Article

Strong Chromatic Index of Outerplanar Graphs

Ying Wang 1,†, Yiqiao Wang 2,‡, Weifan Wang 3,*,# and Shuyu Cui 3

1 School of Mathematics and Information Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; zhuti@163.com
2 School of Management, Beijing University of Chinese Medicine, Beijing 100029, China; yqwang@bucm.edu.cn
3 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; cuishuyu@zjnu.edu.cn

* Correspondence: wwf@zjnu.cn
† Research Supported Partially by NSFC (No. 12001156).
‡ Research Supported Partially by NSFC (No. 12071048) and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).
Research Supported Partially by NSFC (No. 12031018).

Abstract: The strong chromatic index \(\chi_s'(G) \) of a graph \(G \) is the minimum number of colors needed in a proper edge-coloring so that every color class induces a matching in \(G \). It was proved in 2013 that every outerplanar graph \(G \) with \(\Delta \geq 3 \) has \(\chi_s'(G) \leq 3\Delta - 3 \). In this paper, we give a characterization for an outerplanar graph \(G \) to have \(\chi_s'(G) = 3\Delta - 3 \). We also show that if \(G \) is a bipartite outerplanar graph, then \(\chi_s'(G) \leq 2\Delta \); and \(\chi_s'(G) = 2\Delta \) if and only if \(G \) contains a particular subgraph.

Keywords: strong edge-coloring; strong chromatic index; outerplanar graph; bipartite graph

MSC: Graph Theory with Applications

1. Introduction

Only simple graphs are considered in this paper. For a graph \(G \), we use \(V(G) \), \(E(G) \), and \(\Delta(G) \) to denote its vertex set, edge set and maximum degree, respectively. A vertex \(v \) is called a \(k \)-vertex (or \(k^+ \)-vertex) if the degree \(d_G(v) \) of \(v \) is \(k \) (or at least \(k \)). Let \(N_G(v) \) denote the set of vertices adjacent to \(v \) in \(G \). If no ambiguity arises in the context, \(\Delta(G) \), \(d_G(v) \), and \(N_G(v) \) are simply written as \(\Delta \), \(d(v) \), and \(N(v) \), respectively. A subgraph of \(G \) is called a clique if any two of its vertices are adjacent in \(G \). A subset \(I \subset V(G) \) of a connected graph \(G \) is called a clique-cut if \(|I| \) is a clique and \(G - I \) is disconnected.

A proper edge-\(k \)-coloring of a graph \(G \) is a mapping \(\phi : E(G) \to \{1, 2, \ldots, k\} \) such that \(\phi(e) \neq \phi(e') \) for any two adjacent edges \(e \) and \(e' \). The chromatic index \(\chi'(G) \) of \(G \) is the smallest \(k \) such that \(G \) has a proper edge-\(k \)-coloring. An edge coloring of the graph \(G \) is called strong if every color class induces a matching in \(G \). The strong chromatic index of \(G \), denoted \(\chi_s'(G) \), is the smallest \(k \) such that \(G \) has a strong edge-\(k \)-coloring.

The strong edge-coloring of graphs was introduced by Fouquet and Jolivet [1]. In 1985, Erdős and Nešetřil raised the following conjecture and showed that the upper bounds are tight:

Conjecture 1. For a graph \(G \),

\[
\chi_s'(G) \leq \begin{cases}
1.25\Delta^2, & \text{if } \Delta \text{ is even;} \\
1.25\Delta^2 - 0.5\Delta + 0.25, & \text{if } \Delta \text{ is odd.}
\end{cases}
\]

Using probabilistic method, Molloy and Reed [2] showed that \(\chi_s'(G) \leq 1.998\Delta^2 \) when \(\Delta \) is sufficiently large. This result was further improved in [3] to that \(\chi_s'(G) \leq 1.93\Delta^2 \) for any graph \(G \). Using Four-Colour Theorem and Vizing Theorem, Faudree et al. [4] showed...
that every planar graph \(G \) has \(\chi'_s(G) \leq 4\Delta + 4 \); and constructed a planar graph \(G \) such that \(\chi'_s(G) = 4\Delta - 4 \).

A planar graph is called outplanar if it has a plane embedding such that all the vertices lie on the boundary of the unbounded face. It was shown in [5] that a graph \(G \) is outplanar if and only if \(G \) is \(K_4 \)-minor-free and \(K_{2,3} \)-minor-free. Hence outplanar graphs are special \(K_4 \)-minor-free graphs. Wang et al. [6] showed that every \(K_4 \)-minor-free graph \(G \) with \(\Delta \geq 3 \) has \(\chi'_s(G) \leq 3\Delta - 2 \) and the upper bound is tight. Hocquard et al. [7] proved that every outplanar graph \(G \) with \(\Delta \geq 3 \) has \(\chi'_s(G) \leq 3\Delta - 3 \) and the upper bound is tight.

In this paper we will give a characterization for an outplanar graph \(G \) with \(\Delta \geq 3 \) to have \(\chi'_s(G) = 3\Delta - 3 \).

2. Sun-Graphs

Suppose that \(G \) is an outplanar graph. We embed \(G \) in the plane so that all the vertices occur in the boundary of unbounded face. Let \(F(G) \) denote the set of faces in \(G \). The unbounded face, denoted by \(f_0(G) \), of \(G \) is called outer face, and other faces inner faces. For a face \(f \in F(G) \), the boundary of \(f \) is denoted by \(b(f) \). A 3-face with \(x, y, z \) as boundary vertices is written as \([xyz]\). The edges lying in the outer face are called outer edges and other edges inner edges. An inner face \(f \) is called an end-face if \(b(f) \) contains at most one inner edge. A leaf of \(G \) is a vertex of degree 1, and a pendant edge is an edge incident to a leaf. For a vertex \(v \in V(G) \), let \(L(v) \) denote the set of pendant edges at vertex \(v \). For a cycle \(C \), an edge \(xy \in E(G) \setminus E(C) \) is called a chord of \(C \) if \(x, y \in V(G) \).

Let \(F_1 \) denote a subgraph of \(G \), which consists of a 3-cycle \(C_3 = x_0x_1x_2x_0 \) with \(d_G(x_i) = \Delta \geq 3 \) for \(i = 0, 1, 2 \).

Let \(F_2 \) denote a subgraph of \(G \), which consists of a 4-cycle \(C_4 = x_0x_1x_2x_3x_0 \) with \(d_G(x_0) = d_G(x_1) = \Delta \geq 3 \).

Let \(F_3 \) denote a subgraph of \(G \), which consists of a 7-cycle \(C_7 = x_0x_1\cdots x_6x_0 \) with \(d_G(x_i) = 3 \) for \(i = 0, 1, \ldots, 6 \).

We assume that \(C_4 \) in \(F_2 \) and \(C_7 \) in \(F_3 \) have no chord.

The configurations \(F_1, F_2, F_3 \) are depicted in Figure 1. By the outplanarity of \(G \), for \(F, F_j \in \{1, 2, 3\} \), some vertex \(y_i \in N(x_i) \setminus \{x_{i-1}, x_{i+1}\} \) may identify with some vertex \(y_{i+1} \in N(x_{i+1}) \setminus \{x_i, x_{i+2}\} \), but there is at most one such pair \(\{y_i, y_{i+1}\} \) satisfying \(y_i = y_{i+1} \), where indices \(i \) are taken as modulo \(n \).

![Figure 1](image)

Figure 1. Configurations \(F_1, F_2, \) and \(F_3 \).

Lemma 1 ([7]). If \(G \) is an outplanar graph with \(\Delta \geq 3 \), then \(\chi'_s(G) \leq 3\Delta - 3 \).

Lemma 2. Let \(F_1, F_2, F_3 \) are defined as above. Then

1. \(\chi'_s(F_1) = 3\Delta - 3 \).
2. \(\chi'_s(F_2) = 3\Delta - 3 \).
3. \(\chi'_s(F_3) = 6 \).

Proof. (1) Since \(|E(F_1)| = 3\Delta - 3 \) and it is easy to check that any two edges of \(F_1 \) have distance at most two, so it follows that \(\chi'_s(F_1) = 3\Delta - 3 \).
(2) Applying the similar analysis as in (1), we can derive that $\chi'_v(F_2) = 3\Delta - 3$.

(3) It is evident that $\chi'_v(F_3) \leq 6$ by Lemma 1. Conversely, assume that F_3 admits a strong edge-5-coloring ϕ using the color set $C = \{1, 2, \ldots, 5\}$. Let E_i denote the set of edges colored with the color i under the coloring ϕ. Set $E^* = E(F_3) - E(C)$. First, it is easy to inspect that $|E_i| \leq 3$ for each $i \in C$. Next, because $|E(F_3)| = 14$ and $|C| = 5$, we can assume that $|E_i| = 3$ for $i = 1, 2, 3, 4$ and $|E_5| = 2$. Since $|E^*| = 7$, some E_i for $i \in \{1, 2, 3, 4\}$, say $i = 1$, satisfies $|E_1 \cap E^*| \leq 1$. It implies that $|E_1 \cap E(C)| \geq 2$. On the other hand, it is easy to inspect that $|E_1 \cap E(C)| \leq 2$. So $|E_1 \cap E(C)| = 2$ and $|E_1 \cap E^*| = 1$, however such coloring is impossible, a contradiction. This shows that $\chi'_v(F_3) \geq 6$. Consequently, $\chi'_v(F_3) = 6$.

Let $C_n = x_0 x_1 \cdots x_{n-1} x_0$ be a cycle with $n \geq 3$. Let $k \geq 3$ be an integer. At each vertex x_i, we glue $k - 2$ leaves and write the resultant graph as S^k_n. Then S^k_n is an outerplanar graph with maximum degree k and order $n (k - 1)$. We call S^k_n a sun-graph with parameters n and k. If $k = 3$, then we use y_i to denote a leaf adjacent to x_i for $i = 0, 1, \ldots, n - 1$.

As an easy observation, we have the following:

Lemma 3. Let C_n be a cycle with $n \geq 3$. Then

$$\chi'_v(C_n) = \begin{cases} 5, & \text{if } n = 5; \\ 3, & \text{if } n \equiv 0 \pmod{3}; \\ 4, & \text{otherwise}. \end{cases}$$

Lemma 4. Let S^3_n be a sun-graph with $n \geq 3$. Then

$$\chi'_v(S^3_n) = \begin{cases} 6, & \text{if } n = 3, 4, 7; \\ 5, & \text{otherwise}. \end{cases}$$

Proof. If $n = 3, 4, 7$, the conclusion follows immediately from Lemma 2. So suppose that $n \neq 3, 4, 7$. It holds trivially that $\chi'_v(S^3_n) \geq 5$ since S^3_n contains two adjacent 3-vertices. To show that $\chi'_v(S^3_n) \leq 5$, we make use of induction on n. It remains to construct a strong edge-5-coloring ϕ of S^3_n using the color set $C = \{1, 2, \ldots, 5\}$.

- If $n = 5$, then we color the edges in $\{x_i y_i, x_{i+2} x_{i+3}\}$ with $i + 1$ for $i = 0, 1, 2, 3, 4$, where indices are taken as modulo 5.
- If $n \equiv 0 \pmod{6}$, then we alternatively color the edges in $E(C_n)$ with 1, 2, 3, and color alternatively pendant edges with 4, 5.
- If $n = 8$, then we color $\{x_1 y_1, x_3 x_4, x_6 x_7\}$ with 1, $\{x_3 y_3, x_0 x_1, x_5 x_6\}$ with 2, $\{x_5 y_5, x_0 x_7\}$ $\{x_2 x_3\}$ with 3, $\{x_7 y_7, x_1 x_2, x_4 x_5\}$ with 4, and $\{x_0 y_0, x_2 y_2, x_4 y_4, x_6 y_6\}$ with 5.
- If $n = 9$, then we color $\{x_1 y_1, x_3 y_3, x_8 y_8, x_5 x_6\}$ with 1, $\{x_0 y_0, x_5 y_5, x_7 y_7, x_2 x_3\}$ with 2, $\{x_2 y_2, x_4 y_4, x_6 y_6, x_0 x_8\}$ with 3, $\{x_0 x_1, x_3 x_4, x_6 x_7\}$ with 4, and $\{x_1 x_2, x_4 x_5, x_7 x_8\}$ with 5.

Now assume that $n \geq 10$ and $n \equiv 0 \pmod{6}$. Consider the graph S^3_{n-5}. Note that $n - 5 \geq 5$, and $n - 5 \neq 7$. By the induction hypothesis, $\chi'_v(S^3_{n-5}) = 5$. Let ϕ be a strong edge-5-coloring of S^3_{n-5}, so that $\phi(x_0 x_1) = 1$, $\phi(x_0 y_0) = 2$, $\phi(x_{n-7} x_{n-6}) = 3$, $\phi(x_{n-6} y_{n-6}) = 4$, and $\phi(x_0 x_{n-6}) = 5$. Clearly, S^3_n can be obtained from S^3_{n-5} by inserting five vertices x_{n-5}, x_{n-4}, x_{n-3}, x_{n-2}, x_{n-1} to the edge $x_0 x_{n-6}$ and adding a leaf y_j at x_j for $j = n - 5, n - 4, \ldots, n - 1$. We extend ϕ to S^3_n by coloring $\{x_{n-3} x_{n-2}, x_{n-5} y_{n-5}\}$ with 1, $\{x_{n-5} x_{n-4}, x_{n-2} y_{n-2}\}$ with 2, $\{x_{n-2} x_{n-1}, x_{n-4} y_{n-4}\}$ with 3, $\{x_{n-4} x_{n-3}, x_{n-1} y_{n-1}\}$ with 4, and $\{x_0 x_{n-1}, x_{n-6} x_{n-5}, x_{n-3} y_{n-3}\}$ with 5. It is easy to testify that the extended coloring is a strong edge-5-coloring of S^3_n. □

For a sun-graph S^3_n with $C_n = x_0 x_1 \cdots x_{n-1} x_0$, we set $L(x_i) = \{e_{0}^i, e_{1}^i, \ldots, e_{n-2}^i\}$ for $i = 0, 1, \ldots, n - 1$. Recall that $L(x_i)$ stands for the set of pendant edges incident to x_i.

Lemma 5. Let S_n^k be a sun-graph with $k,n \geq 4$ and n being even. Then
\[
\chi'_s(S_n^k) = \begin{cases}
2k, & \text{if } n = 4; \\
2k - 1, & \text{if } n \geq 6.
\end{cases}
\]

Proof. Since $k \geq 4$, it follows that $k - 2 \geq 2$. The proof is split into the following two cases.

• Assume that $n = 4$. Color $x_0x_1, x_1x_2, x_2x_3, x_3x_0$ with $1, 2, 3, 4$, respectively; For $i = 0, 2, \ldots, n - 2$, we color $k - 2$ pendant edges in $L(x_i)$ with colors $5, 6, \ldots, k + 2$; For $i = 1, 3, \ldots, n - 1$, we color $k - 2$ pendant edges in $L(x_i)$ with colors $k + 3, k + 4, \ldots, 2k$. It is easy to see that the defining coloring is a strong edge-$2k$-coloring of S_n^4. Hence $\chi'_s(S_n^4) \leq 2k$. Conversely, we note that every pendant edge of S_n^4 has distance at most two to any edge in $E(C_4)$. This implies that, for any strong edge coloring of S_n^4, the color of any pendant edge is distinct from that of edges in C_4. Moreover, at least $2(k - 2)$ colors are needed when we color the $4(k - 2)$ pendant edges of S_n^4. It follows therefore that $\chi'_s(S_n^4) = 4 + 2(k - 2) = 2k$. This yields that $\chi'_s(S_n^4) = 2k$.

• Assume that $n \geq 6$. It is straightforward to conclude that $\chi'_s(S_n^k) \geq 2k - 1$ since S_n^k contains two adjacent k-vertices. Conversely, we notice that S_n^5 is a spanning subgraph of S_n^k. By Lemma 4, S_n^3 has a strong edge-5-coloring ϕ using colors $1, 2, 3, 4, 5$. Based on ϕ, we can color the remaining $k - 3$ pendant edges in $L(x_i)$ with colors $6, 7, \ldots, k + 2$ for each $i = 0, 2, \ldots, n - 2$; and color the remaining $k - 3$ pendant edges in $L(x_i)$ with colors $k + 3, k + 4, \ldots, 2k - 1$ for each $i = 1, 3, \ldots, n - 1$. The extended coloring is a strong edge-$2k$-coloring of S_n^5. It therefore turns out that $\chi'_s(S_n^k) \leq 2k - 1$. Consequently, $\chi'_s(S_n^k) = 2k - 1$.

Lemma 6. Let $n \geq 4$ be an odd number. Then

1. $\chi'_s(S_n^4) \leq 8$.
2. $\chi'_s(S_n^5) \leq 11$.

Proof. We first prove (1), by discussing two cases below.

• Assume that $n = 7$. Give a strong edge-7-coloring ϕ of S_n^3 as follows: $\phi(x_i, x_{i+1}) = i + 1$ for $i = 0, 1, \ldots, 6$, where indices are taken as modulo 7; then we color $L(x_0)$ with $3, 5, L(x_1)$ with $4, 6$, $L(x_2)$ with $5, 7$, $L(x_3)$ with $1, 6$, $L(x_4)$ with $2, 7$, $L(x_5)$ with $1, 3$, and $L(x_6)$ with $2, 4$.

• Assume that $n \neq 7$. By Lemma 4, S_n^3 admits a strong edge-5-coloring ϕ using the colors $1, 2, \ldots, 5$. Let $e_0^1, e_1^1, \ldots, e_{n-1}^1$ have been colored. Afterward, we extend ϕ to the remaining edges of S_n^3 by coloring e_0^2 with 6, $\{e_1^2, e_2^2, \ldots, e_{n-2}^2\}$ with 7, and $\{e_0^3, e_2^3, \ldots, e_{n-1}^3\}$ with 8. It is easily seen that the resultant coloring is a strong edge-5-coloring of S_n^4.

Next we prove (2). By the result of (1), S_n^5 has a strong edge-8-coloring ϕ using the colors $1, 2, \ldots, 8$. Based on ϕ, we can color e_0^3 with 9, $\{e_1^3, e_2^3, \ldots, e_{n-2}^3\}$ with 10, and $\{e_0^4, e_2^4, \ldots, e_{n-1}^4\}$ with 11. This leads to a strong edge-11-coloring of S_n^5. We first establish a useful claim:

Claim 1. Let $A_i = \{e_i^l, e_i^r\} \subseteq L(x_i)$ for $i = 0, 1, \ldots, n - 1$. Let $A = A_0 \cup A_1 \cup \cdots \cup A_{n-1}$. Then A can be strongly edge-5-colored on the graph S_n^5.

Proof. Since $n \geq 5$ is odd, we can give an edge 5-coloring π of A as follows: coloring A_1 with $2, 4$; A_2 with $3, 5$; A_3 with $1, 4$; each of $A_0, A_5, A_7, \ldots, A_{n-2}$ with $1, 3$; and each of $A_4, A_6, A_8, \ldots, A_{n-1}$ with $2, 5$. It is easy to confirm that π is a strong edge-5-coloring of A restricted in the graph S_n^5.

Lemma 7. Let $k \geq 6$, and let $n \geq 5$ be odd. Then $\chi'_s(S_n^k) \leq \lceil 2.5k - 2 \rceil$.

Theorem 1. Assume the contrary, let H be a strong edge-l-coloring of G using the color set $C = \{1, 2, \ldots, l\}$. By the definition of G, we deduce that $E(I) \subseteq E(G)_i$ for $i = 1, 2$, and $E(G_1) \cap E(G_2) = E(I)$. Observe that any edge in $E(G_1) \setminus E(I)$ and any edge in $E(G_2) \setminus E(I)$ have distance at least three in G. Moreover, since the distance between any two edges in $E(I)$ is less than three, no two edges in $E(I)$ are assigned same color in both ϕ_1 and ϕ_2. So we may assume that $\phi_1(e) = \phi_2(e)$ for each $e \in E(I)$. Combining ϕ_1 and ϕ_2, we get a strong edge-l-coloring of G. This shows that $\chi'_s(G) \leq l$. On the other hand, since G_1 is a subgraph of G, we have naturally that $\chi'_s(G) \geq \max\{\chi'_s(G_1), \chi'_s(G_2)\} = l$. Consequently, $\chi'_s(G) = l$. □

Theorem 1. Let G be an outerplanar graph with $\Delta \geq 4$. If G does not contain F_1 as a subgraph, then $\chi'_s(G) \leq 3\Delta - 4$.

Proof. Assume the contrary, let G be a counterexample with $|E(G)|$ being as small as possible. Then G is connected, $|E(G)| \geq 3\Delta - 3$, and possesses the following properties:

\begin{itemize}
 \item [(P1)] No F_1 is contained in G or its subgraphs.
 \item [(P2)] G is not strongly edge-$(3\Delta - 4)$-colorable, but any subgraph H of G with $|E(H)| < |E(G)|$ is strongly edge-$(3\Delta - 4)$-colorable.
 \item [(P3)] G is not a tree; otherwise $\chi'_s(G) \leq 2\Delta - 1 < 3\Delta - 4$, contradicting (P2).
\end{itemize}

By Lemma 8, the following claim holds:

Claim 2. G does not contain a separable clique-cut $I \subseteq V(G)$ with $1 \leq |I| \leq 2$.

Embed G to the plane so that all the vertices lie in the boundary of $f_0(G)$. Let H denote the graph obtained from G by removing all leaves. By (P3) and Claim 2, we can easily deduce Claims 3 and 4 below.

Claim 3. H is 2-connected, and $b(f_0(H))$ forms a Hamiltonian cycle. This furthermore implies that all vertices in $V(G) \setminus V(H)$ are leaves.

Claim 4. Every inner edge uv of H is incident to an end-3-face $[uvw]$ such that $d_G(w) = d_H(w) = 2$.

Claim 4 implies that $2 \leq \Delta(H) \leq 4$; for otherwise H will contain an inner edge xy with $d_H(x) \geq 5$ and $\{x, y\}$ is a separable clique-cut of G.

3. Outerplanar Graphs

Suppose that G is a connected outerplanar graph. Let $I \subseteq V(G)$ be a clique-cut of G with $1 \leq |I| \leq 2$; that is, $G[I]$ is K_1 or K_2 such that $G - I$ is disconnected. If $G - I$ has at least two components each containing at least one edge, then I is said to be a separable clique-cut.

For a separable clique-cut I of G, let $H_1, H_2, \ldots, H_s (s \geq 2)$ denote the components of $G - I$ with $|E(H_i)| \geq 1$ and $|E(H_i)| \geq 1$. We set $G_1 = G[E(H_1) \cup E(I)]$ and $G_2 = G[E(H_2) \cup \cdots \cup E(H_s) \cup E(I)]$, where $E(I)$ denotes the set of edges in G which are incident to at least one vertex in I.

The following lemma plays a crucial role in the proof of our main results.

Lemma 8. Let G be a connected outerplanar graph with a separable clique-cut I. Suppose that G_1 and G_2 are defined as above. Then

$$
\chi'_s(G) = \max\{\chi'_s(G_1), \chi'_s(G_2)\}
$$

Proof. Let $l_1 = \chi'_s(G_1), l_2 = \chi'_s(G_2)$, and $l = \max\{l_1, l_2\}$. For $i = 1, 2$, let ϕ_i be a strong edge-l-coloring of G_i using the color set $C = \{1, 2, \ldots, l\}$. By the definition of G_i, we deduce that $E(I) \subseteq E(G)_i$ for $i = 1, 2$, and $E(G_1) \cap E(G_2) = E(I)$. Observe that any edge in $E(G_1) \setminus E(I)$ and any edge in $E(G_2) \setminus E(I)$ have distance at least three in G. Moreover, since the distance between any two edges in $E(I)$ is less than three, no two edges in $E(I)$ are assigned same color in both ϕ_1 and ϕ_2. So we may assume that $\phi_1(e) = \phi_2(e)$ for each $e \in E(I)$. Combining ϕ_1 and ϕ_2, we get a strong edge-l-coloring of G. This shows that $\chi'_s(G) \leq l$. On the other hand, since G_1 is a subgraph of G, we have naturally that $\chi'_s(G) \geq \max\{\chi'_s(G_1), \chi'_s(G_2)\} = l$. Consequently, $\chi'_s(G) = l$. □
Let G^* denote the graph obtained from G by carrying out repeatedly the following operation:

(*) If x is a 2-vertex of H incident to an end-3-face $[xyz]$, then we split x into two new vertices y_1 and z_1 so that y_1 joins with y, and z_1 joins with z.

Intuitively speaking, every 2-vertex of H which is incident to an end-3-face is replaced by two leaves in G. It is easy to see that $\Delta(G^*) = \Delta(G)$, and ϕ is a strong edge-k-coloring of G^* if and only if ϕ is a strong edge-k-coloring of G.

It is easily observed that G^* is a spanning subgraph of some sun-graph S^k_n, where $k = \Delta(G)$ and n is the total number of 3^+-vertices in G and the number of 2-vertices in G which are not on any 3-face. As an example, we observe the graphs G and G^* depicted in Figure 2.

![Figure 2](image_url)

Figure 2. G^* is obtained from G by carrying out (*), and G^* is a subgraph of S^k_n.

Noting that $3k - 4 \geq \max\{2k, [2.5k - 2]\}$, we deduce by Lemmas 5 and 7 that $\chi'_d(G) = \chi'_d(G^*) \leq \chi'_d(S^k_n) \leq 3k - 4 = 3\Delta - 4$. This completes the proof of the theorem. □

Combining Theorem 1 and Lemmas 1 and 2(1), the following theorem holds:

Theorem 2. Let G be an outerplanar graph with $\Delta \geq 4$. Then $\chi'_d(G) \leq 3\Delta - 3$; and $\chi'_d(G) = 3\Delta - 3$ if and only if G contains F_1 as a subgraph.

Theorem 3. Let G be an outerplanar graph with maximum degree $\Delta = 3$. If G does not contain F_1, F_2 or F_3 as a subgraph, then $\chi'_d(G) \leq 5$.

Proof. Assume the contrary, let G be a counterexample with $|E(G)|$ being as small as possible. Then G is connected, $|E(G)| \geq 6$, and possesses the following properties:

(Q1) None of F_1, F_2, F_3 is contained in G or its subgraphs.

(Q2) G is not strongly edge-5-colorable, but any subgraph H of G with $|E(H)| < |E(G)|$ is strongly edge-5-colorable. Actually, if $\Delta(H) \leq 2$, then by Lemma 3, $\chi'_d(H) \leq 5$. If $\Delta(H) = 3$, then by the minimality of G, we obtain that $\chi'_d(H) \leq 5$.

(Q3) G is not a tree; otherwise $\chi'_d(G) \leq 5$, contradicting (Q2).

By Lemma 8, G does not contain a separable clique-cut $I \subseteq V(G)$ with $1 \leq |I| \leq 2$. Embed G to the plane so that all the vertices lie in $b(f_0(G))$. Removing all the leaves of G, we get a subgraph H of G. Similarly to the proof of Theorem 1, we conclude the following:

- H is 2-connected, and all vertices in $V(G) \setminus V(H)$ are leaves.
- Every inner edge uv of H is incident to an end-3-face $[uvw]$ such that $d_C(w) = d_H(w) = 2$.

Let G^* be the graph obtained from G by doing repeatedly the following operation:

(*) If x is a 2-vertex of H incident to an end-3-face $[xyz]$ in H, then we split x into two new vertices y_1 and z_1 so that y_1 joins with y, and z_1 joins with z.
Then $\Delta(G^*) = \Delta(G)$, and $\chi'_s(G) = \chi'_s(G^*)$. Note that G^* is a spanning subgraph of some sun-graph S^k_n, where n is the total number of 3-vertices in G and the number of 2-vertices in G which are not on any 3-face. By Lemma 4, we derive immediately that $\chi'_s(G) = \chi'_s(G^*) \leq \chi'_s(S^k_n) \leq 5$. \hfill \square

Combining Theorem 3 and Lemmas 1 and 2, we have the following:

Theorem 4. Let G be an outerplanar graph with $\Delta = 3$. Then $\chi'_s(G) \leq 6$; and $\chi'_s(G) = 6$ if and only if G contains at least one of F_1, F_2, F_3 as a subgraph.

When restricted to the family of bipartite outerplanar graphs G, smaller and tight upper bounds for $\chi'_s(G)$ can be obtained.

Theorem 5. Let G be a bipartite and outerplanar graph with maximum degree $\Delta \geq 3$. Then $\chi'_s(G) \leq 2\Delta$; moreover, $\chi'_s(G) = 2\Delta$ if and only if G contains F_2 as a subgraph.

Proof. We first show that $\chi'_s(G) \leq 2\Delta$. Assume the contrary, let G be a counterexample with $|E(G)|$ being as small as possible. Then G is connected, other than a tree, and is not strongly edge-2Δ-colorable, but any subgraph H of G with $|E(H)| < |E(G)|$ is strongly edge-2Δ-colorable. Moreover, by Lemma 8, there is no separable clique-cut $I \subseteq V(G)$ with $1 \leq |I| \leq 2$.

Embed G to the plane so that all the vertices occur in $b(f_0(G))$. Removing all the leaves of G, we obtain a subgraph H of G. Then H is a Hamiltonian cycle without chords, and $V(G) \setminus V(H)$ are all leaves. So G is a subgraph of some S^k_n where $n = |V(H)|$ is even and $k = \Delta(G)$. By Lemma 5, $\chi'_s(G) \leq \chi'_s(S^k_n) \leq 2k = 2\Delta$.

If G contains F_2 as a subgraph, then $\chi'_s(G) \geq \chi'_s(F_2) = |E(F_2)| = 2\Delta$. Using the foregoing proof, we get that $\chi'_s(G) = 2\Delta$. Conversely, if G does not contain F_2 as a subgraph, then similarly to the above discussion we can show that $\chi'_s(G) \leq 2\Delta - 1$. \hfill \square

Author Contributions: Conceptualization, Y.W. (Ying Wang) and W.W.; methodology, Y.W. (Ying Wang) and Y.W. (Yiqiao Wang); validation, Y.W. (Yiqiao Wang) and W.W.; formal analysis, Y.W. (Yiqiao Wang); investigation, S.C.; resources, S.C.; writing-original draft preparation, Y.W. (Ying Wang) and S.C.; writing-review and editing, Y.W. (Ying Wang) and B.W.; visualization, Y.W. (Yiqiao Wang); supervision, W.W.; project administration, Y.W. (Yiqiao Wang); funding acquisition, Y.W. (Ying Wang) and W.W. All authors have read an agreed to the published version of the manuscript.

Funding: This research was funded by the NSFC (No. 12001156), NSFC (No. 12071048), NSFC (No. 12031018), Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are within the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References