
����������
�������

Citation: Sabbagh Molahosseini, A.

Zero-Aware Low-Precision RNS

Scaling Scheme. Axioms 2022, 11, 5.

https://doi.org/10.3390/

axioms11010005

Academic Editor: Chong Wang

Received: 21 November 2021

Accepted: 20 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Zero-Aware Low-Precision RNS Scaling Scheme

Amir Sabbagh Molahosseini

School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast,
Belfast BT7 1NN, UK; A.SabbaghMolahosseini@qub.ac.uk

Abstract: Scaling is one of the complex operations in the Residue Number System (RNS). This
operation is necessary for RNS-based implementations of deep neural networks (DNNs) to prevent
overflow. However, the state-of-the-art RNS scalers for special moduli sets consider the 2k modulo
as the scaling factor, which results in a high-precision output with a high area and delay. Therefore,
low-precision scaling based on multi-moduli scaling factors should be used to improve performance.
However, low-precision scaling for numbers less than the scale factor results in zero output, which
makes the subsequent operation result faulty. This paper first presents the formulation and hardware
architecture of low-precision RNS scaling for four-moduli sets using new Chinese remainder theorem
2 (New CRT-II) based on a two-moduli scaling factor. Next, the low-precision scaler circuits are
reused to achieve a high-precision scaler with the minimum overhead. Therefore, the proposed
scaler can detect the zero output after low-precision scaling and then transform low-precision scaled
residues to high precision to prevent zero output when the input number is not zero.

Keywords: residue number system (RNS); scaling; Chinese remainder theorem (CRT)

1. Introduction

Residue Number Systems (RNSs) have been used in different applications such as
digital signal processing (DSP) [1] and deep learning systems [2] to provide low-power,
high-speed and fault-tolerant computations [3]. The main feature of an RNS is fast and par-
allel implementation of addition and multiplication based on separate modular arithmetic
circuits. However, detection of multiplication overflow is one of the difficult RNS problems,
since the multiplication of any two operands larger than half of the dynamic range results
in overflow. Therefore, the high probability of overflow occurrence in multiplication has
motivated researchers to develop overflow prevention mechanisms for an RNS. Scaling
(i.e., division of the RNS number by a constant number) is one of the ways to reduce the
size of the operands to prevent overflow in RNS operations. However, scaling is a difficult
process, since the division operation in an RNS cannot be performed in parallel modular
channels like multiplication and addition [4]. Therefore, usually one of the modulo of the
moduli set is selected as the scaling factor to reduce the complexity [5].

The scaling for general moduli sets is usually realized using look-up tables (LUTs) [6],
while the adder-based implementations can be achieved based on special moduli sets with
higher performance. Due to this, there is a variety of works focusing on designing scalers
for the well-known RNS three-moduli set {2n − 1, 2n, 2n + 1} [7–9]. The authors of [7,8]
considered the modulo 2n as the scaling factor. Using 2n as the scaling factor resulted in
simplified scalers with high-precision output. However, using only one modulo as the
scaling factor is mostly applicable for addition operations, since it cannot drastically reduce
the size of the numbers to prevent multiplication overflow. Due to this, the authors of [9]
proposed two-moduli scaling based on 2n (2n + 1) as the scaling factor, which led to a
low-precision output. Although this scaling factor can significantly reduce the size of the
operands, the limited 3n-bit dynamic range of the three-moduli set {2n − 1, 2n, 2n + 1} is not
suitable for two-moduli scaling factors because in this three-moduli RNS system, the values
of most numbers are less than the scaling factor (i.e., 2n (2n + 1)), which results in a zero
output for the scaler, consequently making the next operation faulty. This is a significant

Axioms 2022, 11, 5. https://doi.org/10.3390/axioms11010005 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11010005
https://doi.org/10.3390/axioms11010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms11010005
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11010005?type=check_update&version=1


Axioms 2022, 11, 5 2 of 13

problem which indicates the importance of a zero-aware scaling mechanism, which is not
covered by previous research.

Therefore, two-moduli scaling factors together with the large dynamic range four- or
five-moduli sets, such as {2k, 2n − 1, 2n + 1, 2n + 1 − 1} [10], {2n − 1, 2n, 2n + 1, 22n + 1 −
1} [11] and {2n − 1, 2n + 1, 22n, 22n + 1} [12], {2n − 1, 2n + 1, 22n, 22n + 1 − 1} [13] and {22n + p,
2n − 1, 2n + 1, 2n − 2(n + 1)/2 +1, 2n + 2(n + 1)/2 +1} [14], should be used. However, there
is a limited number of works that consider the scaling for four-moduli sets. The authors
of [15] designed a scaler based on a two-level architecture with the single-modulo scaling
factor 2n + k. The first level of this scaler performs scaling based on the three-moduli set
{2n − 1, 2n + x, 2n + 1}, where 0 ≤ x ≤ n, and then the second level computes the final
four-moduli scaling using the composite set {2n + k (22n − 1), m4} [15]. This two-level
architecture requires high hardware requirements due to the multiple uses of modular
adders. Furthermore, scaling by the 2k modulo is not sufficient for large dynamic range
four-moduli sets to avoid overflow. In other words, the regular modulo 2n scaling of the
numbers based on the three-moduli set {2n − 1, 2n, 2n + 1} is not equivalent to modulo 2n

scaling in the four-moduli set {2n − 1, 2n, 2n + 1, 2n + 1 − 1}, since the dynamic ranges of
these moduli sets are 3n- and (4n + 1)-bit, respectively. Therefore, two-moduli scaling must
be used to prevent multiplication overflow for large dynamic range RNS systems.

On the other hand, to have a zero-aware scaler, the operands should be compared
with the scaling constant before operation to prevent scaling with zero output. However,
magnitude comparison is a difficult RNS operation, and its realization increases hardware
complexity [4]. Here, we address this problem without using an RNS magnitude compara-
tor based on a method for deriving two different scaling outputs from the same circuit.

In the proposed work, first, a low-precision scaler based on two moduli is proposed
for RNS four-moduli sets. Then, we reuse the hardware architecture of a low-precision
scaler for producing high-precision scaled output that can be used when the low-precision
scaler generates zero for non-zero operands. It is shown how new Chinese remainder
theorem 2 (New CRT-II) can be used to achieve simplified two-moduli scaling for four-
moduli sets. The proposed approach (i.e., a double-output scaler with both low- and
high-precision outputs) has two main advantages. First, the high-precision output can be
applied to addition operands, while the low-precision output can be used for multiplication
operations to prevent overflow by considerably reducing the operands’ size. Second, in the
case of using a low-precision output for multiplication, if the low-precision output becomes
zero, the high-precision output can be used to prevent overflow, resulting in a zero-aware
scaling approach. Moreover, derivation of the proposed general approach for two special
large dynamic range four-moduli sets {2n − 1, 2n + 1, 22n, 22n + 1} and {2n − 1, 2n + 1, 22n,
22n + 1 − 1} is presented, and its performance is compared with the conventional method.

In the rest of the paper, the mathematical formulation and proof of the proposed
scaling approach for both general and special four-moduli sets are described in Section 2.
Next, Section 3 presents the fully adder-based hardware design of the proposed scalers.
Moreover, a performance comparison is presented in Section 4. Finally, Section 5 concludes
the paper.

2. Low-Precision Scaling with Two-Moduli Scaling Factor: Mathematical Formulation

This section presents the proposed approach to design scalers for RNS using the New
CRT-II [11]. In the rest of this section, a brief introduction about the scaling concept and
new CRT-II is first described. Then, mathematical formulations of the proposed approach
in general form and for two sample special forms will be presented.

2.1. Scaling Concept and CRT-II

The scaling of the weighted number X by the constant factor K according to the scaling
operator defined in [16] and is as follows:

X = SK + |X|K (1)



Axioms 2022, 11, 5 3 of 13

This formula shows that any weighted number can be formed as a summation of its
remainder with scaling factor K and the multiplication of the scaling result (i.e., S) and K.
In other words, S is the integer quotient of dividing X by K, and it can be expressed as
follows [5,7]:

S =

⌊
X
K

⌋
(2)

Note that Equations (1) and (2) are based on weighted numbers. However, they
should be implemented inside RNS using residues. Therefore, consider the following
residue representations for X and S based on the four-moduli set {m1, m2, m3, m4}:

X RNS→ (x1, x2, x3, x4) (3)

S =

⌊
X
K

⌋
RNS→ (s1, s2, s3, s4) (4)

where the scale factor m1 is one of the moduli. Aside from that, also consider

si = |S|mi
f or i = 1 . . . 4 (5)

Second, consider the RNS number (x1, x2, x3, x4), which can be converted into its
corresponding weighted number X using the New CRT-II conversion formulas for the
generic four-moduli set {m1, m2, m3, m4} as follows [11]:

X = Z + m1m2|k1(Y− Z)|m3m4
(6)

Z = x1 + m1|k2(x2 − x1)|m2
(7)

Y = x3 + m3|k3(x4 − x3)|m4
(8)

where the required multiplicative inverses can be achieved by considering the following
relations:

|k1m1m2|m3m4
= 1 (9)

|k2m1|m2
= 1 (10)

|k3m3|m4
= 1 (11)

Equations (6)–(8) can be rewritten as follows:

X = Z + m1m2T (12)

Z = x1 + m1H (13)

Y = x3 + m3P (14)

where
T = |k1(Y− Z)|m3m4

(15)

H = |k2(x2 − x1)|m2
(16)

P = |k3(x4 − x3)|m4
(17)

2.2. General Formulations

Now, we choose the scaling factor as the product of the first and second modulo (i.e.,
m1m2). Therefore, scaling of X by m1m2 can be performed by considering k = m1m2 and
substituting Equation (6) into Equation (4) as follows:

SL =

⌊
X
K

⌋
=

⌊
Z + m1m2T

m1m2

⌋
=

⌊
Z

m1m2
+ T

⌋
(18)



Axioms 2022, 11, 5 4 of 13

where x1 is a residue in modulo m1 and the maximum value of H in Equation (16) is m2 −
1. Therefore, the maximum value of Z in Equation (13) can be computed as follows:

ZMax = m1 − 1 + m1(m2 − 1) = m1m2 − 1 (19)

It is clear that the floor of the division of ZMax by m1m2 is zero. Therefore, by consid-
ering this point and taking into account that T is an integer number, Equation (18) can be
simplified as follows:

SL =

⌊
Z

m1m2
+ T

⌋
=

⌊
Z

m1m2
+ T = T

⌋
(20)

Now, according to Equation (5), the residues of T based on the moduli should be
computed to achieve the residues of the scaled number as follows:

sL−i = |SL|mi
= |T|mi

f or i = 1 . . . 4 (21)

Therefore, scaling of Z by m1m2 is reduced to T, and the full reverse conversion (i.e.,
full computing of Equation (6)) is not needed.

Now, we are going to achieve a single-modulo scaler for the same moduli set, (i.e.,
{m1, m2, m3, m4}) but with the aim of reusing the two-moduli scaler formulas to reduce
the overhead. Hence, considering k = m1 and the main CRT-II formula of Equation (6) in
Equation (4) results in

SH =

⌊
X
K

⌋
=

⌊
Z + m1m2T

m1

⌋
=

⌊
Z

m1
+ m2T

⌋
(22)

Insertion of Equation (13) into Equation (22) leads to

SH =

⌊
x1 + m1H

m1
+ m2T

⌋
=

⌊
x1

m1
+ H + m2T

⌋
(23)

Therefore, since x1 is less than m1, and H and T are integer numbers, Equation (23) can
be simplified as follows:

SH =

⌊
x1 + m1H

m1
+ m2T

⌋
=

⌊
x1

m1

⌋
+ H + m2T = H + m2T (24)

Now, according to Equation (5), we have

sH−i =
∣∣∣SSingle

∣∣∣
mi

= |H + m2T|mi
f or i = 1 . . . 4 (25)

According to the residue arithmetic properties [6], Equation (25) can be rewritten as

sH−i =
∣∣∣|H|mi

+ |m2|mi
|T|mi

∣∣∣
mi

f or i = 1 . . . 4 (26)

However, from Equation (21), we know the remainders of T in moduli mi are the
two-moduli scaling residues. Therefore, we have

sH−i =
∣∣∣|H|mi

+ |m2|mi
sL−i

∣∣∣
mi

f or i = 1 . . . 4 (27)

Therefore, by using Equation (21), the single-modulo scaling residues can be achieved
from the previously computed two-moduli scaling residues with the minimum overhead.
It should be mentioned that more simplifications of Equation (21) can be performed using
the exact value of the moduli as shown in the next subsections.



Axioms 2022, 11, 5 5 of 13

2.3. Case Study: Moduli Set {22n + 1, 22n,2n + 1, 2n − 1}

The moduli set has a 6n-bit dynamic range, and its reverse converters are all de-
signed based on the New CRT-I [11]. However, in contrast to the reverse converters of
this moduli set, here, we use the New CRT-II to derive efficient two-moduli scaling for-
mulas. First, consider the moduli set {m1, m2, m3, m4} = {22n + 1, 22n, 2n + 1, 2n − 1}.
According to Equation (20), we must compute T in Equation (15), and then its residues
are the low-precision scaling residues. First, the following lemma computes the required
multiplicative inverses.

Lemma 1. The multiplicative inverses required in Equations (15)–(17) are k1 = 22n − 1, k2 = 1 and
k3 = 2n − 1.

Proof of Lemma 1. Verification can be performed by substituting the values of the multi-
plicative increases and moduli in Equations (9)–(11) as follows:

|22n−1 × (22n + 1)22n|22n−1 = |22n−1 × 2× 1|22n−1 = 1 (28)

|1× (22n + 1)|22n = 1 (29)

|2n−1 × (2n + 1)|2n−1 = 1 (30)

Now, inserting the values of the moduli and multiplicative inverses in Equations (13)–(17)
leads to

Z = x1 + (22n + 1)H (31)

Y = x3 + (2n + 1)P (32)

H = |x2 − x1|22n (33)

P = |2n−1(x4 − x3)|2n−1 (34)

T = |22n−1(Y− Z)|22n−1 (35)

Equation (31) can be further simplified by substituting Equations (31) and (32) into it
as follows:

T = |22n−1(x3 + (2n + 1)P− x1 − (22n + 1)H)|22n−1 (36)

The following well-known residue arithmetic properties can be used to further simplify
Equations (33)–(36).

Property 1.
∣∣2Pvi

∣∣
2k−1 is equal to the P-bit circular left shifting of vi if vi is represented as a k-bit

binary number [11].

Property 2. |−vi|2k−1 is equal to one’s complement of vi (i.e., vi ) if vi is represented as a k-bit
binary number [11].

Property 3. |−vi|2k is equal to vi + 1 if vi is represented as a k-bit binary number [17].

Property 4. |−vi|2k+1 is equal to vi + 2 if vi is represented as a k-bit binary number [17].

First, according to the moduli set {22n + 1, 22n, 2n + 1, 2n − 1}, x1 and x2 are (2n + 1)-
and 2n-bit numbers, respectively. Therefore, Equation (33) can be simplified using Property
3 as follows:

H = |x2 − x1|22n = |x2,(2n−1)...0 − (x1,2n × 22n + x1,(2n−1)...0)|22n

= |x2,(2n−1)...0 + x1,(2n−1)...0 + 1|22n
(37)



Axioms 2022, 11, 5 6 of 13

where xi,j means the j-th bit of the residue xi and x4 and x3 are (n + 1)- and n-bit numbers,
respectively. Therefore, Equation (34) can be rewritten as

P =
∣∣∣2n−1(x4 − x3,n × 2n − x3,(n−1)...0 )

∣∣∣
2n−1

(38)

where x3 is a residue in modulo 2n + 1. Therefore, when x3,n is equal to one, the other bits
will be surely be zero, and if the n low significant bits (LSBs) of x3 are not equal to zero, then
the most significant bit (MSB) of x3 (i.e., x3,n) should be zero [12]. Therefore, by considering
this point and Properties 1 and 2, Equation (38) can be simplified as follows:

P = |P1 + P2|2n−1 (39)

where
P1 = |2n−1x4|2n−1 = x4,0x4,n−1...x4,1︸ ︷︷ ︸

n bits

(40)

P2 =


01 . . . 11︸ ︷︷ ︸

n bits

i f x3,n = 1

x3,0 x3,n−1 . . . x3,n−2︸ ︷︷ ︸
n bits

i f x3,n = 0 (41)

Finally, Equation (35) can be simplified using Properties 1 and 2 as follows:

T = |T1 + T2 + T3 + T4 + T5|22n−1 (42)

where
T1 = |22n−1x3|22n−1 = x3,00 . . . 00︸ ︷︷ ︸

n−1 bits

x3,n . . . x3,1︸ ︷︷ ︸
n bits

(43)

T2 =
∣∣22n−1(2n + 1)P

∣∣
22n−1 =

∣∣∣∣∣∣∣22n−1(pn−1 . . . p0︸ ︷︷ ︸
n bits

pn−1 . . . p0︸ ︷︷ ︸
n bits

)

∣∣∣∣∣∣∣
22n−1

= p0 pn−1 . . . p0︸ ︷︷ ︸
n bits

pn−1 . . . p1︸ ︷︷ ︸
n−1 bits

(44)

T3 =
∣∣∣−22n−1x1,(2n−1)...0

∣∣∣
22n−1

= x1,0 x1,2n−1 . . . x1,1︸ ︷︷ ︸
2n bits

(45)

T4 =
∣∣∣−22n−1 × 22n × x1,2n

∣∣∣
22n−1

= x1,2n1 . . . 11︸ ︷︷ ︸
2n bits

(46)

T5 = |−22n−1(22n + 1)H|22n−1 = |−H|22n−1 = H2n−1 . . . H1 H0︸ ︷︷ ︸
2n bits

(47)

Note that P is an n-bit number, and due to this computation of Equation (44), it became
a simple concatenation. Aside from that, the constant coefficient of H in Equation (47) was
substituted with −1 since

||22n−1|22n−1|22n + 1|22n−1|22n−1 = |22n−1 × 2|22n−1 = 1 (48)

Next, after calculation of T using Equation (42), we must compute the residues of T
according to Equation (21) to achieve the two-moduli scaled residues. However, the largest
value of T is 22n − 2, and therefore, it is always less than the first and second moduli. Hence,
we have

sL−1 = |T|22n+1 = T (49)

sL−2 = |T|22n = T (50)



Axioms 2022, 11, 5 7 of 13

The third and fourth two-moduli scaled residues can be achieved as follows:

sL−3 = |T|2n+1 = |T(2n−1)...n × 2n + T(n−1)...0 |2n+1
= |T(n−1)...0 − T(2n−1)...(n−1)|2n+1
= |T(n−1)...0 + T(2n−1)...(n) + 2|2n+1

(51)

sL−4 = |T|2n−1 = |T(2n−1)...n + T(n−1)...0 |2n−1 (52)

Now, based on Equation (27), we can also achieve single-modulo scaling formulas
from the two-moduli scaling residues as follows:

sH−1 = ||H|22n+1 +
∣∣22n

∣∣
22n+1|T|22n+1|22n+1

= ||H|22n+1 +
∣∣22n

∣∣
22n+1sL−1|22n+1

(53)

We can simplify Equation (27) by substituting Equation (49) into it and considering
that the maximum value of H in (37) is 22n − 1. Therefore, we have

sH−1 = |H − T|22n+1 =
∣∣H + T + 2

∣∣
22n+1 (54)

Similarly, for other residues, we have

sH−2 = ||H|22n + |22n|22n |T|22n |22n = H (55)

sH−3 = ||H|2n+1 + |22n|2n+1|T|2n+1|2n+1

=

∣∣∣∣∣∣∣H(2n−1)...n × 2n + H(n−1)...0

∣∣∣
2n+1

+ sL−3

∣∣∣∣
2n+1

=
∣∣∣H(2n−1)...n + H(n−1)...0 + 2 + sL−3

∣∣∣
2n+1

(56)

sH−4 = ||H|2n−1 +
∣∣22n

∣∣
2n−1|T|2n−1|2n−1

= |H(2n−1)...n + H(n−1)...0 + sL−4|2n−1
(57)

Therefore, we can compute H and T from Equations (37) and (42) just one time and
then using them several times to compute both the single- and two-moduli scaling.

2.4. Case Study: Moduli Set {2n − 1, 2n + 1, 22n, 22n + 1 − 1}

This moduli set has the same moduli as {2n − 1, 2n + 1, 22n, 22n + 1} except for 22n + 1
which is substituted with 22n + 1 − 1. Due to this, it can lead to a faster RNS arithmetic unit.
However, its reverse converter will be more complex. The overall process of designing the
scaler for this moduli set is relatively the same as for the moduli set {2n − 1, 2n + 1, 22n, 22n

+ 1} described in the previous subsection.
First, consider the moduli order {m1, m2, m3, m4} = {22n + 1 − 1, 22n, 2n + 1, 2n − 1}.

Then, according to Equations (15)–(17), the multiplicative inverses can be computed as k1
= k2 = 1, and k3 = 2n − 1 (the proof is straightforward and similar to Lemma 1). Therefore,
Equation (15) is a key formula in the scaling that can be calculated as follows:

T = |Y− Z|22n−1
=
∣∣x3 + (2n + 1)P− x1 −

(
22n+1 − 1

)
H
∣∣
22n−1

= |T1 + T2 + T3 + T4 + T5|22n−1

(58)

where
T1 = |x3|22n−1 = 0 . . . 00︸ ︷︷ ︸

n bits

x3,n−1 . . . x3,0︸ ︷︷ ︸
n bits

(59)

T2 = |(2n + 1)P|22n−1 = pn−1 . . . p0︸ ︷︷ ︸
n bits

pn−1 . . . p0︸ ︷︷ ︸
n bits

(60)



Axioms 2022, 11, 5 8 of 13

T3 =
∣∣∣−x1,(2n−1)...0

∣∣∣
22n−1

= x1,2n−1 . . . x1,0︸ ︷︷ ︸
2n bits

(61)

T4 =
∣∣∣−22n × x1,2n

∣∣∣
22n−1

= 1 . . . 11x1,2n︸ ︷︷ ︸
2n bits

(62)

T5 = |−(22n+1 − 1)H|22n−1 = |−H|22n−1 = H2n−1 . . . H1 H0︸ ︷︷ ︸
2n bits

(63)

The two-moduli scaled residue formulas for the moduli set {22n + 1 − 1, 22n, 2n + 1, 2n

− 1} are the same as those for the moduli set {22n + 1, 22n, 2n + 1, 2n − 1} (i.e., Equations
(49)–(52)), since all of them are based on T. That aside, the single-modulo scaled residues
are the same as in Equations (55)–(57) except for the first scaled residue, which is as follows:

sH−1 = ||H|22n+1−1 +
∣∣22n

∣∣
22n+1−1sL−1|22n+1−1

=

∣∣∣∣∣∣∣H + sL−1,2n−1 . . . sL−1,0sL−1,2n︸ ︷︷ ︸
2n+1 bits

∣∣∣∣∣∣∣
22n+1−1

(64)

3. Low-Precision Scaling with Two-Moduli Scaling Factor: Hardware Design

This section presents the full adder-based and memory-free hardware design of the
proposed RNS scaler. The overview of the proposed approach for a generic four-moduli
set is depicted in Figure 1. First, P, H and T are computed using Equations (15)–(17), and
then, the two-moduli scaled residues are computed using Equation (21). Afterward, the
single-modulo scaled residues are obtained using the precomputed two-moduli scaled
residues based on Equation (27). The important part of the scaler is the calculation of T that
is shared between both kinds of scaling, resulting in a significant hardware reduction.

Axioms 2022, 10, x FOR PEER REVIEW 8 of 13 
 

𝑇ଷ = ห − 𝑥ଵ,(ଶ ି ଵ)…ห
ଶమ ି ଵ

= 𝑥ଵ,2 ି ଵതതതതതതതതതത … 𝑥ଵ,തതതതത ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ଶ ௧௦

 (61)

𝑇ସ = ห − 2ଶ × 𝑥ଵ,ଶห
ଶమ ି ଵ

= 1 … 11𝑥ଵ,2തതതതതതᇣᇧᇧᇤᇧᇧᇥ
ଶ ௧௦

 (62)

𝑇ହ = | − (2ଶାଵ  −  1)𝐻|ଶమ ି ଵ = | − 𝐻|ଶమ ି ଵ = 𝐻2 ି ଵ
തതതതതതതത … 𝐻ଵ

തതത 𝐻
തതതതᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

ଶ ௧௦

 (63)

The two-moduli scaled residue formulas for the moduli set {22n + 1 − 1, 22n, 2n + 1, 2n − 1} 
are the same as those for the moduli set {22n + 1, 22n, 2n + 1, 2n − 1} (i.e., Equations (49–52)), 
since all of them are based on T. That aside, the single-modulo scaled residues are the 
same as in Equations (55–57) except for the first scaled residue, which is as follows: 

𝑠ு ି ଵ = ||𝐻|ଶమశభ ି ଵ + |2ଶ|ଶమశభ ି ଵ𝑠 ି ଵ|ଶమశభ ି ଵ

= อ𝐻 + 𝑠 ି ଵ,ଶ ି ଵ … 𝑠 ି ଵ,𝑠 ି ଵ,ଶᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ
ଶାଵ ௧௦

อ

ଶమశభ ି ଵ

 (64)

3. Low-Precision Scaling with Two-Moduli Scaling Factor: Hardware Design 
This section presents the full adder-based and memory-free hardware design of the 

proposed RNS scaler. The overview of the proposed approach for a generic four-moduli 
set is depicted in Figure 1. First, P, H and T are computed using Equations (15–17), and 
then, the two-moduli scaled residues are computed using Equation (21). Afterward, the 
single-modulo scaled residues are obtained using the precomputed two-moduli scaled 
residues based on Equation (27). The important part of the scaler is the calculation of T 
that is shared between both kinds of scaling, resulting in a significant hardware reduction. 

 
Figure 1. The block diagram of the proposed zero-aware low-precision scaler for the generic RNS 
four-moduli set {m1, m2, m3, m4}. 

The scaler of Figure 1 is designed based on a general value of the moduli. However, 
for special RNS moduli sets with power-of-two moduli such as {22n + 1, 22n, 2n + 1, 2n − 1}, 
the design can be considerably simplified, as presented in Figure 2. First, the H in Equation 
(39) is implemented using a 2n-bit regular carry-propagate adder (CPA) where its carry-

Figure 1. The block diagram of the proposed zero-aware low-precision scaler for the generic RNS
four-moduli set {m1, m2, m3, m4}.

The scaler of Figure 1 is designed based on a general value of the moduli. However,
for special RNS moduli sets with power-of-two moduli such as {22n + 1, 22n, 2n + 1, 2n − 1},
the design can be considerably simplified, as presented in Figure 2. First, the H in Equation
(39) is implemented using a 2n-bit regular carry-propagate adder (CPA) where its carry-in



Axioms 2022, 11, 5 9 of 13

is connected to one. Aside from that, P also requires a modulo 2n − 1 CPA, which can be
implemented using an n-bit CPA with EAC [18] based on Equation (40).

Axioms 2022, 10, x FOR PEER REVIEW 9 of 13 
 

in is connected to one. Aside from that, P also requires a modulo 2n − 1 CPA, which can be 
implemented using an n-bit CPA with EAC [18] based on Equation (40). 

2n-bit CPA n-bit CPA-EAC

Operand Preparation

x2x1 x3 x4

1

Operand Preparation

2n-bit CSA-EAC

2n-bit CSA-EAC

2n-bit CSA-EAC

2n-bit CPA-EAC

n-bit CPA-
EAC

Operand Preparation

n-bit CSA-
CEAC

n-bit CPA-
CEAC

Operand Preparation

D
ouble-M

od
ulo

n-bit 
CSA-
EAC

2n-bit 
CSA-
CEAC

2n-bit 
CPA-
CEAC

n-bit 
CSA-
CEAC

n-bit 
CPA-
CEAC

n-bit 
CPA-
EAC

Single-Modulo Scaled Residues  
Figure 2. The proposed scaler for the moduli set {22n + 1, 22n, 2n + 1, 2n − 1} with scale coefficients (22n 
+ 1) 22n and 22n. 

The operand preparation unit performs the required inversions, shifting and multi-
plexing needed in Equation (41). Then, the important variable T in Equation (42) can be 
realized using three carry-save adders (CSAs) with EAC followed by a modulo 22n − 1 CPA 
[18]. Then, according to Equations (49–52), the first and second two-moduli scaled resi-
dues are equal to T, and the third and fourth are only the reduction of T in moduli 2n − 1 
and 2n + 1, which can be realized using an n-bit CPA with EAC and n-bit CPA with com-
plement EAC (CEAC), respectively. Note that CPA-CEAC is a representation of the mod-
ulo 2n + 1 adder which can be realized using different methods [19]. Finally, the single-
modulo scaled residues can be achieved using Equations (54–57). The CSAs are used to 
compress the three operands into two, and then a modulo adder produces the scaled res-
idue. It can be seen that in the customized version of the scaler for the moduli set {22n + 1, 

Figure 2. The proposed scaler for the moduli set {22n + 1, 22n, 2n + 1, 2n − 1} with scale coefficients
(22n + 1) 22n and 22n.

The operand preparation unit performs the required inversions, shifting and multi-
plexing needed in Equation (41). Then, the important variable T in Equation (42) can be
realized using three carry-save adders (CSAs) with EAC followed by a modulo 22n − 1
CPA [18]. Then, according to Equations (49)–(52), the first and second two-moduli scaled
residues are equal to T, and the third and fourth are only the reduction of T in moduli
2n − 1 and 2n + 1, which can be realized using an n-bit CPA with EAC and n-bit CPA
with complement EAC (CEAC), respectively. Note that CPA-CEAC is a representation of
the modulo 2n + 1 adder which can be realized using different methods [19]. Finally, the
single-modulo scaled residues can be achieved using Equations (54)–(57). The CSAs are
used to compress the three operands into two, and then a modulo adder produces the
scaled residue. It can be seen that in the customized version of the scaler for the moduli set
{22n + 1, 22n, 2n + 1, 2n − 1}, the units for m1 and m2 reduction in the two-moduli scaling



Axioms 2022, 11, 5 10 of 13

part are removed, since the scaled residues are equal to T. Aside from that, the second
single-modulo scaled residue is H, and hence, the required m2 reduction unit is removed.

Finally, Algorithm 1 shows how the proposed hardware architecture can be used to
provide zero-aware RNS scaling. If the low-precision scaled residues become zero, then the
high-precision scaled residue should be used as the output, except in the case that they also
become zero. In this case (i.e., both scaler outputs become zero), the number is very small
and is less than both of the scaling constants. In this case, its original value can be used
in the computations. Note that here we do not use any magnitude comparator which is
a complex unit in RNS, and only by checking the scaled residues against zero we could
evaluate the relative magnitude of the number (less or greater than the scaling coefficients).

Algorithm 1: Zero-Aware RNS Scaling.

Input: Non-Zero RNS Number (x1, x2, x3, x4)
Output: Non-Zero Scaled RNS Number (s1, s2, s3, s4)
1: Calculate the low-precision scaled residues (sl1, sl2, sl3, sl4)
2: If (sl1, sl2, sl3, sl4) 6= (0, 0, 0, 0) Then return (sl1, sl2, sl3, sl4)
3: Calculate the high-precision scaled residues (sh1, sh2, sh3, sh4)
4: If (sh1, sh2, sh3, sh4) 6= (0, 0, 0, 0) Then return (sh1, sh2, sh3, sh4)
5: Return original residues (x1, x2, x3, x4)

4. Performance Evaluation

The majority of the available state-of-the-art RNS scalers are dedicatedly designed
for three-moduli sets, and only [15] presents the first RNS scaler design for four-moduli
sets. The RNS scaler for the moduli set {22n + 1 − 1, 22n, 2n + 1, 2n − 1} is fully designed
in [15] based on the scaling factor 22n as shown in Figure 3. To perform a technology-
independent performance comparison, the unit-gate (U-G) model is used according to [15]
for comparative assessment of the works. All the assumptions considered in [15] for
estimation of the area and delay of modular adders are also considered here for a fair
comparison, as shown in Table 1.

Table 1. The area and delay formulas for different n-bit modulo adders based on the U-G model
reported in [15].

Modulo Adder Area Delay

2n − 1
CPA-EAC 3ndlog2 n− 1e+ 12n 2dlog2 n− 1e+ 3

CSA-EAC 7n 4

2n CPA 1.5ndlog2 ne+ 5n 2dlog2 ne+ 3

2n + 1
CPA-CEAC 4.5ndlog2 ne+ 0.5n + 6 2dlog2 ne+ 3

CSA-CEAC 7n 4

Note that in the U-G model, each XOR or XNOR gate counts as two unit gates in the
area and delay, and an AND or OR gate is considered one unit gate for both the area and
delay. Therefore, the combinatorial circuits such as FAs, half adders (HAs) and one-bit
2×1 multiplexers count as 7, 3 and 3 unit gates in area and 4, 2 and 2 gates in the delay,
respectively. Aside from that, the U-G area and delay estimations for each component of
the proposed scaler is described in Table 2. Note that the gray lines in Table 2 are not on the
critical delay path.



Axioms 2022, 11, 5 11 of 13Axioms 2022, 10, x FOR PEER REVIEW 11 of 13 
 

2n-bit 
CPA

x2x1 x3 x4

Operand Preparation

2n-bit CSA-EAC

2n-bit simplified CSA-
EAC

2n-bit CPA-EAC

n-bit CPA-
EAC

n-bit CSA-
CEAC

n-bit CPA-
CEAC

Single-Modulo Scaled Residues

Operand Preparation

(2n+1)-bit CSA-EAC

(2n+1)-bit CPA-EAC

Operand Preparation

(2n+1)-bit 
CSA-EAC

(2n+1)-bit 
CPA-EAC

 
Figure 3. The single-modulo scaler for the special moduli set {22n + 1 − 1, 22n, 2n + 1, 2n − 1} with scaling 
factor 22n proposed in [15]. 

Table 1. The area and delay formulas for different n-bit modulo adders based on the U-G model 
reported in [15]. 

Modulo Adder Area Delay 

2  −  1 
CPA-EAC 3𝑛⌈logଶ 𝑛  −  1⌉ + 12𝑛 2⌈logଶ 𝑛  −  1⌉ + 3 
CSA-EAC 7𝑛 4 

2 CPA 1.5𝑛⌈logଶ 𝑛⌉ + 5𝑛 2⌈logଶ 𝑛⌉ + 3 

2 + 1 
CPA-CEAC 4.5𝑛⌈logଶ 𝑛⌉ + 0.5𝑛 + 6 2⌈logଶ 𝑛⌉ + 3 
CSA-CEAC 7𝑛 4 

Note that in the U-G model, each XOR or XNOR gate counts as two unit gates in the 
area and delay, and an AND or OR gate is considered one unit gate for both the area and 
delay. Therefore, the combinatorial circuits such as FAs, half adders (HAs) and one-bit 
2×1 multiplexers count as 7, 3 and 3 unit gates in area and 4, 2 and 2 gates in the delay, 
respectively. Aside from that, the U-G area and delay estimations for each component of 
the proposed scaler is described in Table 2. Note that the gray lines in Table 2 are not on 
the critical delay path. 

Table 2. The area and delay formulas based on the U-G model for different components of the pro-
posed double-modulo scaler. 

Component Area Delay 
2n-bit CPA 3𝑛⌈logଶ 𝑛⌉ + 13𝑛 2⌈logଶ 𝑛⌉ + 5 

n-bit 2 × 1 MUX 3𝑛 2 
n-bit CPA-EAC 3𝑛⌈logଶ 𝑛  −  1⌉ + 12𝑛 2⌈logଶ 𝑛  −  1⌉ + 3 

Figure 3. The single-modulo scaler for the special moduli set {22n + 1 − 1, 22n, 2n + 1, 2n − 1} with
scaling factor 22n proposed in [15].

Table 2. The area and delay formulas based on the U-G model for different components of the
proposed double-modulo scaler.

Component Area Delay

2n-bit CPA 3ndlog2 ne+ 13n 2dlog2 ne+ 5

n-bit 2 × 1 MUX 3n 2

n-bit CPA-EAC 3ndlog2 n− 1e+ 12n 2dlog2 n− 1e+ 3

2n-bit Simplified CSA-EAC1 10n + 4 4

2n-bit Simplified CSA-EAC2 6n + 4 4

2n-bit CSA-EAC 14n 4

2n-bit CPA-EAC 6ndlog2 ne+ 24n 2dlog2 ne+ 3

n-bit CSA-CEAC 7n 4

n-bit CPA-CEAC 4.5ndlog2 ne+ 0.5n + 6 2dlog2 ne+ 3

Finally, the overall area and delay estimations for scalers are presented in Table 3 for
a general value of n. It can be seen that while the proposed low-precision scaler is based
on a two-moduli scaling factor, the hardware requirement is less than the single-modulo
scaler for the same moduli set, while the delay is almost the same. That aside, the proposed
scaler outperforms the design of [15] in terms of hardware requirements. Furthermore, as is
expected, the high-precision single-modulo version requires a higher area and delay since
it is computed based on the output of the two-moduli scaler.



Axioms 2022, 11, 5 12 of 13

Table 3. The total area and delay estimations for the RNS scalers based on the four-moduli set {22n + 1

− 1, 22n, 2n + 1, 2n − 1}.

Scaler Scale Factor Area Delay

Proposed
Low-Precision 22n (22n + 1 − 1)

19.5ndlog2 ne+
95.5n + 14 6dlog2 ne+ 27

Proposed
High-Precision 22n 31.5ndlog2 ne+

160.5n + 14 8dlog2 ne+ 34

[15]
High-Precision 22n (28.5n + 6)dlog2 ne+

150.5n + 44 6dlog2 ne+ 25

5. Conclusions

Scaling is an overflow prevention mechanism that must be extensively used to prevent
overflow by reducing the size of the operands before RNS addition and multiplication
operations. However, high-precision single-modulo scaling is not suitable for overflow
prevention in multiplication due to its inability to perform significant size reduction, but
the low-precision scaling with two moduli can lead to a zero result for small numbers.
Therefore, this work presents a novel zero-aware low-precision scaler based on the two-
moduli scaling factor. Then, the proposed circuits are reused to derive a high-precision
scaling output to use in situations where low-precision output is not usable, resulting in
a zero-aware RNS scaler. Therefore, the proposed design is pushing forward the RNS
into practical applications by providing an efficient mechanism for overflow prevention,
which is one of the major challenges of RNS. On the other hand, the high latency of the
scaler is one of the limitations of this approach which can be improved in the context of the
final application.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Chang, C.H.; Molahosseini, A.S.; Zarandi, A.A.E.; Tay, T.F. Residue Number Systems: A New Paradigm to Datapath Optimization

for Low-Power and High-Performance Digital Signal Processing. IEEE Circuits Syst. Mag. 2015, 15, 26–44. [CrossRef]
2. Samimi, N.; Kamal, M.; Afzali-Kusha, A.; Pedram, M. Res-DNN: A Residue Number System-Based DNN Accelerator Unit. IEEE

Trans. Circuits Syst. I Regul. Pap. 2020, 67, 658–671. [CrossRef]
3. Deng, B.; Srikanth, S.; Jain, A.; Conte, T.; Debenedictis, E.; Cook, J. Scalable Energy-Efficient Microarchitectures with Computa-

tional Error Tolerance via Redundant Residue Number Systems. IEEE Trans. Comput. 2021, in press. [CrossRef]
4. Omondi, A.R.; Premkumar, B. Residue Number Systems: Theory and Implementation; Imperial College Press: London, UK, 2007.
5. Molahosseini, A.S.; Zarandi, A.A.E.; Martins, P.; Sousa, L. A Multifunctional Unit for Designing Efficient RNS-Based Datapaths.

IEEE Access 2017, 5, 25972–25986. [CrossRef]
6. Kong, Y.; Phillips, B. Fast Scaling in the Residue Number System. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 443–447.

[CrossRef]
7. Chang, C.H.; Low, J.Y.S. Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set {2n − 1, 2n, 2n + 1}. IEEE Trans. Circuits Syst.

I Regul. Pap. 2011, 58, 2686–2697. [CrossRef]
8. Low, J.Y.S.; Chang, C.H. A VLSI Efficient Programmable Power-of-Two Scaler for {2n − 1, 2n, 2n + 1} RNS. IEEE Trans. Circuits

Syst. I Regul. Pap. 2012, 59, 2911–2919. [CrossRef]
9. Low, J.Y.S.; Tay, T.F.; Chang, C.H. A unified {2n − 1, 2n, 2n + 1} RNS scaler with dual scaling constants. In Proceedings of the 2012

IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, Taiwan, 2–5 December 2012.
10. Patronik, P.; Piestrak, S.J. Design of Reverse Converters for General RNS Moduli Sets {2k, 2n − 1, 2n + 1, 2n+1 − 1} and {2k, 2n − 1,

2n + 1, 2n − 1 − 1} (n even). IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1687–1700. [CrossRef]
11. Molahosseini, A.S.; Navi, K.; Dadkhah, C.; Kavehei, O.; Timarchi, S. Efficient reverse converter designs for the new 4-moduli sets

{2n − 1, 2n, 2n + 1, 22n+1 − 1} and {2n − 1, 2n + 1, 22n, 22n + 1} based on new CRTs. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57,
823–835. [CrossRef]

12. Zarandi, A.A.E.; Molahosseini, A.S.; Sousa, L.; Hosseinzadeh, M. An Efficient Component for Designing Signed Reverse
Converters for a Class of RNS Moduli Sets with Composite Form {2K, 2P − 1}. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
2017, 25, 48–59. [CrossRef]

http://doi.org/10.1109/MCAS.2015.2484118
http://doi.org/10.1109/TCSI.2019.2951083
http://doi.org/10.1109/TC.2021.3055754
http://doi.org/10.1109/ACCESS.2017.2766841
http://doi.org/10.1109/TVLSI.2008.2004550
http://doi.org/10.1109/TCSI.2011.2142950
http://doi.org/10.1109/TCSI.2012.2206491
http://doi.org/10.1109/TCSI.2013.2290843
http://doi.org/10.1109/TCSI.2009.2026681
http://doi.org/10.1109/TVLSI.2016.2577609


Axioms 2022, 11, 5 13 of 13

13. Sousa, L.; Antao, S. MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n + 1, 2n − 1, 2n, 22n+1 − 1} and {2n + 1, 2n −
1, 22n, 22n+1 − 1}. IEEE Trans. Circuits Syst. II 2012, 59, 244–248. [CrossRef]

14. Hiasat, A. A Reverse Converter and Sign Detectors for an Extended RNS Five-Moduli Set. IEEE Trans. Circuits Syst. I Regul. Pap.
2017, 64, 111–121. [CrossRef]

15. Sousa, L. 2n RNS Scalers for Extended 4-Moduli Sets. IEEE Trans. Comput. 2015, 64, 3322–3334. [CrossRef]
16. Garcia, A.; Lioris, A. A Look-Up Scheme for Scaling in the RNS. IEEE Trans. Comput. 1999, 48, 748–751. [CrossRef]
17. Vassalos, E.; Bakalis, D. CSD-RNS-based Single Constant Multipliers. J. Signal Process. Syst. 2012, 67, 255–268. [CrossRef]
18. Piestrak, S.J. A high speed realization of a residue to binary converter. IEEE Trans. Circuits Syst. II 1995, 42, 661–663. [CrossRef]
19. Vergos, H.T.; Bakalis, D.; Efstathiou, C. Fast modulo 2n + 1 multi-operand adders and residue generators. Integration 2010, 43,

42–48. [CrossRef]

http://doi.org/10.1109/TCSII.2012.2188456
http://doi.org/10.1109/TCSI.2016.2612723
http://doi.org/10.1109/TC.2015.2401026
http://doi.org/10.1109/12.780883
http://doi.org/10.1007/s11265-010-0552-z
http://doi.org/10.1109/82.471401
http://doi.org/10.1016/j.vlsi.2009.04.002

	Introduction 
	Low-Precision Scaling with Two-Moduli Scaling Factor: Mathematical Formulation 
	Scaling Concept and CRT-II 
	General Formulations 
	Case Study: Moduli Set {22n + 1, 22n,2n + 1, 2n - 1} 
	Case Study: Moduli Set {2n - 1, 2n + 1, 22n, 22n + 1 - 1} 

	Low-Precision Scaling with Two-Moduli Scaling Factor: Hardware Design 
	Performance Evaluation 
	Conclusions 
	References

