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Abstract: The unknown friction factor from the implicit Colebrook equation cannot be expressed
explicitly in an analytical way, and therefore to simplify the calculation, many explicit approximations
can be used instead. The accuracy of such approximations should be evaluated only throughout the
domain of interest in engineering practice where the number of test points can be chosen in many
different ways, using uniform, quasi-uniform, random, and quasi-random patterns. To avoid picking
points with undetected errors, a sufficient minimal number of such points should be chosen, and they
should be distributed using proper patterns. A properly chosen pattern can minimize the required
number of testing points that are sufficient to detect maximums of the error. The ability of the Sobol
quasi-random vs. random distribution of testing points to capture the maximal relative error using
a sufficiently small number of samples is evaluated. Sobol testing points that are quasi-randomly
distributed can cover the domain of interest more evenly, avoiding large gaps. Sobol sequences are
quasi-random and are always the same, which allows the exact repetition of scientific results.
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1. Introduction

The Colebrook equation, formally established in 1939 for calculating the flow friction
through pipes, is empirical but widely accepted in engineering practice as an informal
standard [1]. It is based on an experiment from 1937 performed by Colebrook and White,
who tested flow through a set of pipes with their inner surfaces ranging from smooth to
very rough [2]. The equation was later developed solely by Colebrook [1]; Equation (1).
Its graphical interpretation is given by Rose [3] and was later reevaluated by Moody [4].
Two non-dimensional parameters are used as input, the Reynolds number Re [5] and the
roughness of the inner pipe surface ε [6]. An unfortunate circumstance is that the Colebrook
equation is expressed in an implicitly given logarithmic form with respect to the unknown
Darcy’s flow friction factor f, which cannot be extracted analytically.

1√
f0

= −0.8686· ln
(

2.51
Re
· 1√

f0
+

ε

3.71

)
, (1)

where:
f —turbulent Darcy’s flow friction factor (dimensionless)–index 0 refers to the accurate

solution obtained iteratively after a sufficient number of iterations.
Re—Reynolds number (dimensionless); Re = u·D/ν where u is flow velocity (in m/sec),

ν is the kinematic viscosity of fluid (in m2/sec), and D is inner diameter of pipe (in m).
ε—relative roughness of inner pipe surface (dimensionless); ε = ε*/D where ε* is the

height of the protrusion in the inner surface of the pipe wall above the viscose fluid layer
(in m), and D is the inner diameter of pipe (in m) where ε* << D (ε* typically goes from
0.0015 mm for PVC pipes through to about 3.0 mm for rough concrete pipes [7]).
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ln—natural logarithm.
The Colebrook equation is used in engineering practice for the Reynolds number Re

between 4000 and 108, and for the relative roughness of an inner pipe surface ε between 0
and 0.05, i.e., for a turbulent condition of flow.

The Colebrook equation in its implicitly given native form can be solved only itera-
tively [8–11]. Therefore, to simplify the everyday life of engineers, various very accurate
explicit approximations have been developed over time [12–16]. The distribution of the
relative error δ% over the domain of applicability of the Colebrook equation is uneven
and is different for every new approximation [17,18]. This error should be evaluated in
a sufficient number of points dispersed over the domain of applicability in engineering
practice, and the points should be uniformly, randomly or quasi-randomly distributed. This
communication shows how to use Sobol’s quasi-random distribution for such purposes.
The Colebrook equation is widely used in many scientific disciplines where fluid flow
occurs [19–22], and hence evaluation of the error and its distribution is essential for the
ability to check and repeat scientific findings.

2. Estimation of Error; Testing Patterns and Quantity of Points

This section describes the calculation of the relative error δ% of the chosen approxi-
mation of the Colebrook equation and evaluates different quantities of testing points and
related patterns, i.e., their distribution over the domain of its applicability in engineer-
ing practice.

2.1. Relative Error

The relative error δ% of any explicit approximation should be calculated in reference
to the solution of the original implicitly given Colebrook equation. Its native implicitly
given form is usually solved in an iterative process after sufficient iterations f 0 [8–11]
(as the Colebrook equation is empirical, its accuracy can be disputed, but for this study,
it is treated as accurate [23–25]). The relative error δ% is calculated as δ% = f− f0

f0
·100%,

where f is obtained using the chosen explicit approximation (the testing approximation
in this communication is given in Equation (2)). The goal is to find a worst case, which is
represented by the maximum relative error, i.e., to find a combination of input parameters
for the largest approximation error. For this reason, a sufficiently large number of sample
points from the domain of the Colebrook equation has to be chosen and those points
are chosen using Sobol’s sampling, a type of quasi-random sampling which is capable of
detecting picks of the relative error more efficiently than the classical Monte Carlo sampling,
as fewer evaluation points of quasi-Monte Carlo points are required. Consequently, quasi-
Monte Carlo sampling overperforms the classical Monte Carlo sampling [26].

The results do not depend only on the number of testing points, but also on their
distribution.

2.2. Chosen Approximation for Tests

Explicit approximations of the Colebrook equation should be both accurate and simple
for computation (a smaller number of floating-point operations requiring execution in a
computer’s processor increases the computational efficiency) [27–32]. In general, an approx-
imation with a smaller number of logarithmic and exponential functions is more efficient
(each non-integer power and exponential function should be calculated approximately as
two logarithmic functions [27]).

For the tests performed in this communication, an approximation given by Praks and
Brkić [31] is used; Equation (2). It was chosen from a selection of the simplest and most
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accurate approximations, which included the approximations of Vatankhah [33], Lamri [34],
Lamri and Easa [35], etc.

1√
f
≈ 0.8685972·

(
A1 − A3 +

A3
A2−0.5588·A3+1.2079

)
A1 = ln(Re)− 0.779626

A2 = A1 +
Re·ε

8.0897
A3 = ln(A2)

, (2)

The parameters in Equation (2) are numerically optimized to minimize the maximal
relative error δ% [36]. Such variation of the numerical values of parameters does not
only change the value of the maximal relative error δ%, but also changes the distribution
of the error over the domain of applicability of the Colebrook equation in engineering
practice [17,18]. Therefore, the results depend on both the number of testing points and on
their distribution.

The maximal relative error δ% of Equation (2) is estimated by Praks and Brkić [31] to
be around 0.0012% using up to 2 to 8 million Sobol’s quasi-random testing points. Using the
same methodology for estimation of the maximal relative error δ% as in Brkić [14], with 740
quasi-uniform testing points, it is estimated to be up to 0.00120421% (it was additionally
tested using 740 points and confirmed up to 0.001204% by Brkić and Stajić [15], who used
VBA coding for MS Excel).

2.3. Distribution of Testing Points

The domain of applicability in engineering practice of the Colebrook equation should
be tested using a sufficient number of points. Otherwise, the highest value of the relative
error δ% can be overlooked, because it can be located among the chosen testing points.
Therefore, the testing points should sufficiently cover the domain of applicability of the
Colebrook equation using an appropriate pattern to avoid such undetected picks of error
which can occur among the testing points.

Some authors recommend a few million testing points while others suggest even less
than a thousand, chosen using various patterns such as uniform, quasi-uniform, random,
and quasi-random. For such purposes, Yıldırım [13] uses 10 thousand uniformly distributed
points, Brkić [14] uses 740 quasi-uniformly distributed points, Shaik et al. [25] one million,
while Praks and Brkić [30,31] use even 2 to 8 million quasi-Monte Carlo points.

In this communication, results obtained using a random pattern of points for testing
are compared with the Sobol quasi-random points [37–41], always using an equal number
of testing points.

In further text, the methodology on how to use Sobol’s quasi-random sequence for
testing of the approximations of the Colebrook equation is shown. It is compared with
quasi-random testing points generated in MS Excel [14,15].

Other approaches for random [42,43] and quasi-random sequence testing are avail-
able [44].

2.3.1. Sobol’s Quasi-Random Testing Points

This communication does not describe how the algorithm for generating Sobol se-
quences works [37–41]. It is focused on how to use it to test the explicit approximations of
the Colebrook equation. Compared with random sampling, Sobol numbers offer a lower
discrepancy (they fill the space of possibilities more evenly), and because of that ability,
they have been chosen for testing.

The Sobol quasi-Monte Carlo sampling is a complex procedure, which requires a
specialized software tool. For Sobol quasi-Monte Carlo sampling in Matlab, the open-
source software can be downloaded for free [37], or alternatively, open-source SciPy library
of Python can be used for the Sobol sequence [45].

Because, the Colebrook equation has two input parameters, i.e., the Reynolds number
Re, and the relative roughness of inner pipe surface ε, two-dimensional Sobol sequences [39]
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are used in the tests performed here. Using Sobol’s two-dimensional sequence [S1i, S2i],
values of the Reynolds number Re between 4000 and 108 can be generated, as well for the
relative roughness of inner pipe surface ε between 0 and 0.05. Sobol’s numbers are always
between 0 and 1, and the Reynolds number Re can be generated using the first dimension
of the Sobol two-dimensional sequence S1i, while the relative roughness of the inner pipe
surface ε using the second S2i, as shown in Equation (3):

Re = 10S1i ·(log10 (108)−log10 (4000))+log10 (4000)

ε = 10−(S2i ·(6.5−log10 (1/0.05))+log10 (1/0.05))

}
, (3)

The Sobol sequence is defined for values between zero and one. On the other hand, the
input parameters of the Colebrook equation cover large intervals. For example, Reynolds
numbers vary from 4000 to 108, and ε between 0 and 0.05, while to normalize it, Equation (4)
is used, where Renorm and εnorm represent a normalized value, i.e., a value between 0 and 1
(for example a random number or quasi-random number of the Sobol sequence):

Renorm = Re−Remin
Remax−Remin

εnorm = ε−εmin
εmax−εmin

}
, (4)

Logarithms and the 10x functions were used in the transformation to sufficiently cover
the large interval of input parameters of the Colebrook equation (especially for the Reynolds
numbers). As the Reynold numbers Re of the Colebrook equation are between 4000 and 108,
the procedure for the generation can be expressed as 10ˆ(Renorm*(Remax − Remin) + Remin),
where Remin = log10(4000) and Remax = log10(108) = 8. Consequently, the expression for the
generation of Reynold numbers Re of the Colebrook equation can be approximated as
Re~10.0ˆ(4.3979*Renorm + 3.6021), as 103.6021~4000 represents the minimal Reynold number
of the Colebrook equation. Moreover, 4.3979 + 3.6021 = 8, which represents the maximal
Reynold number 108, where for Renorm = 0→Re~4000 and for Renorm = 1→Re~108. Sim-
ilarly, the relative roughness ε of the pipeline between εmin = log10(3.1808 × 10−7) and
εmax = log10(0.05) can be generated from εnorm as ε = 10ˆ(εnorm*(εmax − εmin) + εmin) where
the expression can be approximated for the Colebrook equation as ε~10.0ˆ(5.1964*xnorm −
6.4975) because for εnorm = 0→ε~0 and for εnorm = 1→ε~0.05.

The Sobol sequence is not random, and in our case, the starting pattern is always identi-
cal, as in Figure 1 where 64 two-dimension points are shown. By comparing Figures 1 and 2,
it can be seen that such sequences more thoroughly cover the domain of the Colebrook
equation than random sampling.

Using Sobol’s quasi-random tests, the maximal relative error δ% of Equation (2) for
n = 6, for 64 sampling points is 0.00120432%, for 740 sampling points the same results (the
maximal error was already detected in the first 64 samples), while for n = 11, 2n = 2048 is
up to 0.00120441%.

Compared with the methodology by Brkić [14] with 740 quasi-uniform testing points
with the error estimated up to 0.00120421%, Sobol’s quasi-random testing captured an even
higher error of 0.00120432%, with only n = 6, 2n = 64 sampling points.
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Sobol’s points and solutions of Equations (1) and (2) are shown in Table 1.

Table 1. Sobol’s points and solutions of Equations (1) and (2).

S1i S2i Re E f 0−
0.5 f 0 A1 A2 A3 f−0.5 f δ%

1 0.5 0.5 632455.5 0.0001257433 8.347569 0.014351 12.57773 22.40839 3.10943 8.347588 0.014351 0.00046325
2 0.25 0.75 50297.3 0.0000063058 6.919347 0.020887 10.04608 10.08528 2.31107 6.919307 0.020887 0.00116755
3 0.75 0.25 7952707.3 0.0025074224 6.337726 0.024896 15.10939 2480.07058 7.81604 6.337728 0.024896 0.00007747
4 0.125 0.625 14184.1 0.0000281588 5.949113 0.028255 8.780253 8.82962 2.17811 5.949092 0.028255 0.00071176
5 0.625 0.125 2242706.8 0.0111969246 5.038929 0.039384 13.84356 3117.96594 8.04493 5.038919 0.039384 0.00038896
6 0.375 0.375 178355.9 0.0005615084 7.195110 0.019316 11.31191 23.69164 3.16512 7.195132 0.019316 0.00059865
7 0.875 0.875 28200544.8 0.0000014121 11.694507 0.007312 16.37522 21.29784 3.05860 11.694525 0.007312 0.00031746
8 0.0625 0.9375 7532.4 0.0000006682 5.477297 0.033332 8.147338 8.14796 2.09776 5.477294 0.033333 0.00011350
9 0.5625 0.4375 1190971.2 0.0002657178 8.104136 0.015226 13.21065 52.32980 3.95756 8.104180 0.015226 0.00108532

...

...

2049 0.0002441 0.941162 4009.9 0.0000006396 5.007611 0.039878 7.516895 7.51721 2.01719 5.007631 0.039878 0.00081838
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2.3.2. Random Sampling

Instead of [S1i, S2i], Equation (3) used Excel function “Rand()”. This will always
generate different testing patterns as shown in Figure 2.

The maximal relative error δ% in all tests for the approximation from Equation (2) is
always evaluated to be around 0.0012% using random sampling.

3. Conclusions

The Colebrook equation depends on two input parameters: the Reynolds number
Re and the relative roughness ε of the pipeline. As the input parameters have a large
variance of possible values (the Reynolds number Re varies from 4000 to 108 and the
inner pipe surface varies from 3.1808 × 10−7 to 0.05), every new approximation of the
Colebrook equation should be discovered by the evaluation of a large number of possible
combinations of input parameters. For this reason, a method is required, which is able to
identify a limited number of pairs suitable for the building of a new approximation. This
communication shows that the Sobol quasi-Monte Carlo method requires, for the same
accuracy of the Colebrook approximation, a less number of evaluations of the Colebrook
equation than the classical Monte-Carlo method.

The findings of this communication for 2048 and even for 64 quasi-random points give
comparable results as 740 uniform points of logarithmic scale [14]. Moreover, Sobol’s test
points are not random, but quasi-random, and so such an approach is deterministic (which
is useful for comparisons of calculations [46–48]). Finally, the Sobol quasi-random approach
is preferable, as it fills the sampling space more evenly. Thus, the chance to neglect some
parts of the examined domain is minimized for the Sobol quasi-random approach.
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