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Received: 1 October 2021

Accepted: 24 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; lvalencia@us.es (L.V.-C.);
marper@us.es (M.J.P.-J.)

2 Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer
Engineering (I3US), Universidad de Sevilla, 41012 Sevilla, Spain

* Correspondence: dorellana@us.es

Abstract: A widely studied field in the framework of membrane computing is computational com-
plexity theory. While some types of P systems are only capable of efficiently solving problems from
the class P, adding one or more syntactic or semantic ingredients to these membrane systems can
give them the ability to efficiently solve presumably intractable problems. These ingredients are
called to form a frontier of efficiency, in the sense that passing from the first type of P systems
to the second type leads to passing from non-efficiency to the presumed efficiency. In this work,
a solution to the SAT problem, a well-known NP-complete problem, is obtained by means of a family
of recognizer P systems with evolutional symport/antiport rules of length at most (2,1) and division
rules where the environment plays a passive role; that is, P systems from ĈDEC(2, 1). This result is
comparable to the one obtained in the tissue-like counterpart, and gives a glance of a parallelism and
the non-evolutionary membrane systems with symport/antiport rules.

Keywords: membrane computing; computational complexity theory; P vs. NP problem; evolutional
communication; symport/antiport

MSC: 68Q07; 68Q15

1. Introduction

Membrane computing is a bio-inspired paradigm of computation, based on the struc-
ture and behavior of living cells. Introduced in 1998 by Gh. Păun [1], giving birth to devices
known as membrane systems or P systems. There are several different types of P systems,
but three of them are specially studied: cell-like membrane systems [1], whose tree-like
structure characterizes the relation between its regions; tissue-like membrane systems [2],
defined as a set of cells that can interact between them and with the environment, and
neural-like membrane systems [3], having an explicitly defined directed graph as a relation
of the neurons through synapses. The last paradigm is being intensely studied in practical
applications, and different variants have been created to their use in different fields [4–6]
The paradigm of membrane computing is very wide, covering topics from theory [7,8] to
applications [9–11], dedicating a branch to simulators and in silico implementations [12].

A widely studied question in this framework from the very beginning is which
kind of problems can be solved by means of membrane systems. Membrane systems
can differ in the type of objects with which they can compute (e.g., symbols, strings,
matrices), the type of relation between the regions (e.g., hierarchical structure, directly
connected membranes, cells implicitly connected by the rules) and the rules governing
the computation of the system (e.g., object evolution rules, symport/antiport rules, division
rules), among others. This variety of ingredients can change not only the type of problem
that a P system can solve, but how efficiently can it solve a certain problem. More precisely,
decision problems are usually studied in the field of computational complexity theory

Axioms 2021, 10, 327. https://doi.org/10.3390/axioms10040327 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-2892-6775
https://orcid.org/0000-0002-6576-9529
https://orcid.org/0000-0002-5055-0102
https://doi.org/10.3390/axioms10040327
https://doi.org/10.3390/axioms10040327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10040327
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10040327?type=check_update&version=2


Axioms 2021, 10, 327 2 of 12

in order to classify them in complexity classes that contain problems that can be solved
with a similar amount of computational resources [13].

Recognizer membrane systems [14] are P systems with certain ingredients, such as
two special objects yes and no, and requisites, such as all the computations halt and return
the same result. The design of a family of recognizer membrane systems of a certain type
R solving certain decision problems can reveal which kind of problems can be solved
efficiently by means of that class of P systems.

A widely studied type of membrane systems in the field of computational complex-
ity theory is the framework of tissue P systems with symport/antiport rules. In [15],
a polynomial-time solution to SAT was designed by means of a family of recognizer tissue P
systems with symport/antiport rules of length at most five and division rules. In this type
of P system, the length is defined as the number of objects implied in the symport/antiport
rules of the system (e.g., the length of the rule (i, u/v, j) is |u|+ |v|). This result was eventu-
ally improved in [16], where the maximum number of objects implied in a communication
rule was two. If only one object was allowed in communication rules, then only tractable
problems could be efficiently solved, as demonstrated in [17]. A similar frontier of efficiency
was found by using separation rules instead of division rules in [18,19], but in this case,
the frontier is from passing of communication rules of length at most two to length at most
three, instead of passing from one to two. Some results about their relative environmentless
counterparts were demonstrated in [20,21]. Symport/antiport rules were first introduced
in tissue-like membrane systems, but later used in cell-like membrane systems, where
results were surprisingly similar [22–27], giving a glance of the similarity of using both
tree-like and directed graph structures.

In [28], tissue P systems with evolutional symport/antiport rules were introduced,
including in communication rules the capability to evolve the objects while traveling from
one region to another one. In this type of P system, two different definitions of length can
be cited: On the one hand, the length of an evolutional communication rule can be defined
with a single number that is related with the number of objects in the whole rule (e.g., in the
rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
is |u|+ |v|+ |u′|+ |v′|); on the other hand, the length can be

defined as a pair of numbers concerning the number of objects in the left-hand side and
the right-hand side of the evolutional communication rules of the system (e.g., the length
of the rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
is (|u|+ |v|, |u′|+ |v′|)). In [29], several new results

were presented, publishing some improvements from [28,30–32]. More precisely, in [32]
an efficient family of tissue P systems with evolutional communication rules of length
at most (2, 1) and division rules using the environment as an active agent of the system
solving the SAT problem is presented. In this work, we investigate the role of evolutional
communication rules in cell-like membrane systems that use division rules as exponential
workspace-generating rules, and letting the environment as a mere agent that only receives
the corresponding answer of the system.

The rest of the paper is structured as follows: Section 2 is dedicated to introducing
some terms used throughout the work. In the next section, cell P systems with evolutional
symport/antiport rules and division rules are defined, and their recognizer versions are
introduced. Sections 4 and 5 are devoted to present a solution to the problem SAT by means
of a family of P systems with evolutional communication rules and division rules of length
at most (2, 1), and to prove the correctness of the solution. Finally, in Section 6 the results
of this paper are discussed, and comparatives with other classes of P systems are given,
and some open research lines are proposed, besides a description of the work in progress.

2. Preliminaries

In this section, some concepts that will be used throughout the paper will be de-
fined. The reader can find expanded and deeper information about formal languages and
membrane computing in [8,33].

An alphabet is a non-empty (finite) set, whose elements are usually called symbols. A string
over Γ is a ordered finite succession of elements from Γ. We denote the empty string by λ.
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Given two sets A and B, the relative complement A \ B is defined as A \ B = {x ∈ A |
x 6∈ B}. For each set A, we denote by |A| the cardinal (number of elements) from A.

A multiset can be described explicitly as follows: {(a1,M(a1)), . . . , (an,M(an))},
and the notationM = aM(a1)

1 . . . aM(an)
n will be used. The cardinal of a multisetM over

Γ = {a1, . . . , an} is defined as |M| =M(a1) + . . . +M(an). We denote by M f (Γ) the set
of all the finite multisets over Γ, and M+

f (Γ) = M f (Γ) \ {∅}
Given two multisets M1 and M2 over Γ, the union of the multisets, denoted as M1 ∪M2

or M1 + M2, is the application over Γ defined as: for each a ∈ Γ, (M1 ∪M2)(a) = M1(a) +
M2(a). A multiset M1 is included in M2, and it is denoted by M1 ⊆ M2, if M1(a) ≤ M2(a)
for each a ∈ Γ.

3. P Systems with Evolutional Communication and Division Rules

In this section, the framework of cell-like membrane systems where evolutional
communication rules and division rules are used is introduced.

Definition 1. A P system with evolutional symport/antiport rules and division rules of degree
q ≥ 1 is a tuple

Π =
(
Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
where:

• Γ is a finite (working) alphabet;
• E ⊆ Γ is the environment alphabet;
• µ is a rooted tree structure;
• M1, . . . ,Mq are the initial multisets of the membranes;
• R1, . . . ,Rq are the rules of the membranes of the system of the following form:

–
[

u [ ]j

]
i
→
[
[ u′ ]j

]
i

, with 0 ≤ i, j ≤ q, i 6= j, u ∈ M+
f (Γ), u′ ∈ M f (Γ); in the case

that i = 0, then u must contain at least one object from Γ \ E (evolutional send-in
symport rules);

–
[
[ u ]j

]
i
→
[

u′ [ ]j
]

i
, with 0 ≤ i, j ≤ q, i 6= j, u ∈ M+

f (Γ), u′ ∈ M f (Γ) (evolu-
tional send-out symport rules);

–
[

u [ v ]j
]

i
→
[

v′ [ u′ ]j
]

i
, with 0 ≤ i, j ≤ q, i 6= j, u, v ∈ M+

f (Γ), u′, v′ ∈ M f (Γ)
(evolutional antiport rules);

– [ a ]i → [ b ]i [ c ]i , with 1 ≤ i ≤ q, i 6∈ {iout, iskin}, a, b, c ∈ Γ, being iskin the label of
the skin membrane (division rules).

• iout ∈ {0, 1, . . . , q} is the output region of the system.

A P system with evolutional symport/antiport rules and division rules of degree q ≥ 1
can be seen as a set of q membranes biyectively labelled by 1, . . . , q organized in the rooted
tree structure µ, whose root node is the skin membrane, and such that (a) E represents the set
of objects that are situated in the environment an arbitrary number of times; (b)M1, . . . ,Mq
represents the initial multisets situated in the q membranes of the system; (c) iout is a
distinguished region i that will encode the output of the system. The term region i will
be used to denote the membrane i, in case 1 ≤ i ≤ q, and to the environment in the case
i = 0 or i = env. We will use env and 0 indistinguishably as the label of the environment.
If E = ∅, it is usually omitted from the tuple.

A configuration at an instant t of such a system is described by the membrane structure
of the P system at the instant t, the multisets of objects from Γ in each membrane at that
instant and the multiset of objects from Γ \ E situated in the environment. The initial
configuration of Π =

(
Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
is (µ,M1, . . . ,Mq, ∅).

A evolutional send-in symport rule is applicable to a configuration Ct at an instant t if
there exists a region labelled by i that has at least a child membrane labelled by j and that it
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contains the multiset u of objects. The execution of such a rule
[

u [ ]j

]
i
→
[
[ u′ ]j

]
i

in Ct

consumes the objects of u from such a region i, and it produces the multiset of objects u′

in the child membrane j in Ct.
A evolutional send-out symport rule is applicable to a configuration Ct at an instant

t if there exists a region labelled by i that has at least a child membrane labelled by j
and the child membrane contains the multiset u of objects. The execution of such a rule[
[ u ]j

]
i
→
[

u′ [ ]j
]

i
in Ct consumes the objects of u from such a region j, and it produces

the multiset of objects u′ in the child membrane i in Ct.
A evolutional antiport rule is applicable to a configuration Ct at an instant t if there exists

a region labelled by i that contains a multiset of objects u and it has at least a child membrane
labelled by j and the child membrane contains the multiset v of objects. The execution of
such a rule

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
in Ct consumes the objects of u from such a region j

and objects from v from such a region i, and it produces the multiset of objects u′ in that
membrane i and the multiset of objects v′ in that membrane j in Ct.

A division rule is applicable to a configuration Ct at an instant t if there exists a region
labelled by i that contains an object a. The execution of such a rule [ a ]i → [ b ]i [ c ]i in Ct
consumes the object a from the membrane i, the membrane is duplicated with its contents
included, and objects b and c are produced one in each new membrane created in Ct.

As in tissue P systems with evolutional symport/antiport rules, two definitions of
length (or size) can be described. On the one hand, the length of a evolutional commu-
nication rule r ≡

[
u [ v ]j

]
i
→
[

v′ [ u′ ]j
]

i
can be length(r) = (|u| + |v| + |u′| + |v′|);

on the other hand, it can be described as a pair length′(r) = (|u|+ |v|, |u′|+ |v′|). The first
description corresponds with the sum of the cardinalities of all the multisets in the rule,
while the second definition corresponds with the pair such that the first component corre-
sponds with the sum of cardinalities of the left-hand side of the rule (LHS), and the second
component corresponds with the sum of the cardinalities of the right-hand side of the rule
(RHS). If r is a symport rule, then |v| = |v′| = 0 or |u| = |u′| = 0.

We say that a configuration Ct of a P system with evolutional communication rules and
division rules Π produces a configuration Ct+1 in a transition step, denoted by Ct ⇒Π Ct+1
and we say that Ct+1 is a next configuration of Ct if we can pass from Ct to Ct+1 applying
the rules of Π according to the following principles:

• At most one rule can be applied to each object of each membrane (selected in a non-
deterministic way).

• For each membrane i, either evolutional communication rules
[

u [ v ]j
]

i
→
[

v′ [ u′ ]j
]

i
or

a single division rule [ a ]i → [ b ]i [ c ]i can be applied. In the case of applying evolutional
communication rules at configuration Ct, they would be selected in a non-deterministic,
parallel and maximal way; that is, all the objects in the membrane i that can fire a rule, will
fire it. In the case that a division rule [ a ]i → [ b ]i [ c ]i is applied, it will be selected in a
non-deterministic way. It can be seen as the division rule blocks the communication of
the membrane with its corresponding parent membrane. All the rules are applied in an
atomic way, but in order to be precise, it can be that two microsteps are executed: first, all
the evolutional communication rules are executed, and then division rules are executed. It
is worth taking this into account since a membrane i being divided can still communicate
with its inner membranes in the same transition step.

A configuration Ct is a halting configuration if no rules can be applied to such configu-
ration at an instant t.

A computation C of a P system Π can be described as a tuple C = (C0, C1, . . .), where
each configuration Ct+1 can be obtained from Ct, except for the initial configuration C0.
We say that C is a halting computation of length n + 1 if the configuration Cn is a halting
configuration.
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Recognizer membrane systems were introduced in [14] as a way to solve decision
problems. We define here recognizer P systems with evolutional communication rules and
division rules.

Definition 2. A recognizer P system with evolutional communication rules and division rules of
degree q ≥ 1 is a tuple (Π, Σ, iin), where:

• Π =
(
Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout

)
is a P system with evolutional communication

rules and division rules of degree q, with {yes, no} ⊆ Γ \ E two distinguished objects that
will represent the output of the system, andMi ⊆ Γ \ Σ for 1 ≤ i ≤ q;

• Σ ⊆ Γ \ E is the input alphabet;
• iin ∈ {1, . . . , q} is the label of the input membrane;
• iout = 0;
• All the computations of Π halt.
• If C is a computation of Π, then either an object yes or an object no, but not both, are sent to

the environment in the last step of the computation.

Let Π =
(
Γ, Σ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout

)
be a recognizer P system of this

type, then for each input multiset m over Σ, we consider the system Π with input multiset
m, and we denote it by Π + m. This is characterized by the fact that the multisets associated
with the initial configuration of the system is: (M1, . . . ,Miin + m, . . . ,Mq, ∅); that is,
it is obtained from the initial configuration (M1, . . . ,Miin , . . . ,Mq, ∅) of Π, by adding
the multiset m toMiin .

We define then a Output(C) function whose domain is the set of computations of Π.
Such a function will formalize the results or outputs of the system. If C is a computation
of the system Π, then Output(C) = yes (respectively, Output() = no) if the object yes
(resp., object no) appears in the environment associated to the halting configuration of C,
but does not appear in any other configuration of C. A computation C will be called
an accepting computation (respectively, a rejecting computation) if Output(C) = yes (resp.,
Output(C) = no). Computations of recognizer membrane systems always halt, and will
return either yes or no as a response. A recognizer membrane system with input multiset
Π + m is confluent, in the sense that all the computations give the same answer; that is,
given an input multiset m, all the computations of a recognizer membrane system with
input multiset Π + m will be either accepting computations or rejecting computations.

The class of recognizer P systems with evolutional symport/antiport rules of length
at most k (respectively, with length at most (k1, k2)) and division rules is denoted by
CDEC ((k)) (resp., CDEC ((k1, k2))). If the environment does not play an active role, we say
that it is a recognizer P system with symport/antiport rules of length at most k (resp., with
length at most (k1, k2), i.e. LHS with length at most k1 and RHS with length at most k2)
and division rules without environment, and we denote this class of systems by ĈDEC(k)
(resp., ĈDEC(k1, k2)).

In this work, a family of recognizer P systems will be used in order to solve decision
problems. Let X = (IX, θX) a decision problem. We say that X is solvable in polynomial
time by means of a uniform family of recognizer P systems Π = {Π(n) : n ∈ N} of the class
R, and we denote it by X ∈ PMCR, if the following conditions hold:

(a) Π is polynomially uniform by Turing machines; that is, there exists a Turing machine
that constructs Π(n) in polynomial time.

(b) There exists a polynomial encoding (cod, s) of X such that:

b.1 Π is polynomially bounded with respect to (X, cod, s); that is, there exists
k ∈ N such that for each u ∈ IX , each computation of Π(s(u)) + cod(u) runs,
at most, for |u|k computation steps.

b.2 Π is sound and complete with respect to (X, cod, s).
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4. Methods

Let ϕ a propositional formula in CNF with n variables and p clauses. Let s(ϕ) = 〈n, p〉
and cod(ϕ) contains xi,j,0 if the literal xi is in the clause Cj, xi,j,0 if the literal ¬xi is in
the clause Cj and x∗i,j,0 if the variable xi does not appear in the clause Cj. Let the function
⊥(i, j) = i⊥j = i + jn. Then, the system Π(〈n, p〉) will be the responsible of solving ϕ. Let

Π(〈n, p〉) = (Γ, Σ, E , µ,M1, . . . ,Mnp+5,R1, . . . ,Rnp+5, iin, iout)

a recognizer membrane system from CDEC ((2, 1)), where:

1. The working alphabet Γ = Σ ∪ {yes, no, y1, y2, n1, n2, α′, #} ∪
{ai,j, Ti,j, Fi,j, xi,j, xi,j, x∗i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪
{xi,j,k, xi,j,k, x∗i,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ np + bnp/2c+ 1} ∪
{cj | 1 ≤ j ≤ p} ∪ {αj | 1 ≤ j ≤ p + 1} ∪ {γk | 0 ≤ k ≤ np + 2} ∪
{δk | 0 ≤ k ≤ np + 3} ∪ {δ′k | 0 ≤ k ≤ np + 1}.

2. The input alphabet Σ = {xi,j,0, xi,j,0, x∗i,j,0 | 1 ≤ i ≤ n, 1 ≤ j ≤ p}.
3. Environment alphabet E = ∅.
4. µ = [ [ ]1[ ]2 . . . [ ]np[ ]np+2[ ]np+3[ ]np+4[ ]np+5 ]np+1

5. Mk = ∅, 1 ≤ k ≤ np + 1,
Mnp+2 = {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p} ∪ {αj | 1 ≤ j ≤ p + 1},
Mnp+3 = {δ′0}, Mnp+4 = {δ0}, Mnp+5 = {γ0}.

6. The set of rulesR=R1 ∪ . . .Rnp+5 contains the following rules:

6.1 Rules for generating all the necessary γnp+2 to simulate the environment.
[ γk ]np+5 → [ γk+1 ]np+5 [ γk+1 ]np+5 for 0 ≤ k ≤ np + 1[
[ γnp+2 ]np+5

]
np+1

→
[

γnp+2 [ ]np+5

]
np+1

6.2 Rules to generate p copies of the 2n possible truth assignments. For that, 2np

“partial” truth assignments will be generated.[
ai,j
]

np+2 → [ Ti,j ]np+2 [ Fi,j ]np+2[
[ Ti,jFi,j′ ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

 for
1 ≤ i ≤ n
1 ≤ j, j′,≤ p

6.3 Rules to generate 2np copies of cod(ϕ).[
xi,j,0 [ ]i⊥j

]
np+1

→
[
[ xi,j,1 ]i⊥j

]
np+1[

xi,j,0 [ ]i⊥j

]
np+1

→
[
[ xi,j,1 ]i⊥j

]
np+1[

x∗i,j,0 [ ]i⊥j

]
np+1

→
[
[ x∗i,j,1 ]i⊥j

]
np+1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[
xi,j,k

]
i⊥j
→ [ xi,j,k+1 ]i⊥j [ xi,j,k+1 ]i⊥j[

xi,j,k

]
i⊥j
→ [ xi,j,k+1 ]i⊥j [ xi,j,k+1 ]i⊥j[

x∗i,j,k
]

i⊥j
→ [ x∗i,j,k+1 ]i⊥j [ x∗i,j,k+1 ]i⊥j

 for
1 ≤ i ≤ n
1 ≤ j ≤ p
1 ≤ k ≤ np + bnp/2c[

[ xi,j,np+bnp/2c+1 ]i⊥j

]
np+1

→
[

xi,j [ ]i⊥j

]
np+1[

[ xi,j,np+bnp/2c+1 ]i⊥j

]
np+1

→
[

xi,j [ ]i⊥j

]
np+1[

[ x∗i,j,np+bnp/2c+1 ]i⊥j

]
np+1

→
[

x∗i,j [ ]i⊥j

]
np+1

 for 1 ≤ i ≤ n, 1 ≤ j ≤ p

[
γnp+2 [ δ′0 ]np+3

]
np+1

→
[
[ δ′1 ]np+3

]
np+1[

δ′k
]

np+3 → [ δ′k+1 ]np+3 [ δ′k+1 ]np+3 for 1 ≤ k ≤ np[
[ δ′np+1 ]np+3

]
np+1

→
[

δ′np+1 [ ]np+3

]
np+1

6.4 Rules to check which clauses are satisfied.
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[
xi,j [ Ti,j ]np+2

]
np+1

→
[
[ cj ]np+2

]
np+1[

xi,j [ Ti,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

x∗i,j [ Ti,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

xi,j [ Fi,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1[

xi,j [ Fi,j ]np+2

]
np+1

→
[
[ cj ]np+2

]
np+1[

x∗i,j [ Fi,j ]np+2

]
np+1

→
[
[ # ]np+2

]
np+1



for 1 ≤ i ≤ n, 1 ≤ j ≤ p

6.5 Rules to check if all the clauses are satisfied by a truth assignment.[
δ′np+1 [ αp+1 ]np+2

]
np+1

→
[
[ α′ ]np+2

]
np+1[

[ cjαj ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

for 1 ≤ j ≤ p[
[ αjα

′ ]np+2

]
np+1

→
[

n1 [ ]np+2

]
np+1

for 1 ≤ j ≤ p

6.6 General counter.[
γnp+2 [ δk ]np+5

]
np+1

→
[
[ δk+1 ]np+5

]
np+1

for 0 ≤ k ≤ np + 2[
[ δnp+3 ]np+5

]
np+1

→
[

δnp+3 [ ]np+5

]
np+1

6.7 Rules to return a negative answer.[
n1 [ ]np+2

]
np+1

→
[
[ n1 ]np+2

]
np+1[

δnp+3 [ n1 ]np+2

]
np+1

→
[

n2 [ ]np+2

]
np+1[

[ n2 ]np+1

]
0
→
[
no [ ]np+1

]
0

6.8 Rules to return an affirmative answer.[
δnp+3 [ α′ ]np+2

]
np+1

→
[
[ y1 ]np+2

]
np+1[

[ y1 ]np+2

]
np+1

→
[

y2 [ ]np+2

]
np+1[

[ y2 ]np+1

]
0
→
[
yes [ ]np+1

]
0

6.9 Input membrane iin = np + 1 and output membrane iout = 0.

In this section, the behaviour of a recognizer P system from CDEC ((2, 1)) solving an
instance ϕ from SAT is described. Let ϕ = C1 ∧ . . . ∧ Cp be a propositional logic formula
in CNF, where Cj = l1 ∨ . . .∨ lrj , lk ∈ {xi,¬xi | 1 ≤ i ≤ n}. Then ϕ will be processed by the
system Π(s(ϕ)) + cod(ϕ), where s(ϕ) = 〈n, p〉 and cod(ϕ) = {xi,j,0 | xi ∈ Cj} ∪ {xi,j,0 |
¬xi ∈ Cj} ∪ {x∗i,j,0 | xi 6∈ Cj ∧ ¬xi 6∈ Cj}.

Let us note codk(ϕ) the set of all the elements from cod(ϕ) with the third subscript equal
to k. Let us note cod∗(ϕ) the set of all the elements from cod(ϕ) without the third subscript.

The solution follows a brute force algorithm protocol in the framework of recognizer
P systems with evolutional symport/antiport rules and division rules, and consists of
the following stages:

4.1. Generation Stage

In the generation stage, different elements necessary for the rest of the computation are
generated at the same time. First, in order to avoid the use of the environment to obtain γ
objects, it is necessary to use some of the synchronization protocols in [32], 2np+2 copies of
the object γnp+2 will be generated in membranes np + 5 through the rules from 6.1. These
objects will be present in the membrane np + 1 at configuration Cnp+3. For generating
the different truth assignments, objects Ti,j and Fi,j will represent a partial truth assignment
of the variable xi in the following sense: Objects Ti,j and Fi,j′ , with i 6= j, would be
incompatible, since two different values would be assigned to the same variable. Therefore,
in order to remove this possibility, these two objects will be removed from the system by
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means of the rule
[
[ Ti,jFi,j′ ]np+2

]
np+1

→
[

# [ ]np+2

]
np+1

. After applying these rules, only

“real” truth assignments would be present in the system. In fact, there can be assignments
where a variables has not been assigned any value. In this case, it will not return a false
positive. For generating the different np partial truth assignments, np computational steps
should be applied, but since rules are fired in a non-deterministic way, and the removal of
these incompatible variables could be applied in between the process of generation, at most
bnp/2c extra steps should be taken into account. Therefore, in configuration Cnp+bnp/2c,
membranes labelled by np + 2 will contain all the possible truth assignments.

Besides, objects from cod(ϕ) will be sent into their corresponding membrane. From
the second computational step, membranes 1, . . . , np will be duplicated in each step until
having 2np+bnp/2c copies of the corresponding object from codnp+bnp/2c(ϕ). These objects
will be sent out to the membrane np + 1, and therefore in the configuration Cnp+bnp/2c+1,
2np+bnp/2c copies of cod∗(ϕ) will be present in the membrane np + 1. In this configuration,
the next stage begins.

4.2. First Checking Stage

In this stage, objects from cod∗(ϕ) will react with objects Ti,j and Fi,j through rules
from 6.4. In this stage, an object cj will be generated in a membrane np + 2 if and only if
the truth assignment represented in that membrane makes true the corresponding literal.
This stage takes one computational step. At the same time, counters δk and δ′k are being
generated. δk will evolve by using objects γnp+2 as “catalysts”, and np copies of the object
δ′np+1 will be present at the membrane np + 1 at configuration C2np+5. When this happens,
the second checking stage starts.

4.3. Second Checking Stage

The (2np+ 6)-th step will consist of the application of the rule
[

δ′np+1 [ αp+1 ]np+2

]
np+1

→[
[ α′ ]np+2

]
np+1

, creating an object α′ in each membrane labelled by np + 2. At the same time,

objects cj present in a membrane will remove the corresponding object aj; that is, the absence of
an object aj in a membrane np + 2 represents that clause Cj is satisfied by the corresponding

truth assignment. The object α′ will fire a rule
[
[ αjα

′ ]np+2

]
np+1

→
[

n1 [ ]np+2

]
np+1

if there

exists an object aj in such a membrane. This stage takes exactly two computational steps.

4.4. Output Stage

In configuration C2np+7, the existence of an object α′ in a membrane labelled by np + 2
implies that no objects αj remained in such a membrane; that is, that all clauses are satisfied by
the corresponding truth assignment. Therefore, if there exists an object α′ in such a membrane,
it implies that the formula ϕ is satisfiable. Thus, two different scenarios can be observed.
On the one hand, if the formula is satisfiable, there exists at least one membrane labelled by
np + 2 at configuration C2np+7 such that it contains an object α′. In the next step, an object y1
will be generated in such a membrane, that will be sent out, first to membrane np + 1 as an
object y2, and finally to the environment as an object yes. On the other hand, if the formula is
unsatisfiable, no objects α′ remain in any of the membranes labelled by np + 2 at configuration
C2np+7. Objects n1 will be sent to the membrane np + 1 and, in the next step, they will be sent
back to any membrane np + 2, taking into account that the target membranes are selected in a
non-deterministic way. In the next step, as the object δnp+3 still exists in membrane np + 1, it
reacts with an object n1, transforming it into an object n2 at the skin membrane, and in the last
step of the configuration, it will be sent out to the environment as an object no. It is important
to take into account that, in the affirmative case, object δnp+3 is consumed, and since only one
object of this kind exists, objects n1 will not have any objects to react with. This stage takes
exactly three computational steps, both in the affirmative case and in the negative case. In
Figure 1, a graphical description of this process is provided to clarify how this stage works.
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C2np+5

C2np+6

C2np+7

C2np+8

C2np+9

C2np+10

np + 1

np + 1

αp+1

np + 2

α′

np + 2

δ′np+1

np + 1

np + 1

np + 1

np + 1

α′

np + 2

y1

np + 2

np + 2

np + 2

δnp+3

y2

yes

np + 1

np + 1

np + 1

np + 1

np + 2

n1

np + 2

np + 2

np + 2

δnp+3 n1

n2

no

Figure 1. Evolution of the final stage in the affirmative case (left) and in the negative case (right).
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5. Results

The results of the paper will be discussed in this section.

Theorem 1. SAT ∈ PMCCDEC ((2,1))

Proof. The family of P systems constructed previously verifies the following:

• All the systems from Π = {Π(n) | n ∈ N} are recognizer P systems from CDEC ((2, 1)).
• The family Π is polynomially uniform by Turing machines given that, for each

n, p ∈ N, rules of Π(〈n, p〉) from Π are defined recursively by n, p ∈ N, and the quan-
tity of resources needed for constructing an element of the family is of polynomial
order with respect to n and p, as it is shown below:

– Alphabet size: 3n2 p2 + (11 + b np
2 c)np + 2p + 16 ∈ Θ(n2 p2)

– Initial number of membranes: np + 5 ∈ Θ(np)
– Initial number of objects in cells: np + p + 4 ∈ Θ(np)
– Number of rules: 3n2 p2b np

2 c+ 2np2 + 15np + 2p + 16 ∈ Θ(n3 p3)
– Maximum number of objects involved in a rule: 3 ∈ Θ(1).

• The pair of polynomial-time computable functions (cod, s) defined complies the fol-
lowing: for each formula ϕ from SAT, s(ϕ) is a natural number, cod(ϕ) is the input
multiset of the system Π(s(ϕ)) and for each t ∈ N, s−1(t) is a finite set.

• The family Π is polynomially bounded in time: in fact, for each formula ϕ from SAT,
the recognizer P system Π(s(ϕ)) + cod(ϕ) takes exactly 2np + 10 computational steps
in return an answer, either positive or negative, being n the number of variables and p
the number of clauses of ϕ.

• The family Π is sound with respect to (X, cod, s): in fact, for each formula ϕ, if
the computations of Π(s(ϕ)) + cod(ϕ) are accepting computations, then ϕ is satisfiable.

• The family Π is complete with respect to (X, cod, s): in fact, for each formula ϕ that is
satisfiable, all the computations of Π(s(ϕ)) + cod(ϕ) are accepting computations.

Corollary 1. NP ∪ co−NP ⊆ PMCCDEC ((2,1))

Proof. It is enough to observe that SAT is an NP-complete problem, SAT ∈ PMCCDEC ((2,1))
and the class PMCCDEC ((2,1)) is closed under polynomial-time reduction and under com-
plementary.

In fact, this family does not use the environment with an active role, therefore:

Corollary 2. NP ∪ co−NP ⊆ PMC
ĈDEC(2,1)

Proof. It is enough to observe that NP ∪ co−NP ⊆ PMCCDEC ((2,1)) from the fact that
a uniform family of recognizer membrane systems from CDEC ((2, 1)) solving the problem
SAT in polynomial time has been constructed, and this solution does use the environment
only as the output of the system, E = ∅, and does not take any object from it.

Corollary 3. NP ∪ co−NP ⊆ PMC
ĈDEC(3)

6. Discussion

The idea of this solution is to use the power of division rules to generate all the possible
truth assignments and objects first, and later on to use the parallel communication between
membranes to transport all the needed objects. It is important to take into account that
this is a great difference with P systems with active membranes, since in these systems,
communication rules between membranes are limited to one object per membrane and
time step. While the first stage takes the majority of the time, checking of the clauses
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and output of the system are executed in five time steps, using the created workspace
in the generation stage. This implies that a great optimization (for instance, in the form of
a parallel implementation) would be needed in order to generate the exponential number
of membranes in polynomial (in this case, linear) time. In a practical way, this could lead to
an interesting competitor with respect to the state-of-art SAT solvers, that are necessary to
solve industrial propositional logic formulae used to improve some engineering processes.

7. Contributions

In this work, a solution to SAT by means of a family of recognizer membrane systems
from ĈDEC(2, 1) is given. In previous works, a similar result in the tissue-like counterpart
was given, but using the environment as an active element. An interesting work would
be to prove that the role of the environment is also irrelevant in tissue P systems with
evolutional symport/antiport rules and division rules. Besides, similar results using
separation rules instead of division rules were provided in the same work. Taking into
account the differences between division rules and separation rules and between tissue-like
and cell-like, it would be interesting to see if this result can also be translated to the cell-like
framework. In this sense, a complete study of the role of the environment while using
separation rules, both in the tissue-like and in the cell-like frameworks will be studied.
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