N(0, σ2
v ), (A6)

and the structured component is modeled as ui ∼ ICAR. Thus,

Var(z|σu, σv) = σ2
vI+ σ2

u(I− C)−1M. (A7)

The BYM poses identifiable problem in a way that each observation is represented by ui
and vi, thus, only the sum ui + vi is identifiable [116]. Setting appropriate hyperparameters
is challenging. However, constraining zi to sum to zero allows the confounding problem to
be avoided and both components to be fitted.

–Dean’s Conditional Autoregressive
A reparameterized version of the BYM proposed by Dean et al. [83] and its covariance

matrix are given as:

z = σ(
√

φu +
√

1− φv),

Var(z|σu, σv) = σ2((1− φ)I+ φ(I− C)−1M),
(A8)

in which σu = σ2φ and σv = σ2(1− φ).
–Simpson Conditional Autoregressive
For the purpose of scaling and interpretability of the hyper prior, Simpson et al. [78]

proposed a modification of the BYM which avoids the problems posed by BYM model.
The combined random effect and the covariance matrix are given by,

z = σ(
√

φu∗ +
√

1− φv),

Var(z|σ) = σ2((1− φ)I+ φQ),
(A9)

in which u and v are as previously defined, σ > 0, φ ∈ [0, 1] and Q is the ICAR covariance
matrix such that Var(ui) ≈ 1.

–Leroux Conditional Autoregressive (Leroux CAR)
Leroux et al. [81] proposed a variant of the CAR model which, unlike the BYM, only

requires a single set of spatial component. The full conditionals is given by:

π(zi|δi, σ2, µi) ∼ N
(

µi +
ρ ∑{j:zj∈δi} aij(zj − µj) + (1− ρ)µ0

ρdi + 1− ρ
,

σ2

ρdi + 1− ρ

)
, (A10)

which is a limiting case of the ICAR model. The model avoids the identifiability problem
in the BYM model by the specification of a single hyper parameter for random effect [117].
The specification (A10) smooths the neighboring random effect weighted by ρ and the
global mean weighted by 1− ρ.
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–Conditional Autoregressive dissimilarity
The variations of the CAR model earlier discussed exhibit a global degree of spatial

smoothing. In many instances, a global smoothing may be inappropriate, especially in areas
that exhibit locally constrained spatial structure. Lee and Mitchell [31] proposed a CAR
dissimilarity to smooth area elevated risks which depend on local spatial parameters. It is
one out of many proposed local spatial smoothings, such as locally adaptive model [118],
localized conditional autoregressive [119], to number a few.

Appendix A.3. Class of Gaussian Non-Markov Random Field Models

Markov property is known to lighten the burden of factorizing a dense covariance
matrix. However, a random realization with a strong correlation structure outside its
neighborhoods can be poorly accounted for. Moreover, the discretization imposed by the
GMRF sometimes does not account for the presence of discontinuities in spatial domains.
These could be addressed by relaxing the Markov assumption and possibly allowing a
different distribution other than Gaussian.

–Spatial Weight Matrix
In spatial Econometrics, a weight matrix and a correlation parameter are often used

to specify a dependency structure among economic variables of interest observed at dif-
ferent spatial locations in a Spatial Lag Model (SLM) and Spatial Error Model (SER) [20].
The weight matrix is essential in the covariance matrix specification for parametric models,
such as the class of GMRF prior. The spatial weight configuration specification varies with
the relationships among geographical locations, such as spatial distance, interactions, near-
est neighbors, and contiguity. The specification is categorized into four: adjacency-based
weights, weight-based on geographical distance, the distance between covariate values,
and hybrid of geographical distance and covariates [23]. In most cases, nearby neighbors
to a spatial reference location receive higher weights compared to further neighbors. Al-
though the diagonal elements of the spatial weight matrix are universally accepted to be
set to zero [120], in the literature, there is no standard to define the weight matrix the
specification is dominated by choice of computational convenience [20].

–Spatial Covariance Function
In this section, we briefly discussed the frequently used stationary and isotopic corre-

lation functions to construct a valid correlation matrix for a random field in Geostatistical
models. A covariance function C(si, sj) is said to be stationary when C(si, sj) = C(si+l , sj+l)
for any lag l, and isotopic when it only depends on the distance si and sj. A covariance
function must be positive definite and symmetric.

Consider a Gaussian random field Z(s), such that the realizations {z(si), si ∈ D, i =
1, . . . , n}, D ⊆ R2 are of interest. Note that the information we seek can be described by the
mean E(Z(s)) and the covariance matrix Cov(si, sj). Thus, we could describe the mean by
a linear function of covariates, and the covariance matrix as Cov(si, sj) = σ2ρ(||si − |sj|), in
which ρ(||si − |sj|) is the correlation function.

Let d(si, sj) be Euclidean distance from site i to j. The four most commonly used
correlation function [71,74] are given by,
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Exponential : ρ(si, sj) = exp
(
− 3

d(si, sj)

r

)
,

Gaussian : ρ(si, sj) = exp
(
− 3

d(si, sj)
2

r2

)
,

Spherical : ρ(si, sj) =

1− 2
π

(
d(si ,sj)

r

√
1−

( d(si ,sj)
r

)2
+ sin−1(

d(si ,sj)
r

)
, d(si, sj) 6 r,

0, d(si, sj) > r

Matern : ρ(si, sj) =
1

Γ(v)2v−1

(
Sv

d(si, sj)

r

)v

Kv

(
Sv

d(si, sj)

r

)
,

(A11)

in which Kv is a modified Bessel function of the second kind of order v, Sv is the scaling
factor, and r > 0 defines a significant range of correlation for exponential, Gaussian,
and Matern correlation function. Whereas in spherical correlation function, r is defined
as the correlation length [74], and v is the smoothness parameter, which measures the
differentiability of the Gaussian random field [121].

–Skewed Gaussian random field
Skewed form of the Gaussian random field has been used to model a skewed air

pollution data. A skewed Gaussian random field cannot be defined in the same way as
a Gaussian random field due to its marginals’ dependence on its component parameter.
For condensed information, see [33,122,123].

–Geostatistical model
The geostatistical model incorporates an exponential distance decay on the average of

a Gaussian process in a geostatistical model given by:

zi ∼ N(µi, σ2),

µi = exp(−(φdij)
k),

(A12)

in which dij is the distance between points i and j, φ controls the decay rate and k is the
smoothing parameter. The decay rate is modeled as uni f orm(0.1, 6). However, the parame-
ter could be intuitively determined from the random process of interest [117]. Moreover,
other valid spatial covariance function could replace the exponential function.

–Stochastic Partial differential Equation (SPDE)
SPDE, proposed by Lindgren [17], enables fitting a GRF with a continuously and

smoothly decaying covariance function while gaining computation benefits from a GMRF
representation. It represents a continuous random field using a discretely indexed spatial
process. According to Blangiardo and Cemeletti [69], the SPDE model is defined as follows.
Let z(s) be as defined previously for continuous spatial points s ∈ D ⊂ Rd. The SPDE
model is given by:

(k2 − ∆)α/2τz(s) = W(s),

∆ = ∂
∂2s is the Laplacian, α controls the smoothness, τ controls the variance. W(s) assumes

a Gaussian spatial white noise process. However, W(s) can also assume a Laplace noise,
especially, when the data exhibit spikes and heavy tail. The solution to the aforementioned
differential equation is a stationary Gaussian Markov random field z(s) with Matern
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covariance structure σp(si, sj), in which p(si, sj) is a Matern correlation function between
site i and j as defined previously,

α = v +
d
2

,

σ2 =
Γ(v)

Γ(α)(4π)d/2k2v)τ2 ,

in which k = Sv
r , Sv, r and v are as previously defined in Equation (A11). The solution to

the SPDE model is approximated by a basis function representation defined on a trian-
gulation of the domain D. That is z(s) = ∑G

g=1 ϕg(s)x̃g, G is the total number of vertices
of the triangulation, {ϕ} is the set of basis function, and {x̃g} are zero-mean Gaussian
distributed weights.

Appendix A.4. Class of Non-Gaussian Random Fields Models

A non-Gaussian process has increasingly been useful for modeling extreme ill-behaved
random processes, such as predicting an earthquake and atmospheric temperature. This
section discussed the asymmetric Laplace process, inverse Wishart distribution, Pareto
process, and Dirichlet process.

–Asymmetric Laplace Process
Suppose Y(s) is an Asymmetric Laplace random vector with parameter p and τ,

AL(p, 0, τ). According to Kuzobowski and Pogorski [85] and Fontanella et al. [91] Y(s) can
be written as a sum of normal and exponential process, given by,

Yp(s) =

√
2ξ(s)

τp(1− p)
Z(s) +

1− 2p
p(1− p)

ξ(s),

Z(s) ∼ GP(0, ρz(s, s∗; θ)),

ξ(s) ∼ Gamma(1, τ),

(A13)

in which ρz(s, s∗; θ) is a valid spatial covariance function. Z(s) is a Gaussian random field
to account for spatial errors and it exists as a normal standard in its marginal form. ξ(s)
is marginally exponential distribution with rate τ, and it is conditionally independent of
Z(s).

Thus, the conditional distribution of Yp(s) given ξ(s) is given by,

Yp(s)|ξ(s) ∼ N

(
1− 2p

p(1− p)
ξ(s),

2
τp(1− p)

ξ(s)

)
. (A14)

Kristian and Alan [124] discussed approaches to model ξ(s) in a generalized quantile
regression. In the spatial case, they defined ξ(s) through CDF or copula transformation

by letting ξ(s) = − log(Φ(Vξ (s)))
τ = F−1

τ (Φ(Vξ(s))), in which Vξ(s) is, once again, a Gaus-
sian process with a valid spatial covariance, Φ is a standard normal CDF, and Fτ is an
exponential distribution CDF.

–Multivariate Log-Gamma process
Let matrix V ∈ Rn × Rn, and µ ∈ Rn. Let γ = (γ1, . . . , γn)

′
be an n mutually

independent log-Gamma random variables with corresponding shape and scale parameter
κ = (κ1, . . . , κn)

′
and α = (α1, . . . , αn)

′
respectively. That is γi ∼ LG(κi, αi). According

to Bradley et al. [87], a n dimensional vector q = µ + Vγ is a multivariate log-Gamma
random variable and its distribution, denoted by MLG(µ, V , κ, α), mean and variance are
given by,
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f (q|µ, V, κ, α) =
1∣∣VV′
∣∣1/2

(
n

∏
i=1

α
κi
i

Γ(κi)

)
exp

[
κ
′
V−1(q− µ)− α

′
exp{V−1(q− µ)}

]
; q ∈ Rn,

E(q) = µ + V(ω0(κ)− log(α)),

Cov(q) = V diag(ω1(κ)) V
′
,

(A15)

in which |A| is a determinant of a matrix A.
Consider a spatial random process Z(s) distributed as a multivariate log-Gamma,

Yang et al. [125], and Hu and Bradley [126] described Z(s)|θ, κ, α ∼ MLG(µ,Σ1/2, κI, αI),
in which Σ = σ2ρ(θ, d(s, s∗)) is a valid spatial covariance matrix, ρ(θ, d(s, s∗)) is a correla-
tion function, d(s, s∗) is a function of location s and s∗, θ is a vector of some parameters
of interest, and I is an identity matrix of appropriate dimension. An appropriate prior
distribution is assigned to α and κ.

–Student-t Process
Some random processes exhibit heavy tail property, which may be inappropriate for

using a Gaussian distribution. The heavy tail property of Student-t distribution enables
extreme observations to be captured. Hence, adopting Student-t distribution to model
heavy tail spatial random process improves uncertainty quantification. Suppose Z(s),
as defined previously, is a random process that exhibits heavy tail property, observed at
location s ∈ D. This can be represented by setting Z(s) to be distributed as a centered
multivariate Student-t distribution Z(s) ∼ tn(0, Σ, v), in which Σ is a covariance matrix
which is determined by a valid covariance function. The i, jth element of Σ is given by

v
v−2 Cov(Z(si), Z(sj)), and v is the degree of freedom. The Σ is used to account for spatial
dependencies. Moreover, the covariance matrix can further account for spatially structured
and unstructured (nugget) effects [127]. The main challenge of the Student-t process is
the difficulty of assigning appropriate prior specification on v to make inferences in a
Bayesian analysis. Fonseca [86] derived a Jeffreys-rule before v, which leads to a proper
posterior distribution. Moreover, Ordoñez [77] extended it to a spatial domain and derived
a reference prior to the joint spatial hyperparameter and the degrees of freedom v.

–Spatial Mixture model
Green and Richardson [84] broaden the application of hidden Markov models for the

random component zi by extending it to a spatial domain. It uses the model benefits of the
Hidden Potts model. The allocation of the mixture components to clusters uses a spatial
dependence structure, and the numbers of clusters are considered to be random. Suppose
z is a spatial random field, according to Best and Thomson [128], the model specification is
given in (A16). Areas estimated to belong to the same clusters do not need to be contiguous,

zi = log(ηwi)
, i = 1, 2, . . . , n,

wi ∈ {1, 2, . . . , k}
p(w|ψ, k) = exp(ψU(w)− δk(ψ))

ηj ∼ Gamma(α, β), j = 1, 2, . . . , k,

k ∼ Uni f orm(1, cmax),

(A16)

in which ψ > 0, cmax is the upper bound of the number of clusters, U(w) = ∑i∼i′ I[zi =

zi′ ] is the number of the same labels pairs to i in a neighboring area i
′ 6= i, parameter

ηj is associated with each component, and δw(ψ) = log(∑w∈{1,2,...,k}n expψU(w)) is the
normalizing constant, in which the sum is the total amount of possible ways for the
allocation for the n areas. The estimation of the numbers of clusters or components
is obtained through reversible jump Markov chain Monte Carlo. Notice that p(w|ψ, k)
represents the probability function of the Potts model [129].
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–Spatial Partition Model
Leonhard and Raßer [18] proposed an approach for cluster detection, implemented

using the reversible jump Markov chain Monte Carlo. The location of clusters, the number
of clusters, and the random process are unknown. Best and Thomson [128] summarized
the model as follows. A random number k areas are selected as clusters, gj, j = 1, 2, . . . , k.
Conditioning on these k areas, the remaining areas are assigned to their closest clusters
j ∈ {1, 2, . . . , k}. For a given cluster k, the positioning of clusters is assumed to be equally
probable. All areas are assumed to be contiguous, unlike the mixture model. The model
specification is given by,

zi = ηγi , i = 1, 2, . . . , n,

γi ∈ {1, 2, . . . , k}
log(ηj) ∼ N(α, σ2), j = 1, 2, . . . , k,

k ∼ Uni f orm(1, cmax) or Geometry,

(A17)

in which z is a random field, and parameter ηj is associated with each distinct geo-
graphic cluster.

–Global Spline Mode
Similarly to spatial models for area data, the spatial spline model assumes that each

random field is centered on the centroid of a specific area in spatial domain D. Aiming
to separate a global geographical trend and local spatial trends, Lee and Durbán [82]
proposed a two-dimensional P-spline at the centroids of each area in D and this was further
extended to incorporate a random effect which is modeled using a CAR model. It was
termed smooth-CAR models. According to Lee and Durbán, the spatial P-spline model
is described as follows. Suppose that (s1i, s2j, zij) are normally distributed spatial data,
in which s1i, s2j are respectively the longitude and latitude of the ith centroid, and zij is the
response variable. The spline model is defined as:

z = f (s1, s2) + ε = Bθ+ ε,

in which θ is a vector of coefficients, B is a regression basis constructed from the coordinates
s1 and s2, and ε ∼ N(0, σ2I). Then, the P-spline approach penalizes the squared error loss
with a penalty matrix P depending on λ. That is,

S(θ; z, λ) = (z− Bθ)
′
(z− Bθ) + θ

′
Pθ.

When observed data violates the normality assumption and generally belongs to an
exponential family with link function g, and η = g(µ) = Bθ with penalized sum of squares
lp(θ) = l(θ) + θ

′
Pθ, in which l(θ) is the data likelihood. The penalized score is given as:

(B
′
W̃δB + P)θ̂ = B

′
W̃δBθ̃+ B

′
(y− µ̃),

in which Wδ is a diagonal matrix with element wii =
(

∂ηi
∂µi

)2
var(yi), and terms with tilde

represent an approximate solution and terms with hat are the improved approximation.
–Dirichlet Process (DP)
Dirichlet process is a random process with sample functions almost certainly a proba-

bility measure proposed by Ferguson [130]. In the Bayesian framework, DP is a technique
of analyzing nonparametric problems [131]. Let {Z(s) : s ∈ D}, D ⊂ Rd be the realizations
with replicates of a spatial random field at distinct locations s. Gelfand et al. [88] described
the spatial Dirichlet process as follows. Let Zt = (Zt(s1), . . . , Zt(sn))

′
, in which t represents

replicates at site si. A Dirichlet process is a random probability measure defined on a mea-
surable space (Ω,B), denoted by DP(vG0), in which v > 0 is the precision parameter and
Go is a specific base probability distribution over (Ω,B). Let ki, i = 1, 2, . . . be independent
and identically distributed Beta(1, v). The resulting random process for Z(s) from Dirichlet
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process DP(vG0) defined on (Ω,B) can be written as ∑∞
i=1 λiδθi,D , in which δk represents

a point mass at k and λ1 = k1, λi = ki ∏i−1
j=1(1− k j), i = 2, 3, . . . , and {θi(s) : s ∈ D}

are realizations from base probability G0 which can possibly be a stationary Gaussian
process. Notice that the DP process is independent, however, MacEachern [132] relaxed
this condition by deriving the dependent DP. Moreover, Gelfand et al. [88] extended the
dependent DP to account for spatial dependence. The property that the DP process is
almost certainly discrete restricts its applications to a wide class of continuous problems.
Hence, Antoniak [131] derived a mixtures of DP to circumvent the problems, and thus
extended it to handle continuous cases.

Appendix A.5. Statistical Models

–Generalized Linear Mixed Model
A classical linear model formulation is given by:

yi ∼ N(µi, σ2)

yi = β0 +
J

∑
j=1

βix1i + εi

εi ∼ N(0, σ2), i = 1, 2, . . . n

E(yi|µi) = µi

= β0 +
J

∑
j=1

βix1i,

(A18)

and the matrix form is given by,

Y = Xβ + ε, (A19)

in which the latent field β = (β0, β1, . . . , βp)
′

defines the relationship between response
variable Y and covariate X [133]. Each outcome yi is assumed to be generated according
to a Gaussian distribution. The mean depends on related covariates through E(y|µ). A
generalized form of (A19) relaxes the assumption that the errors are Gaussian distributed
and each outcome is generated from a non-Gaussian distribution such as Binomial, Poisson,
Beta, among others [134]. It enables these random processes to be modeled through a
link function and enables the magnitude of the measurement error to be a function of the
predicted estimates. That is,

yi ∼ P(.|θ),

g(θ) = β0 +
J

∑
j=1

β jxji + εi,
(A20)

in which g is an appropriate link function such as the logit for a Binomial model and loge
for the Poisson model. The mixed form of Equation (A20) incorporates a function f ()̇
to relax the linearity assumption on covariates or to introduce a random effect usually
modeled as a random walk, auto-regressive, or penalized spline models [134]. The mixed
form is given in (A21):

yi ∼ P(.|θ)

g(θi) =β0 +
J

∑
j=1

β jxji +
K

∑
k=1

fk(zki) + f ∗(vi) + εi,
(A21)

in which zk is the kth random effect variable and vi is a spatial effect variable assigned spa-
tial prior distribution. The latent field of interest is given as Θ = {β, f , v}. Equation (A21)
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is termed the Generalized Linear Mixed Model (GLMM). In a Bayesian setting, all the
parameters in the model are considered to be random, and appropriate prior distributions
are assigned. In the absence of prior information, a noninformative prior is assigned to
β ∼ Normal(0, 106) and log(1/σ2) ∼ loggamma(1, 10−5) [69]. A Bayesian hierarchical
model contains the data, prior, and hyperprior levels,

yi|Θ, φ ∼ P(y|Θ, φ),

Θ|φ ∼ P(Θ|φ),
φ ∼ P(φ),

(A22)

in which θi ∈ Θ|y is of main interest. These models are usually referred to as latent
Gaussian models, which are flexible and can accommodate a wide range of models.

–Survival Model
A survival data analysis models the time of the event occurrence. This can be time to

death of subject under study, process failure time, or time to radioactive emission. Let Ti be
a random variable of survival times, then S(t|τ) = P(T > t|τ) is the survival function that,
for example, determines the probability of a patient surviving (default/failure occurs) over
time t. It is assumed that all subjects are alive, S(0|τ) = 1, and all subjects will eventually
die limt→+∞ S(t|τ) = 0. The survival function is expressed as a distribution function
F(t) = P(T < t|τ) = 1− S(t|τ) with a probability distribution f (t|τ). The hazard function
h(t) measures the probability that an event will occur at a small instance ∆t after the subject
has survived through time t. That is,

h(t) = lim
∆t→0

P(T < t + ∆t|T > t)
∆t

,

H(t) =
∫ t

0
h(u)du,

in which H(t) is the cumulative hazard function.
Let (ti, δi, xi) represent survival data, in which Ti represents survival times of the

ith subject of interest, xi is a predictor variable, and δi = I(Ti ≤ C), in which C is a
censoring threshold set a priori. Considering the covariates, the likelihood of the model is
expressed by,

g(τi) = β0 +
J

∑
j=1

β jxji +
K

∑
k=1

f (zk) + vi + εi,

L(θ|t) =
n

∏
i=1

f (ti|τ)δi S(ti|τ)1−δi ,

(A23)

in which θ = {β1, . . . , β j, τ, Φ}, βi, is a fixed effect, zk is a random effect, vi with parameter
Φ, is a spatial random effect assigned a spatial prior in a Bayesian framework [135,136].
f (ti|τ) can assume Exponential, Weibull, Logistics, or lognormal distribution to number a
few. The censoring status δ controls the contribution to the likelihood of subjects that expe-
rienced the event and those that survived through the entire study period. Kaplan-Meier
provides nonparametric estimates of the survival curves. The proportional hazards model
and accelerated failure time model are the most frequently used frequentist parametric
methods to analyze survival data [99].

–Bayesian Spatial Econometrics
Spatial analytical tools are widely used in Economics to quantify the spatial depen-

dencies and heterogeneity of economic variables. Referred to as spatial econometrics, they
extend the traditional econometrics to a spatial domain. The most frequently used models
are the Spatial Autoregressive (SAR), Spatial Error Model (SEM), and Spatial Durbin Model
(SDM). The models are briefly described as follows.
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Let Y be a response variable assuming a linear relationship with explanatory variables
X, the SAR model is represented by,

Y = ρWY + Xβ + ε,

ε ∼ MVN(0, σ2I).
(A24)

W is a spatial weight matrix, ρ is a spatial autocorrelation parameter, and β is a vector of
the regression parameters. The SAR model assumes that the dependent variable is spatially
autocorrelated [137]. In contrast, the SEM model assumes the error is a spatial correlation.
The SEM formulation is given by,

Y = Xβ + u,

u = ρWu + ε,

ε ∼ MVN(0, σ2I).
(A25)

The SDM is an extension of the SAR model which assumes that the dependent variable
and covariates are spatially correlated. The formulation is given by,

Y = ρWY + WXβ + ε,

ε ∼ MVN(0, σ2I).
(A26)

According to LeSage and Pace [138], SDM is appropriate when the included covariates
are correlated with spatially correlated variables not included in the model. In the next
sections, we present each class main idea of the spatial literature computation techniques.

Appendix A.6. Computation Technique

–Maximum Likelihood Estimation
The maximum likelihood estimation approach involves an optimization problem to

determine the best sets of distribution parameters representing data. In spatial statistics,
the MLE method is usually used to estimate global spatial dependencies in a spatial
econometric model. Authors often compare its estimates with one obtained in a Bayesian
inferential framework and highlight the MLE approach’s inadequacies to spatial statistical
inferences [139–142].

Let yi ∼ f (.|θi), in which θi ∈ Θ is a parameter of interest and Θ is the parameter
space. yi do not need to be independent and identical. The estimation procedure involves
computing the likelihood (log-likelihood) of the data distribution and determining the
parameter sets θ∗ = {θ∗i : θ∗i ∈ Θ, i = 1, 2, . . . , n} in which the likelihood is maximum.
For independent yi, i = 1, 2, . . . , n, the likelihood is given by,

L(θ|y) =
n

∏
i=1

f (yi|θi),

θ∗ = arg max
θ

log
(

L(θ|y)
)
.

(A27)

An equivalent approach to the classical MLE when the dimension of the model
parameters is large or complex for estimation is the Quasi-Maximum Likelihood Estimation
(QMLE). Unlike the MLE, the QMLE maximizes a function log L∗(θ|y) that is related to
the logarithm of the likelihood function L(θ|y). Su and Yang [143] proposed a QMLE
of dynamic panel models with spatial errors and this was further broadened by Yu, De
Jong, and Lee et al. [142]. An equivalent approach to MLE in the Bayesian setting is the
Maximum A Posteriori (MAP). It involves maximizing the posterior conditional probability,

θ∗ = arg max
θ

p(θ)p(y|θ), (A28)
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in which p(θ) is the prior distribution and p(y|θ) is the data likelihood defined as L(y|θ)
in (A27).

–Expectation–Maximization (EM Algorithm)
The maximum likelihood estimation limitation is the assumption that the variables

that generate the process are all observable. In practice, this assumption rarely stands. One
possible choice to overcome the limitation is the estimation through the EM algorithm.

The EM algorithm, proposed by Dempster et al. [144], fits a model to a latent represen-
tation of data rather than merely fitting distribution models. It can work well in data that
contains unobserved (latent) variables. The algorithm, an iterative method, has two major
stages: estimating the latent variables (E-step) and maximizing the model parameters given
the data and the estimated variables (M-step).

Let θ be an initialized model parameter, the E-step is used to update the latent space
variables z, usually discrete or cluster in particular, through p(z|y, θ), in which y is the ob-
served data. To update θ, the expectation Ez|y,θ∗ log(p(y|z, θ)) is computed. θ∗ represents
the previous parameter and θ is the potential new parameter of the model:

Ez|y,θ∗ log(p(y|z, θ)) =
n

∑
i=1

k

∑
j=1

p(zi = j|y, θ∗)log[p(zi = j|θ)p(yi|zi = j, θ)]. (A29)

In the M-step, the EM algorithm maximizes the model parameter in the equation:

θ∗ = arg max
θ

Ez|y,θ∗ log(p(y|z, θ)). (A30)

The iteration continues until the difference between the current and the previous
expectation is less than ε > 0 set at the initial stage.

–Markov Chain Monte Carlo (MCMC)
Given a posterior distribution:

p(θ, ψ|y) ∝ p(y|θ, ψ)× p(θ, ψ), (A31)

and assuming that the posterior p(θ|y, Ψ) is of known form, such as a standard proba-
bility distribution, we can resort to the Monte Carlo approach to approximate posterior
quantities h(θ),

E(h(θ)|y) =
∫

θ∈Θ
p(θ|y)dθ =

∫
θ∈Θ

∫
ψ∈Ψ

h(θ)p(θ|ψ, y)p(ψ|y)dψdθ,

which could be the mean, median or higher moments. The procedure consists of simulating
m random samples from p(θ|y), say {θ1, θ2, . . . , θm} and evaluating the unknown quantity
h(θ) using the empirical average:

E( ˆh(θ)|y) = ∑m
i=1 h(θi)

m
. (A32)

Under the Law of Large Numbers, the empirical distribution will converge to the
true distribution. In the case of a joint posterior distribution, an approximation of the
posterior marginals is achieved by first sampling from a marginal distribution of a subset of
parameters given its complements and then using it to evaluate the full joint distribution.

In practice, the posterior distribution’s functional form is unknown or complex, and in-
dependent samples are not feasible. An alternative approach comprises generating inde-
pendent samples from an importance distribution q(θ|y) which is a close distribution to
p(θ|y). Empirically, the quantity h(θ) is obtained as:

E( ˆh(θ)) =
m

∑
i=1

h(θi)p(θi)

q(θi)m
. (A33)
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This approach is not trivial for a large number of dimensions of θ [145]. A more widely used
alternative approach comprises generating correlated samples by running a Markov chain
whose stationary distribution converges to the posterior density. The posterior summaries
are computed from these samples using the empirical method, as described above. Suppose
χ is the state space of the posterior distribution. As stated by Blangiardo [69], the conver-
gence of the Markov chain stationary distribution to the posterior distribution requires the
Markov chains to be irreducible (the chain has a positive probability of reaching all region
of χ regardless of the starting point), recurrence (the limit of the probability of the chain
visiting a subset χ infinitely many times is 1), and aperiodic (the chain does not circle when
exploring χ). The highlighted procedure is referred to as MCMC. The Gibbs sampler and
Metropolis-Hastings algorithms are the most frequently used standard MCMC algorithm
in Bayesian inference literature. For a description of these algorithms, see [69] (pp. 91–103).

–Integrated Nested Laplace Approximation (INLA)
INLA, proposed by Rue et al. [79], is an alternative approach to the estimation

of posterior marginals. It has gained considerable attention and has been proven to
outperform the MCMC approach in computational speed [79]. The availability of the
R− INLA simplifies the implementation of the approach and authors from various fields
have found it useful and easy.

Again, consider the posterior distribution:

p(θi|y)
∫

p(θi, ψ|y)dψ =
∫

p(θi|ψ, y)p(ψ|y)dψ. (A34)

The objective is to obtain the posterior marginals p(θi|y) for each parameter in the
vector and the estimates of the hyperparameters given by,

p(ψk|y)
∫

p(ψk|y)dψ−k. (A35)

The INLA approach uses the model assumptions to approximate the marginal pos-
terior distribution and its moments based on Laplace approximation [146]. Accord-
ing to [69,147], INLA approximation follows the following steps. Firstly, the posterior
marginals of the hyperparameters are approximated, that is,

p(ψ|y) = p(θ, ψ|y)
p(θ|ψ, y)

∝
p(ψ)p(θ|ψ)p(y|θ)

p(θ|ψ, y)
,

≈ p(ψ)p(θ|ψ)p(y|θ)
p̃(θ|ψ, y)

∣∣∣∣
θ=θ∗(ψ)

p̃(ψ|y),

in which p̃(θ|y) is a Gaussian approximation for p(θ|y) and θ∗ is the mode. Secondly,
the parameter vector is partitioned in a way that θ = (θi, θ−i) and again approximated
using the Laplace procedure to obtain:

p(θi|ψ, y) =
p(θi, θ−i|ψ, y)
p(θ−i|θi, ψ, y)

≈ p(θ, ψ|y)
p̃(θ−1|θi, ψ, y)

∣∣∣∣
θ−i=θ∗−i(θi ,ψ)

p̃(θi|ψ, y). (A36)

To bypass the computational complexity of computing p̃(θi|ψ, y), INLA explores the
marginal joint posterior for the hyperparameters p(ψ|y) in a grid search to select the im-
portant points {ψk} jointly with a corresponding set of weights {∆k} to give approximates
to the posterior to the hyperparameters. Each marginal p̃(ψk|y)∀k can be obtained using
log-spline interpolation bases on selected ψk and ∆k. For each k, the conditional posterior
p̃(θi|θi|ψ, y) is computed and a numerical integration:

p̃(θi|y) ≈
K

∑
k=1

p̃(θi|ψk, y) p̃(ψk|y). (A37)
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is, then, used to obtain p̃(θi|ψ, y).
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