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Abstract: Emotion distribution learning (EDL) handles emotion fuzziness by means of the emotion
distribution, which is an emotion vector that quantitatively represents a set of emotion categories
with their intensity of a given instance. Despite successful applications of EDL in many practical
emotion analysis tasks, existing EDL methods have seldom considered the linguistic prior knowledge
of affective words specific to the text mining task. To address the problem, this paper proposes a text
emotion distribution learning model based on a lexicon-enhanced multi-task convolutional neural
network (LMT-CNN) to jointly solve the tasks of text emotion distribution prediction and emotion
label classification. The LMT-CNN model designs an end-to-end multi-module deep neural network
to utilize both semantic information and linguistic knowledge. Specifically, the architecture of the
LMT-CNN model consists of a semantic information module, an emotion knowledge module based
on affective words, and a multi-task prediction module to predict emotion distributions and labels.
Extensive comparative experiments on nine commonly used emotional text datasets showed that the
proposed LMT-CNN model is superior to the compared EDL methods for both emotion distribution
prediction and emotion recognition tasks.

Keywords: emotion distribution learning; text-based emotion analysis; affective words;
multi-task CNN

1. Introduction

Emotion analysis aims to recognize and analyze the emotions behind massive human
behavior data such as text, pictures, movies, and music [1–3]. With the rapid development of
Internet-based social media, text-based emotion classification shows promising application
prospects in many emerging artificial intelligence fields such as public opinion analysis,
commodity recommendation, and business decision making [4]. In recent years, the text-
oriented emotion classification model has become a research hotspot in the field of natural
language processing and machine learning [5].

Many traditional emotion classification models adopt the multi-label learning paradigm
and assume that an example is associated with some emotion labels. On this technical line,
many scholars have proposed various effective works to solve the problem of emotion
recognition. Multi-label learning can deal with multi-emotion recognition tasks, but it can-
not quantitatively model a variety of emotions with different expression intensities [6]. To
solve this problem, Zhou et al. proposed emotion distribution learning (EDL) [7] motived
by label distribution learning (LDL) [6]. Different from the traditional emotion classification
model, EDL associates an emotion distribution vector with each example (e.g., facial image
or text sentence). The emotion distribution vector records the expression degree of a given
example of each emotion label, and its dimension is the number of all emotions. In recent
years, many EDL research works have been published in top conferences and journals
in the field of machine learning. For example, Yang et al. proposed a circular-structured
representation for visual emotion distribution learning by exploiting the intrinsic rela-
tionship between emotions based on psychological models [8]. Xu and Wang proposed a
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method for learning emotion distribution based on an attention mechanism in 2021, using
an emotional graph-based network to explore the correlation between various regions in
the image and emotion distribution [9]. Fei et al. proposed a latent emotional memory
network that can learn latent emotional distributions without external knowledge, and
the model has been used well for classification tasks [10]. Zhao et al. proposed a small
sample text EDL model of the meta-learning method [11]; Jia et al. proposed a facial EDL
method using local low-rank label correlation [12]; Pang et al. proposed a basic model of
an acceleration algorithm to predict the emotion distribution of unlabeled files [13]. These
EDL methods can effectively record the intensity of examples of different emotion labels
and show better performance than the traditional emotion classification model. However,
most of the existing EDL methods do not introduce the unique affective word information
containing prior emotion knowledge into the prediction model.

Affective words are words with different emotional tendencies [14], which have
generally been manually labeled based on emotional linguistic knowledge. Different
affective words are usually used to describe different emotional characteristics, and different
combinations of affective words can also express different emotional tendencies. At present,
some scholars have used affective word information in the field of emotion analysis.
Teng et al. showed that affective words have a significant effect in predicting emotion in
2016 [14]. Zhang et al. proposed lexicon-based emotion distribution label enhancement
(LLE) in 2018 [15]. Tong et al. annotated affective words manually and used them for
emotion analysis [16]. These studies show that affective words can significantly improve
the performance of the emotion analysis model. However, so far, there is no EDL method
to use affective word information for emotion distribution prediction.

To address this problem, we propose a text emotion distribution learning model based
on a lexicon-enhanced multi-task convolutional neural network (LMT-CNN). The overall
architecture of the LMT-CNN model has three major modules: semantic information,
emotion knowledge, and multi-task prediction. The semantic information module uses
the sliding window convolution neural network to extract the semantic information of
the text from the word embedding space of the input text. Based on the affective words
extracted from the text, the emotion knowledge module uses the lexicon to introduce the
corresponding emotional prior knowledge to synthesize an emotion knowledge vector.
The input of the multi-task prediction module is constructed from the outputs of the first
two modules. Then, the final emotion distribution is predicted through a full connection
layer. The two prediction tasks of the emotion distribution output layer are emotion
distribution prediction based on Kullback–Leibler (KL) loss [17] and emotion classification
based on cross-entropy loss. The emotion with the highest score in the emotion distribution
output layer is used as the dominant emotion output for emotion classification. The existing
EDL research work shows that the multi-task convolution neural network model combined
with KL loss and cross-entropy loss can achieve better performance by simultaneously
training emotion distribution prediction and emotion classification tasks in an end-to-end
manner [15].

Different from the existing EDL work based on neural networks, the proposed LMT-
CNN method considers the linguistic prior knowledge of affective words unique to the
text mining task and combines it with text-based semantic information to construct an end-
to-end deep neural network. We evaluated the LMT-CNN method on the English emotion
distribution dataset Semeval [18], Chinese emotion distribution dataset Ren-CECps [19],
four English single-label emotion datasets (Fairy Tales [20], TEC [21], CBET, ISEAR [22],
and Affect in Tweets [23]), and Chinese single-label emotion datasets NLP&CC 2013 and
NLP&CC 2014 [24], comparing LMT-CNN methods with multiple baseline methods. Com-
pared with the baseline methods, our LMT-CNN method achieved the best performance in
almost all measurements.

The rest of the paper is organized as follows. First, Section 2 briefly reviews some
related works. Then, Section 3 describes the proposed lexicon-enhanced multi-task con-
volutional neural network for emotion distribution learning. Section 4 describes in detail
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the datasets used for the experiments, experimental setup, and experimental results and
analysis. Section 5 mainly discusses the limitations of our proposed method. Finally,
Section 6 concludes the entire paper and provides an outlook on future work.

2. Related Work

Emotions are ubiquitous in our daily life and play an important role in our lives,
influencing our decisions and judgments. For a long time, people have expected a variety
of ways to recognize the diverse emotions that humans generate. Many researchers have
proposed a variety of algorithms aiming at making machines that have emotional intelli-
gence through artificial intelligence algorithms, meaning machines that have the ability to
recognize, interpret, and process emotions. For this reason, machines should first learn to
recognize human emotions from their external and implicit emotional cues.

Emotion models are the basis of emotion recognition systems, which define the ex-
pression of emotions. To measure emotions quantitatively, psychologists considered that
emotions exist in multiple states and therefore proposed various emotion models to distin-
guish different emotional states. Two of the most prominent emotion representation models
are the categorical emotional state (CES) and the dimensional emotional space (DES) [25].
CES classifies emotions into different basic categories and considers each type of basic
emotion independent. Among the popular CES models are binary emotions [26], Ekman’s
six emotions [27], and Plutchik’s eight emotions [28]. Binary emotions contain positive,
negative, and sometimes neutral emotions. In this case, “emotion” is often referred to as
“sentiment”. In the Paul Ekman model, emotions are independent and can be distinguished
into six basic categories depending on how they are perceived by the experiencer. These
basic emotions are joy, sadness, anger, disgust, surprise, and fear. Plutchik’s eight emotions
consist of amusement, anger, awe, contentment, disgust, excitement, fear, and sadness. The
DES model assumes that emotions do not exist independently of each other and that there
are interactions between emotions. Therefore, some scholars consider locating emotions in
a multidimensional space, such as valence–arousal–dominance (VAD) [29]. In our work,
Ekman’s six emotions were used as the target emotion label set.

Early work in emotion recognition focused on combining machine learning methods
to learn emotional features to recognize the emotions embedded in text, speech, or images.
Examples include the methods of Naive Bayes, maximum entropy, and support vector
machines [30]. Later, Vrysis et al. proposed a method for emotion recognition combined
with lexicon-based and rule-based algorithms [31]. The lexicon-based approach relies on the
semantic direction of the text with the polarity of the words and phrases appearing in it [32].
Rule-based algorithms design extraction rules based on syntactic dependencies [33], which
need to be used within the controllable range of the rules and may lead to incorrect emotion
judgments if they are beyond the range of the rules. We believe that the performance of this
approach largely depends on the quality of the lexicon and the number and quality of the
rules formulated. It is more suitable when the data are lacking, and there is a performance
bottleneck when dealing with large-scale data, combined with the fact that now the path
of the method based on deep learning language models is more attractive in the field of
emotion classification [34].

Deep learning changes in feature engineering and feature learning both make prob-
lem solving easier. Traditionally, the efficiency of machine learning algorithms is highly
dependent on how well the input data are represented. For this reason, feature engineer-
ing has been the most critical step in the machine learning workflow. In contrast, deep
learning algorithms can automate feature extraction, which allows researchers to extract
features with minimal domain knowledge and manpower. Another transformative aspect
of deep learning is that models can learn all representation layers together at the same
time. Through common feature learning, once the model modifies an internal feature, all
other features that depend on that feature will automatically adapt accordingly without
human intervention.
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With the wide application of deep learning in the field of emotion recognition, various
effective methods have been proposed by many scholars around the world. For example,
Franzoni et al. proposed a semantic model for emotion recognition (SEMO), which can
quickly extract the basic emotions hidden in short, emotion-rich sentences [35]. Dashtipour
et al. proposed a novel context-aware multimodal framework for multimodal emotion
analysis, which simultaneously uses text, speech, and visual cues to determine emotion [36].
Rahman et al. proposed a multimodal adaptation gate (MAG) as an attachment to BERT
and XLNet which achieves human-level multimodal emotion analysis performance [37]. In
recent years, emotion recognition methods have also been applied to social services [38]
and opinion detection [39]. For example, Kydros et al. analyzed tweets from Twitter during
the time of the coronavirus outbreak that helped government agencies develop effective
strategies by understanding people’s emotions [38]. Zou et al. designed an emotion analysis
method that combines emojis and other emoticons with short texts to capture the deep
value of public opinion and help companies optimize their services [40].

The traditional text emotion analysis model mainly classifies the polar emotion of
the text, that is, to judge the positive and negative polarity of emotion. However, the
polar emotion classification model cannot capture the fine-grained emotions contained
in the text and can only be used in simple emotion analysis scenarios. Different from the
traditional polar emotion analysis task, the goal of fine-grained emotion analysis is to
identify fine-grained emotions in the text [41], such as anger, disgust, sadness, surprise,
fear, and joy. The classical fine-grained emotion analysis model is generally modeled by
single-label learning or multi-label learning. It is assumed that the example is associated
with one or more emotion labels [6].

The classical multi-label learning model can handle many emotion recognition tasks,
but its modeling ability is still insufficient to quantitatively answer the expression degree of
each emotion label in the text [7]. In practical application, it is very common for a sentence
to express multiple emotions at the same time. For example, the sentences in the commonly
used Semeval text emotion dataset mark the expression degree of six fine-grained basic
emotions [19]. As shown in Figure 1, fear is the main emotion of Figure 1a sentence,
and the degree of expression is 53.2%. The expression of secondary emotion sadness is
39%. The fine-grained basic emotion labeling of Figure 1b sentence is similar to that of
Figure 1a sentence.
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Figure 1. Expression degree of two example sentences in the Semeval dataset of six basic emotions.
(a) Emotion distribution of sentences with main emotion label is fear; (b) Emotion distribution of
sentences with main emotion label is sadness.

Aiming to quantitatively deal with the situation that a sentence expresses different
degrees of fine-grained emotions at the same time, Zhou et al. proposed emotion distribu-
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tion learning (EDL) for the task of text emotion analysis [7]. EDL believes that the emotion
of each sentence is a mixture of basic emotions with different expression intensities, and
the goal of modeling is to transform the sentence si maps to an emotional distribution

Di =
{

d
aj
si

}N

j=1
, where A = {a1, a2, . . . , aN} represents a finite set of emotion labels in a

sentence, N is the number of emotion label classes, and d
aj
si is each element of emotional

distribution that denotes sentence si expression degree of class j emotion label, d
aj
si ∈ [0, 1]

and Σjd
aj
si = 1. The EDL method assigns a distribution to each instance, and the strength

of the probability distribution of each label indirectly indicates the relative importance of
the corresponding label. To output emotion labels based on the emotion distribution, it is
natural to consider one or more of the top-ranked emotions as the correct emotion label.
Since the emotion classification datasets selected for the experiments in this paper are all
multi-class datasets (each sample has only one emotion label in several possible classes), we
assume that there is only one correct emotion label in a sample for simplicity of processing.

Emotion distribution learning can effectively deal with the problem that a sentence
expresses multiple emotions with different intensities at the same time. It is more suitable
for emotion analysis tasks with emotion fuzziness than the traditional emotion analysis
model. In recent years, many scholars have put forward many effective works in the field
of EDL [7,13,14,42–44]. For example, Zhou et al. proposed an EDL method based on the
Plutchik’s wheel of emotions in 2016 [7]; Zheng et al. proposed an EDL method using
local correlation of samples in 2018 [42]; Batbaatar et al. proposed a semantic emotion
neural network in 2019 [43]; Qin et al. proposed a constrained optimization method for
cross-domain EDL in 2021 [44]. However, most of the existing EDL work only focuses on
the semantic information or emotional wheel information, ignoring the prior knowledge of
affective words in the text.

Affective words are words that express emotional tendencies in the text. Generally,
they have been labeled with artificial emotion. The extraction and discrimination of affec-
tive words is the basic work of word-level emotion analysis and the basis of text emotion
analysis. Relevant work has shown that emotion prior knowledge is very effective for
emotion recognition tasks [14]. Scholars have proposed a variety of emotion recognition
methods based on the lexicon. The general process of these methods is to extract affective
words from the text based on the lexicon and then use the emotion labels of affective words
to predict the emotion of the text. For example, Wang proposed a multi-constraint emotion
classification model based on a lexicon in 2015 [45]; Zhang et al. proposed lexicon-based
emotion distribution label enhancement (LLE) in 2018 [15]; Abdi et al. proposed a multi-
feature fusion evaluation model based on deep learning for text emotion classification in
2019 [46]; Ke et al. proposed a new language expression model in 2020, which introduces
part-of-speech tagging and affective word language knowledge into the training model [47].
These studies showed that using affective words in emotion recognition tasks can signif-
icantly improve the performance of the emotion analysis model, but most existing EDL
methods do not consider the affective word information of a text. Compared with the
existing EDL method, the LMT-CNN model proposed in this paper considers the prior
knowledge of affective word linguistics specific to text mining tasks. According to the
emotional category and number of affective words in the text, the emotional knowledge
vector is generated, and the semantics information and emotional word knowledge are
combined. KL loss and cross-entropy loss are combined to simultaneously learn emotion
distribution prediction and emotion classification tasks in an end-to-end manner.

3. Text Emotion Distribution Learning Based on Lexicon-Enhanced Multi-Task
Convolutional Neural Network

In order to improve the performance of the text emotion distribution learning model
based on a deep network, this paper proposes a lexicon-enhanced multi-task convolutional
neural network (LMT-CNN). The network structure of the LMT-CNN model includes
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three modules: semantic information module, emotion knowledge module, and multi-task
prediction module. The specific network structure is shown in Figure 2.
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Figure 2. Overall framework of the LMT-CNN model (emotion labels 1: anger, 2: disgust, 3: sadness,
4: surprise, 5: fear, 6: joy).

3.1. Semantic Information Module

The semantic information module is a convolution neural network (CNN) built on
word embedding for extracting semantic information from text. The CNN model was
originally created in the domain of image recognition and classification, and its recent appli-
cation in NLP has proven to be successful with excellent results [15]. Another competitive
approach for semantic extraction is the long short-term memory (LSTM) network, which
has been shown to have a good ability to learn sequential data [36]. LSTM controls the
transmission state by gating the states, stores information that needs to be remembered for
a long time, and forgets unimportant information. To the best of our knowledge, there is no
evidence to prove which approach is definitely better for emotion recognition. However,
because of the many contents introduced, LSTM leads to more parameters and makes
the training more time-consuming. Since our aim was to verify the influence of prior
knowledge of affective words on the model, we did not want to involve unnecessarily
complex computations. Hence, we followed the previous successful EDL work by Zhang
et al. [15] and used CNN to extract semantic information.

The semantic information module is composed of the input layer, convolution layer,
and max-pooling layer. The specific workflow is as follows: Firstly, each sentence of the
text dataset is used as the input of the module. Then, each word is transformed into a
word embedding based on the pretrained word embedding model. Finally, the word
embedding matrix representing the original sentence is processed by the convolution layer
and max-pool layer to output a semantic information vector.

We use S = {(s1, D1), (s2, D2), . . . , (sn, Dn)}, which represents the training text dataset,
where n is the number of sentences in the dataset, si (i ∈ {1, 2, . . . , n}) is the i-th sentence,
Di =

{
da1

si , da2
si , . . . , daN

si

}
represents for sentence si corresponding emotion distribution,

A = {a1, a2, . . . , aN} is a finite set of emotion labels, and N is the number of emotion
labels. Next, we specifically describe the functions of the input layer, convolution layer,
and max-pooling layer of this module.

Input Layer: The length of the input sentence is M, and xi ∈ Rk is the k-dimensional
word2vec word embedding representation of the i-th word in the sentence. In this way, the
input sentence is represented as a M× k word embedding matrix x as

x = x1 ⊕ x2 ⊕ . . .⊕ xM, (1)



Axioms 2022, 11, 181 7 of 20

where ⊕ is the concatenation operator. Note that, if the sentence length is less than M, the
end of the word embedding matrix is filled with 0.

Convolution layer: A set of filters w ∈ Rh×k with a sliding window size of h are
adopted to generate new features. The width of the filter is the same as the width of
the word embedding matrix, and thus the filter can only move in the height direction to
conduct the convolution on several adjacent words. For example, set xp:p+q denotes the
concatenation of word xp, xp+1, . . . , xp+q, and a new feature vp is generated from the word
window xp:p+h−1 as

vp = f
(

w·xp:p+h−1 + b
)

, (2)

where f (·) is a nonlinear active function, and b ∈ R is a bias term. The filter is used for each
possible word window in the sentence x1:h, x2:h+1, . . . , xM−h+1:M to produce the feature
mapping v by

v = [v1, v2, . . . , vM−h+1]. (3)

Max-pooling layer: We use the standard max-pooling operation to obtain the generated
feature map and take the maximum value of v as the characteristic of this particular filter:

vsemantic = max(v), (4)

this operation can capture the feature with the highest value as the most important feature
for each feature map.

Through the above operations, a semantic feature can be extracted by each filter. The
module uses several filters of different sizes to extract multiple semantic features from a
given sentence.

3.2. Emotion Knowledge Module

The emotion knowledge module uses the lexicon to extract affective words from
the sentence text and then synthesizes an emotion knowledge vector based on the prior
emotion labels corresponding to affective words.

Given sentence si, we extract all affective words in si from the lexicon and obtain all
the emotion labels corresponding to each emotion word. For each emotion, we set the
number of emotion labels of corresponding affective words as mij and the total number of
all emotion labels as Ci. Then, we set the emotion knowledge vector to ri = [ri1, ri2, . . . , riN ],
where

rij =

{ mij
Ci

, i f Ci 6= 0
1
N , else

, j = 1, 2, . . . , N . (5)

Taking the input sentence in Figure 2 as an example, we extract three emotional
words—congress, war, and committee—by looking up the lexicon. Among them, the
affective word congress has two emotion labels (anger and joy), war has two emotion labels
(disgust and sadness), and committee has one emotion label (anger). The total number
of emotion labels of all affective words in the sentence is 5, the number of categories of
emotional labels is 6, and the corresponding emotion knowledge vector is

[
2
5 , 1

5 , 1
5 , 0, 0, 1

5

]
.

In addition, when a sentence does not contain any affective words, the emotion knowl-
edge weight of the sentence is the same on the six emotion labels, and its corresponding
emotion knowledge vector is

[
1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

]
.

3.3. Multi-Task Prediction Module

The multi-task prediction module supports two tasks: emotion distribution prediction
and emotion classification, including the semantic synthesis layer and emotion distribution
output layer.
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Semantic synthesis layer: We splice the output vsemantic of the semantic information
module and the output ri of the emotion knowledge module to generate the semantic
synthesis vector v̂ by

v̂ = vsemantic ⊕ α·ri. (6)

where ⊕ is the vector splicing operation, and the parameter α is used to control the ratio
of adding emotional word information. When α = 0, it means that the semantic synthesis
layer only contains semantic information and does not consider the prior knowledge of
affective words; when α = 1, it means that all affective word information is considered in
the semantic synthesis layer, and the semantic information is combined with all affective
words prior to knowledge splicing. We believe that the importance of semantic information
in the LMT-CNN model should be greater than affective word knowledge, that is, the value
of parameters α should not be too large. This is because, in general, manually labeled
emotion labels have high reliability, while the prior information of general affective words
has more noise. This study analyzed the value of the parameter α in the experimental part
where it is further discussed.

Emotion distribution output layer: Semantic synthesis vector v̂ after a full connection
layer transformation and the output result of the emotion distribution layer are obtained.
The dimension of the emotion distribution layer is the number of categories of emotion labels.

The LMT-CNN model uses an end-to-end manner to train the emotion distribution
prediction and emotion classification tasks simultaneously. For the distribution prediction
task, we use KL loss [13] to measure the distance between the real distribution and the
predicted one. The KL loss is defined as

Eedl(s, D) = − 1
N ∑d

i=1 ∑N
j=1 dj

si ln p(i)j , (7)

where p(i)j =
e(i)j

∑N
t=1 e(i)t

, dj
si represents the sum of each emotion label loss in sentence si.

The optimization objective of the emotion classification task is cross-entropy loss
Ecls(s, y), and its formula is

Ecls(s, y) = − 1
N ∑d

i=1 ∑N
j=1 1(yi = j)lnp(i)j , (8)

where 1(yi = j) = 1 means when yi is correctly divided into j classes; otherwise, 1(yi = j) = 0.
The total loss of the emotion distribution output layer is a weighted combination of

KL loss and cross-entropy loss as

E = (1− λ)Ecls(s, y) + λEedl(s, D), (9)

where λ is a weight parameter to control the importance of two kinds of losses. According
to the experimental results of the existing related work, we set λ = 0.7 [15].

Finally, we use the stochastic gradient descent (SGD) algorithm [48] to optimize
the LMT-CNN model. When the prediction task is emotion classification, we take the
emotion with the highest expression degree in the emotion distribution output from the
full connection layer as the real emotion of the sentence.

Recent research work shows that the emotion distribution model based on a multi-task
convolutional neural network (MT-CNN) [15] can achieve good results by simultaneously
training emotion distribution prediction and emotion classification tasks in an end-to-end
manner. However, the MT-CNN model does not consider the linguistic prior knowledge of
affective words, which is very important in the task of text analysis. In the experimental
part, the performance of LMT-CNN and MT-CNN models is compared and analyzed.

The source code of the LMT-CNN model is released at our website [49].
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4. Experiments

To investigate the performance of the LMT-CNN model proposed in this paper, we
conducted three groups of experiments on two emotion distribution datasets and five single-
label emotion datasets. First, to verify the effectiveness of adding affective word information
to the LMT-CNN model, we changed the value of α and recorded the performance of
LMT-CNN. Second, to test the performance of the emotion distribution prediction of the
LMT-CNN model, we used 8 different emotion distribution learning methods compared
with the LMT-CNN method. Third, to examine the performance of the LMT-CNN model
on emotion classification tasks, we used the deep-learning-based TextCNN, MT-CNN, and
LMT-CNN emotion distribution learning models for comparative experiments.

4.1. Dataset

There were 9 commonly used text emotional datasets adopted in the experiments,
namely Semeval [18], Ren-CECps [19], Fair Tales [20], TEC [21], CBET, ISEAR [22], Affect
in Tweets [23], NLP&CC 2013, and NLP&CC 2014 [24]. Among them, Semeval and Ren-
CECps are emotion distribution datasets, and the other 7 datasets are traditional single-label
datasets. We list the details of all experimental datasets in Table 1.

Table 1. Experimental datasets (the sentence number of each emotion in the SemEval and Ren-CECps
datasets is the sentence number whose dominant emotion is the corresponding emotion).

Dataset Anger Disgust Sadness Surprise Fear Joy All

SemEval 91 42 192 435 262 228 1250
Ren-CECps 1117 2293 5841 536 - 4137 13,924
Fairy Tales 216 - 264 114 166 444 1204

TEC 1555 761 3830 3849 2816 8240 21,051
CBET 8540 8540 8540 8540 8540 8540 51,240
ISEAR 1087 1081 1083 - 1090 1090 5431

Affect in Tweets 844 - 747 - 1105 793 3489
NLP&CC 2013 1146 2075 1562 482 186 2140 7581
NLP&CC 2014 1899 3130 2478 820 299 2805 11,431

SemEval is an English text dataset containing multiple emotions, including 1250 news
headlines labeled with 6 emotion labels (anger, disgust, sadness, surprise, fear, and joy).
Each headline has a percentile score for each emotion. The multiple emotions associated
with each sample can be regarded as an emotion distribution vector, and the length of the
vector is 1 through normalization.

Ren-CECps is a Chinese text emotion distribution dataset. The sentence corpus comes
from Chinese blogs. Each sentence is labeled with 8 emotion labels, and each sentence has a
score for each emotion. In order to be consistent with the types of emotions in other datasets,
we selected 13,924 sentences of 5 emotions (anger, disgust, sadness, surprise, and joy) for
experiments. The emotion distribution label retains the scores of the corresponding five
emotions, and the multiple emotion labels corresponding to each sentence can be regarded
as an emotion distribution vector, and the length of the vector is 1 by normalization.

Fairy Tales contains 1204 sentences from 185 children’s stories, each sentence labeled
with one of five emotions (anger, sadness, surprise, fear, and joy). TEC contains 21,051 emo-
tional tweets, each marked with one of six emotions (anger, disgust, sadness, surprise, fear,
and joy). CBET is marked with 76,860 tweets of 9 emotions, and 8540 tweets are collected
for each emotion. We retained a total of 51,240 tweets of 6 emotions. ISEAR contains
7666 English sentences. Each English sentence describes the situation and experience of
different people when they experience seven main emotions. We retained five emotions, a
total of 5431 sentences. Affect in Tweets is created from tweets. There are four emotions
contained in dataset: anger, fear, joy, and sadness. The dataset contains 3489 English
comments from tweets.
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NLP&CC 2013 is a Chinese Weibo corpus containing 7 emotion labels released by
the Natural Language Processing and Chinese Computing Conference in 2013, contain-
ing 10,552 emotional sentences and 29,633 non-emotional sentences. In this experiment,
7581 emotional sentences marked with six emotions of anger, disgust, sadness, surprise,
fear, and joy were retained. Table 1 respectively lists the detailed information of the dataset.
NLP&CC 2014 Chinese microblog emotion analysis dataset is from Sina Weibo, and all
tweets in the dataset are divided into two categories with or without emotion; those without
emotion are labeled as none, and those with emotion are divided into 7 emotion categories.
In this paper, six categories of emotions were selected: happiness, anger, sadness, fear,
disgust, and surprise; a total of 11,431 Chinese tweets were selected.

The English lexicon used in the experiment was formed by the merger of Emosentic-
net [50] and NRC [51]. The Emosenticnet lexicon contains 13,189 English affective words,
and each affective word is labeled with 6 emotion labels. Each affective word in Emosentic-
net and NRC lexicons is marked with one or more emotion labels. When the two lexicons
were merged, we retained the 6 emotion labels (anger, disgust, sadness, surprise, fear, and
joy) and deleted the affective words that were not labeled with these 6 emotions. For an
affective word shared by the two dictionaries, the emotion label is the union of the emotion
label of the affective word in the two lexicons. In the end, we obtained an English affective
lexicon consisting of 15,603 affective words and 6 emotion labels. The Chinese affective lex-
icon uses the emotion vocabulary text database of the Dalian University of Technology [52],
which has 27,466 affective words and 11 emotion labels. We kept 5 emotion labels (anger,
disgust, sadness, surprise, and joy) corresponding to the Chinese dataset and deleted
the affective words that were not labeled with these 5 emotions. Finally, 15,179 Chinese
affective words were retained, and each word was labeled with 1 label.

4.2. Experimental Setup

The experimental process adopted the standard stratified 10-fold cross-validation.
We partitioned the dataset before feeding the data into the network. All samples were
divided into ten categories evenly under the constraint of keeping the category proportions
essentially the same. Each time, one of the samples was selected as the test set, and the
remaining data were merged as the training dataset. In total, 90% of the training set was
used for neural network training, and the remaining 10% was used as the validation set.
Each fold cross-validation was a separate emotion prediction task, repeated ten times, and
the average evaluation indicators of the ten cross-validations were used to evaluate the final
performance of the model. The data division of all models participating in the comparison
experiment remained the same.

Since the output of the LDL model is a distribution vector, a single indicator can reflect
only one aspect of the algorithm on a particular data, and it is difficult for us to determine
which indicator is the best. Geng et al. proposed that when comparing different LDL
algorithms in the same dataset, multiple indicators can be used to evaluate and compare
the algorithms [6]. Following four principles, six indicators were finally selected to evaluate
the LDL algorithms. Based on this suggestion, Zhou et al. chose six indicators to measure
the average similarity or distance between the actual and predicted emotion distributions
in the EDL model, respectively [7]. Similarly, we used six evaluation indicators for our
emotion distribution prediction task evaluation, namely Euclidean, Sørensen, Squaredχ2,
KL Divergence, Cosine, and Intersection [7]. The calculation formulas of the 6 evaluation
indicators are as follows:

Euclidean(P, Q) =
√

∑N
i=1(Pi −Qi)

2 (10)

Sorensen(P, Q) =
∑N

i=1|Pi −Qi|
∑N

i=1|Pi + Qi|
(11)

Squaredχ2(P, Q) = ∑N
i=1

(Pi −Qi)
2

Pi + Qi
(12)
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K− L(P,Q) = ∑N
i=1 Piln

Pi
Qi

(13)

Cosine(P, Q) =
∑N

i=1(Pi ×Qi)√
∑N

i=1 Pi
2 ×

√
∑C

i=1 Qi
2

(14)

Intersection(P, Q) = ∑N
i=1 min(Pi, Qi) (15)

where P is the true emotion distribution of the text, Q is the predicted emotion distribution,
and N is the number of emotion types contained in the sentence. These 6 indicators are
used to measure the similarity between the predicted emotion distribution Q and the real
emotion distribution P.

The emotion classification task uses 4 commonly used classification task evaluation
indicators, namely Precision, Recall, F1-score and Accuracy. The specific calculation formulas
of the 4 evaluation indicators are as follows:

Precision =
|TP|

|TP + FP| (16)

Recall =
|TP|

|TP + FN| (17)

F1− score =
2× precision× recall

precision + recall
(18)

Accuracy =
|TP + TN|
|A| (19)

where TP represents the number of positive samples with correct predictions, FP represents
the number of negative samples with incorrect predictions, FN represents the number of
positive samples with incorrect predictions, TN represents the number of negative samples
with correct predictions, and A represents the total number of all samples. Precision
represents the proportion of all samples predicted to be positive that are actually positive.
Recall indicates the proportion of all positive examples in the sample that are correctly
predicted. The F1-score is the weighted average (or harmonic mean) of Precision and Recall.
Therefore, this score takes both false positives and false negatives into account to strike a
balance between Precision and Recall. Accuracy is the most intuitive measure of performance
and reflects the proportion of samples correctly classified by the prediction model.

For all the datasets we used, we set the filter windows of CNN to 3, 4, 5 in our
experiments, each with 100 feature maps; the dropout rate was 0.5, the learning rate was
set to 0.05, and the mini-batch size was 50 [53]. We used the word embedding method
to convert each instance into a word embedding matrix. We counted the average length
of Chinese dataset samples as 100 and the average length of English dataset samples as
15, and thus we set the word vector matrix shape as 100 × 300 and 15 × 300, respectively.
We used publicly available word2vec vectors. The English word vector is trained from
100 billion words in Google News [54], and the Chinese word vector is trained from Sogou
News [55]. The dimension of all these word vectors is 300. In particular, the parameters of
the LMT-CNN model were set as shown in Table 2.

For the computational complexity of the LMT-CNN model, we chose Params and
FLOPs to measure the complexity. Params refers to the total number of parameters to be
trained in the model training and is only related to the defined network structure. FLOPs is
the number of floating-point operations, which can be regarded as the calculation amount
of the model [56]. We regard the multi-add combination as a floating-point operation.
FLOPs are related to different layer operation structures, and the maximum length of
the input sentences influences the size of the computation. We calculated the parameter
quantities of the convolutional layer and the fully connected layer that use different height
convolution kernels; we also calculated the calculation amount of convolutional layer and
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fully connected layer at different sentence maximum length M. The results are shown in
Table 3.

Table 2. LMT-CNN model parameter settings.

Parameter Set Value

Word vector dimension 300
Sliding window (3, 4, 5)

Optimizer SGD
Learning rate 0.05

Dropout 0.5
Batch size 50

Word embedding matrix dimension in Chinese text 100 × 300
Word embedding matrix dimension in English text 15 × 300

Table 3. The computational complexity of the LMT-CNN model.

Layers Params
MFLOPs

M = 15 M = 100

Conv2d (kh = 3) 90,100 234.260 1765.960
Conv2d (kh = 4) 120,100 312.260 2353.960
Conv2d (kh = 5) 150,100 390.260 2941.960
Fully connected 1842 0.004 0.004

Total 362,142 936.784 7061.884

4.3. The Influence of the Weight Coefficient α of Affective Words on the Performance of
LMT-CNN Model

The affective word weight coefficient α is an important parameter of the LMT-CNN
model, which is used to control the weight of affective word information and semantic
information. To verify the effectiveness of adding affective word information to the LMT-
CNN model, we changed the value of α from 0 to 1.5 (every 0.1) and recorded the scores
of the Euclidean, KL Divergence, Cosine, and Accuracy indicators of the LMT-CNN model
on the Semeval and Ren-CECps datasets. The detailed experimental results are shown in
Figures 3 and 4.

Axioms 2022, 11, x FOR PEER REVIEW 13 of 20 
 

  
(a) (b) 

Figure 3. The influence of the weight coefficient 𝛼 on the performances of the LMT-CNN model on 

the Semeval dataset (↑ means that the larger the indicator is, the better, and ↓ means that the smaller 

the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy. 

  
(a) (b) 

Figure 4. The Influence of the weight coefficient 𝛼 on the performances of the LMT-CNN model on 

the Ren-CECps dataset (↑ means that the larger the indicator is, the better, and ↓ means that the 

smaller the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy. 

As can be seen from the experimental results of the English dataset in Figure 3, alt-

hough the scores of the four evaluation indicators vary greatly with the change in weight 

𝛼, the optimal value is reached when 𝛼 = 0.2. When 𝛼 increases from 0 to 0.2, the two 

indicators in Figure 3a gradually decrease, and the two indicators in Figure 3b gradually 

increase, which shows that it is beneficial to increase the linguistic knowledge of affective 

words. When 𝛼 = 0.2, the four indicators in Figure 3 reach the best value, and the perfor-

mance of the LMT-CNN model is the best, which shows that emotion knowledge and 

semantic information reach a balance. When 𝛼 > 0.2, the indicators in Figure 3a and Fig-

ure 3b show an unstable upward and downward trend, respectively, and the performance 

of the model begins to decrease as a whole, which shows that when the weight of affective 

words is too large, the noise of affective word information affects the performance of the 

model. 

For the Chinese dataset Ren-CECps, it can be seen from the experimental results in 

Figure 4 that the changing trend of the four evaluation indicators with the increase in 

weight is similar to that of the English dataset. The Euclidean and KL Divergence indicators 

in Figure 4a rise first and then fall; Cosine and Accuracy indicators in Figure 4b fall first 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.331

0.335

 Euclidean↓ 

 KL divergence↓

α

E
u

c
lid

e
a
n

0.334

0.332

0.333

0.406

0.408

0.410

0.404

0.412

K
L

 d
iv

e
rg

e
n
c
e

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.823

0.824

0.825

0.826

0.827

0.828

 Cosin↑

 Accuracy↑

α

C
o

s
in

0.548

0.550

0.552

0.554

0.556

0.558
A

c
c
u

ra
c
y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.462

0.464

0.466

0.468

0.470

0.472

0.474

0.476

0.478

0.480

0.482

 Euclidean↓ 

 KL divergence↓

α

E
u
c
lid

e
a
n

0.950

1.000

1.050

1.100

1.150

1.200

1.250

1.300

1.350

1.400

K
L
 d

iv
e
rg

e
n
c
e

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.705

0.710

0.714

0.719

0.724

0.729

0.733

0.738

 Cosin↑

 Accuracy↑

α

C
o
s
in

0.638

0.642

0.646

0.651

0.655

0.659

0.663

0.668

A
c
c
u
ra

c
y

Figure 3. The influence of the weight coefficient α on the performances of the LMT-CNN model on
the Semeval dataset (↑means that the larger the indicator is, the better, and ↓means that the smaller
the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy.
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Figure 4. The Influence of the weight coefficient α on the performances of the LMT-CNN model on
the Ren-CECps dataset (↑ means that the larger the indicator is, the better, and ↓ means that the
smaller the indicator is, the better). (a) Euclidean and KL Divergence; (b) Cosine and Accuracy.

As can be seen from the experimental results of the English dataset in Figure 3,
although the scores of the four evaluation indicators vary greatly with the change in
weight α, the optimal value is reached when α = 0.2. When α increases from 0 to 0.2,
the two indicators in Figure 3a gradually decrease, and the two indicators in Figure 3b
gradually increase, which shows that it is beneficial to increase the linguistic knowledge of
affective words. When α = 0.2, the four indicators in Figure 3 reach the best value, and the
performance of the LMT-CNN model is the best, which shows that emotion knowledge
and semantic information reach a balance. When α > 0.2, the indicators in Figure 3a,b show
an unstable upward and downward trend, respectively, and the performance of the model
begins to decrease as a whole, which shows that when the weight of affective words is too
large, the noise of affective word information affects the performance of the model.

For the Chinese dataset Ren-CECps, it can be seen from the experimental results in
Figure 4 that the changing trend of the four evaluation indicators with the increase in
weight is similar to that of the English dataset. The Euclidean and KL Divergence indicators
in Figure 4a rise first and then fall; Cosine and Accuracy indicators in Figure 4b fall first and
then rise. The four evaluation indicators are in α = 0.2, indicating that the affective word
information and semantic information reach a balance.

The above experimental results show that affective words contain effective emotional
information. Adding affective word information to the EDL model can help improve the
performance of emotion distribution prediction. However, since affective words have more
noise, affective word information weight α should not be too large. Considering the balance
of text semantic information and affective word information, in the following experiments
of this paper, we set α = 0.2 for the dataset for the LMT-CNN model.

4.4. Contrast Experiment of Multiple Text Emotion Distribution Prediction Methods

To verify the performance of the emotion distribution prediction of the LMT-CNN
model, we selected 8 different EDL methods as baseline methods and conducted a compre-
hensive comparative experiment on the Semeval and Ren-CECps datasets. The compared
EDL methods included AA-KNN, AA-BP, SA-LDSVR, SA-IIS, SA-BFGS, SA-CPNN [6],
TextCNN [53], and MT-CNN [15]. The detailed model configurations are described
as follows.

Specifically, AA-KNN and AA-BP are extended versions of the classical KNN algo-
rithm and BP (backpropagation) neural network to solve LDL tasks [6]. In the AA-KNN
model, we set the number of neighbor samples as 4, used Euclidean distance to calculate
the distance from the sample point to be classified to each other sample, and predicted
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the category of the sample to be tested through the nearest 4 neighboring samples. In the
AA-BP model, we created a three-layer network; the number of neurons in the first layer
was 24, and the transfer function was “tansig”. The number of neurons in the second layer
was 60, and the transfer function was “tansig”. The number of neurons in the output layer
was 6, and the transfer function was “purelin”. We set the learning rate to 0.05 and the
momentum factor to the default value of 0.9.

Additionally, SA-LDSVR, SA-IIS, SA-BFGS, and SA-CPNN are algorithms specifically
designed for LDL tasks [6]. In the SA-LDSVR model, we chose radial basis function
(RBF) as the core function, the penalty parameter was 1.0, and the other parameters
were the default values. The SA-IIS method establishes the maximum entropy model
and uses the IIS algorithm to estimate the parameters. SA-BFGS follows the idea of an
effective quasi-Newton method BFGS to further improve IIS-LLD. SA-CPNN has a network
structure similar to Modha’s neural network, where the only difference is its training
manner is supervised.

Both TextCNN and MT-CNN are deep-neural-network-based models. TextCNN is
a convolutional neural network model for text emotion classification [53]. The height of
convolutional kernel size was divided into three groups (3, 4, 5), and the width was 300,
which was equal to the dimension of the word vectors. There were 32 channels in each
group. Batch size and learning rate were set to 16 and 0.001. MT-CNN is a multi-task
convolutional neural network model that simultaneously predicts the distribution of text
emotion and the dominant emotion of the text [15]. The height of convolutional kernel
size was divided into three groups (3, 4, 5), and the width was 300, which was equal to the
dimension of the word vectors. We combined the cross-entropy loss with the KL loss by
setting the weight (λ). Therefore, considering the balance between distribution prediction
and classification performance in the experiment, λ = 0.7 [15] was set for this model, which
means that the weight of the cross-entropy loss was 0.3, and the weight of the KL loss
was 0.7.

The detailed experimental results of all emotion distribution learning methods partici-
pating in the comparison of the datasets are shown in Tables 4 and 5. In the table, ↑ means
that the larger the indicator is, the better, and ↓means that the smaller the indicator is, the
better. The optimal results of each indicator are marked in bold.

Table 4. Experimental results comparing the performance of 9 emotion distribution learning methods
for emotion distribution prediction and emotion classification on the SemEval dataset (↑ indicates
that the larger the indicator is, the better; ↓ indicates that the smaller the indicator is, the better.). The
best performances of each indicator are marked in bold.

EDL Method
Emotion Distribution Prediction Emotion Classification

Euc (↓) Sør (↓) Squ (↓) KL (↓) Cos (↑) Int (↑) Pre (%) Rec (%) F1 (%) Acc (%)

AA-KNN 0.5249 0.4883 0.5649 0.8729 0.6064 0.5117 26.14 19.52 15.33 36.80
AA-BP 0.4677 0.4483 0.4775 0.7858 0.6915 0.5517 38.83 32.13 33.32 43.20

SA-LDSVR 0.4489 0.4360 0.4262 0.5982 0.7367 0.5640 23.77 25.87 21.16 37.60
SA-IIS 0.4804 0.4719 0.4922 0.6871 0.6954 0.5281 26.50 24.08 21.99 39.20

SA-BFGS 0.5573 0.4839 0.5245 1.4149 0.6285 0.5161 32.22 31.55 31.41 40.00
SA-CPNN 0.6688 0.6003 0.7849 2.3375 0.4780 0.3997 21.94 19.25 19.53 23.20
TextCNN 0.7100 0.6068 0.9746 2.0047 0.5353 0.3932 37.29 32.01 33.16 42.65
MT-CNN 0.3344 0.3200 0.3636 0.4118 0.8239 0.6800 44.81 42.05 41.27 54.96

LMT-CNN 0.3324 0.3177 0.3586 0.4057 0.8261 0.6823 45.20 42.00 41.68 55.76
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Table 5. Experimental results comparing the performance of 9 emotion distribution learning methods
for emotion distribution prediction and emotion classification on the Ren-CECps dataset (↑ indicates
that the larger the indicator is, the better; ↓ indicates that the smaller the indicator is, the better). The
best performances of each indicator are marked in bold.

EDL Method
Emotion Distribution Prediction Emotion Classification

Euc (↓) Sør (↓) Squ (↓) KL (↓) Cos (↑) Int (↑) Pre (%) Rec (%) F1 (%) Acc (%)

AA-KNN 0.7918 0.7826 1.1809 0.7575 0.3546 0.2115 12.53 12.43 11.44 16.47
AA-BP 0.7042 0.7465 0.9998 1.3841 0.5049 0.2535 8.37 12.42 5.76 24.83

SA-LDSVR 0.7050 0.7579 1.0166 1.3969 0.5006 0.2421 8.79 12.55 7.39 24.00
SA-IIS 0.7073 0.7546 1.0132 1.4031 0.4967 0.2454 12.16 12.65 8.97 22.80

SA-BFGS 0.7079 0.7495 1.0069 1.4081 0.4966 0.2504 12.01 .12.93 9.91 23.08
SA-CPNN 0.7450 0.8015 1.1136 1.6538 0.4159 0.1984 9.88 12.41 4.96 19.14
TextCNN 0.5033 0.3945 0.6410 1.0831 0.7043 0.6055 54.65 47.32 48.86 62.57
MT-CNN 0.4990 0.3883 0.6293 1.0629 0.7076 0.6117 56.07 47.54 49.71 63.72

LMT-CNN 0.4682 0.3657 0.5865 1.0309 0.7330 0.6343 58.72 50.27 52.22 66.95

In the emotion classification task on Semeval dataset, except that MT-CNN Recall is
higher than LMT-CNN, LMT-CNN model is 0.39%, 0.41%, and 0.80% higher than MT-CNN
model in Precision, F1-score, and Accuracy. On Ren-CECps dataset, LMT-CNN is 2.65%,
3.73%, 2.51%, and 3.23% higher than MT-CNN in Precision, Recall, F1-score, and Accuracy.
The experiment results show that the emotion knowledge vector extracted from the emotion
lexicon can effectively increase the dominant emotion information of sentences and help to
improve the emotion classification performance of the LMT-CNN model.

4.5. Comparison of Emotion Classification Performance on Single-Label Datasets

To examine the performance of the LMT-CNN model on the emotion classification task,
we conducted comparative experiments using deep-learning-based TextCNN, MT-CNN,
and LMT-CNN emotion distribution learning models on seven single-label datasets. Note
that the LLE label enhancement method [12] was used to transform the single-label dataset
into the emotion distribution dataset.

When the classification task is multi-category, the performance of the classification
model can be evaluated by comparing the scores of the classification indicators for each
individual category. If using the arithmetic mean of all categories on different indicators as
a criterion for evaluating the model, in the case of data imbalance, the categories with fewer
data will affect the scores of the indicators more. For example, the Precision indicator may
score relatively high on categories with small sample sizes. This improves the average of
Precision indicators on the overall data to some extent, while in reality, not so many samples
are correctly classified. Therefore, we compared the performance of the three CNN-based
EDL models on each emotion label. The detailed comparative experimental results for each
individual emotion category are shown in Table 6, where the last column shows the macro
averaged score of the corresponding indicators. The optimal results of each indicator are
marked in bold.

As can be seen from Table 6, LMT-CNN achieves the overall best results on all seven
datasets. Taking the macro averaged F1-score as an example, on the Fairy Tales, TEC, CBET,
ISEAR, and Affect in Tweets datasets, the macro averaged F1 value of the LMT-CNN model
is 0.40%, 1.32%, 0.91%, 2.17%, and 3.36% higher than that of the MT-CNN model and 0.64%,
2.37%, 1.88%, 3.54%, and 4.78% higher than that of TextCNN. Comparing the performance
of LMT-CNN and the baseline model on each emotion, we can see that our model gives
better results on almost all emotions. Moreover, the classification of Anger, Sadness and
Fear emotions is more challenging, and the performance in all models is relatively low.
For example, in the experimental results of Chinese datasets NLP&CC 2013 and NLP&CC
2014, the scores of Recall and F1-score on the three emotion labels Anger, Sadness, and Fear
were relatively low, while the classification on the two labels Joy and Surprise achieved
better results.
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Compared to the two baseline methods, LMT-CNN shows different degrees of per-
formance score improvement on different datasets. Overall, on all seven datasets, the
LMT-CNN method almost always scored higher than the baseline method being compared
for the classification indicators in each class. This shows that the classification performance
is improved more effectively by combining the emotion knowledge module with semantic
connotations for the same input text features. Adding the consideration of prior knowledge
of affective words clearly helps in emotion recognition, and our particular method learns
more information in the sentence while considering the information of affective words.

In addition, consistent with the experimental results of Zhang et al. [15], the MT-
CNN model scored higher than the TextCNN model on each evaluation indicator in the
experiments on the seven datasets. This result shows that the performance of the multi-task
neural network is significantly better than that of the traditional single-task networks in the
emotion classification task. MT-CNN and LMT-CNN use the combination of cross-entropy
loss and KL loss to train multi-task neural networks. In the training process, emotion
distribution prediction and emotion classification tasks improve each other and can achieve
better performance than single-task CNN.

Table 6. Comparative performance of three CNN-based EDL models for emotion classification. The
best performances of each indicator on each dataset are marked in bold.

Dataset Model Indicator
Emotion Averaged

Anger Disgust Sadness Surprise Fear Joy

Fairy Tales

TextCNN
Pre (%) 82.05% 71.24% 66.05% - 66.15% 76.06% 72.31%
Rec (%) 65.53% 76.46% 71.20% - 65.58% 73.55% 70.46%
F1 (%) 63.14% 68.35% 68.87% - 72.87% 76.39% 69.92%

MT-CNN
Pre (%) 82.13% 71.51% 66.17% - 66.85% 76.56% 72.64%
Rec (%) 65.83% 76.67% 71.23% - 66.10% 73.48% 70.66%
F1 (%) 63.75% 68.35% 69.42% - 73.17% 76.09% 70.16%

LMT-CNN
Pre (%) 82.31% 71.67% 66.67% - 67.14% 76.92% 72.94%
Rec (%) 66.96% 77.29% 71.50% - 66.32% 73.77% 71.17%
F1 (%) 64.48% 68.89% 69.80% - 73.23% 76.42% 70.56%

TEC

TextCNN
Pre (%) 52.38% 48.74% 49.13% 57.12% 65.70% 55.66% 54.79%
Rec (%) 31.67% 30.74% 76.57% 43.57% 48.49% 52.91% 47.33%
F1 (%) 38.36% 54.05% 72.25% 46.04% 30.93% 57.33% 49.83%

MT-CNN
Pre (%) 55.59% 49.44% 51.57% 58.51% 67.56% 55.56% 56.37%
Rec (%) 30.60% 30.97% 78.56% 44.87% 48.60% 53.85% 47.91%
F1 (%) 38.47% 53.05% 72.98% 45.17% 35.77% 59.86% 50.88%

LMT-CNN
Pre (%) 56.36% 50.38% 52.74% 58.77% 68.33% 55.78% 57.06%
Rec (%) 35.30% 30.81% 78.90% 45.73% 50.31% 58.79% 49.97%
F1 (%) 38.99% 55.00% 73.08% 48.45% 37.65% 60.04% 52.20%

CBET

TextCNN
Pre (%) 57.82% 54.78% 53.19% 57.67% 63.87% 66.80% 59.02%
Rec (%) 50.63% 61.57% 61.90% 52.21% 63.53% 72.48% 60.39%
F1 (%) 54.56% 59.09% 68.50% 50.03% 62.68% 70.89% 60.96%

MT-CNN
Pre (%) 59.01% 57.70% 53.43% 59.77% 73.19% 69.39% 62.08%
Rec (%) 51.73% 64.23% 67.22% 53.63% 64.35% 72.45% 62.27%
F1 (%) 54.66% 60.10% 69.29% 50.88% 65.60% 71.06% 61.93%

LMT-CNN
Pre (%) 62.09% 60.40% 54.78% 62.80% 75.19% 67.81% 63.85%
Rec (%) 53.09% 65.51% 68.32% 54.58% 65.44% 72.90% 63.31%
F1 (%) 55.92% 60.42% 70.74% 51.46% 66.60% 71.91% 62.84%
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Table 6. Cont.

Dataset Model Indicator
Emotion Averaged

Anger Disgust Sadness Surprise Fear Joy

ISEAR

TextCNN
Pre (%) 61.36% 63.50% 76.64% - 70.67% 79.30% 70.29%
Rec (%) 70.84% 64.24% 74.21% - 71.66% 64.59% 69.11%
F1 (%) 62.14% 65.22% 76.39% - 72.09% 73.97% 69.96%

MT-CNN
Pre (%) 61.31% 64.68% 80.27% - 72.16% 81.13% 71.91%
Rec (%) 71.62% 64.46% 77.37% - 73.66% 69.36% 71.29%
F1 (%) 65.68% 67.63% 77.00% - 74.25% 72.09% 71.33%

LMT-CNN
Pre (%) 62.28% 66.00% 82.07% - 72.50% 82.15% 73.00%
Rec (%) 72.38% 65.10% 79.34% - 74.40% 71.64% 72.57%
F1 (%) 66.54% 70.64% 80.68% - 74.95% 74.69% 73.50%

Affect in Tweets

TextCNN
Pre (%) 60.60% 55.26% - - 34.69% 28.57% 44.78%
Rec (%) 43.59% 39.60% - - 53.12% 21.11% 39.36%
F1 (%) 41.02% 49.12% - - 40.98% 29.05% 40.04%

MT-CNN
Pre (%) 60.83% 55.57% - - 33.57% 32.67% 45.66%
Rec (%) 49.33% 40.18% - - 53.42% 24.29% 41.80%
F1 (%) 43.97% 49.38% - - 43.04% 29.05% 41.36%

LMT-CNN
Pre (%) 62.71% 56.18% - - 35.39% 36.51% 47.70%
Rec (%) 50.70% 41.21% - - 53.61% 25.26% 42.70%
F1 (%) 45.22% 50.07% - - 44.25% 30.00% 42.39%

NLP&CC 2013

TextCNN
Pre (%) 44.86% 49.12% 52.37% 58.72% 50.00% 73.03% 54.68%
Rec (%) 32.97% 42.08% 30.59% 52.59% 38.38% 67.00% 43.93%
F1 (%) 34.84% 55.38% 36.32% 47.15% 33.76% 71.83% 46.55%

MT-CNN
Pre (%) 46.55% 49.77% 57.06% 63.27% 53.11% 78.07% 57.97%
Rec (%) 34.01% 48.26% 32.86% 53.92% 39.26% 69.86% 46.36%
F1 (%) 37.94% 53.98% 36.65% 51.38% 37.82% 73.45% 48.54%

LMT-CNN
Pre (%) 51.55% 51.18% 60.00% 66.97% 54.03% 78.91% 60.44%
Rec (%) 36.56% 50.90% 32.68% 58.13% 38.68% 69.80% 47.79%
F1 (%) 38.45% 56.38% 38.82% 52.82% 38.78% 73.55% 49.80%

NLP&CC 2014

TextCNN
Pre (%) 40.60% 45.03% 62.20% 59.63% 51.11% 70.04% 54.77%
Rec (%) 36.36% 60.14% 25.18% 58.42% 24.39% 78.13% 47.10%
F1 (%) 38.37% 51.50% 35.85% 59.02% 33.02% 73.86% 48.60%

MT-CNN
Pre (%) 40.22% 49.63% 70.59% 62.87% 52.78% 72.43% 58.09%
Rec (%) 36.65% 63.83% 26.36% 60.31% 25.27% 77.81% 48.37%
F1 (%) 38.36% 55.84% 38.39% 61.56% 34.18% 75.02% 50.56%

LMT-CNN
Pre (%) 43.54% 50.57% 72.92% 63.10% 53.54% 75.91% 61.60%
Rec (%) 39.56% 64.45% 26.47% 66.28% 28.57% 79.32% 50.78%
F1 (%) 41.46% 56.67% 38.84% 64.65% 37.26% 77.58% 52.74%

5. Limitation

In the extensive comparative experiments, the proposed LMT-CNN method shows
superior performance on both emotion distribution prediction tasks and emotion classi-
fication tasks to the baseline methods. However, our method has some limitations in the
following aspects that can be improved in follow-up work.

• The used prior linguistic knowledge is static. Affective words, as a priori knowledge
in linguistics, need to build the affective lexicon in advance to associate affective words
with emotion labels. However, once the lexicon is established, the affective words
have static emotion properties and cannot be updated in real time according to the
changes in external emotion semantics. We suppose that dynamic updating of the
lexicon is a possible solution.

• The LMT-CNN model does not consider cross-language performance differences. The
prior knowledge of affective words is not always present in all languages, especially in
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some minor languages. In the future, this deficiency can be addressed through transfer
learning, where the rich linguistic knowledge in English is used to boost that of other
minor languages.

• Not all state-of-the-art EDL algorithms were directly compared in our experiments.
In recent years, many effective EDL models have been proposed, and the algorithms
implemented on different datasets are not directly comparable. Re-implementing all
state-of-the-art EDL algorithms on their datasets is too time-consuming to illustrate the
validity of prior linguistic knowledge. We re-implemented some representative EDL
algorithms and performed experimental comparisons on several popular emotional
datasets. Although a direct comparison with other algorithms is not possible on
different data, classes, and applications, empirical results show that our proposed
LMT-CNN method achieves optimal results on all the evaluation metrics.

6. Conclusions

This paper proposes text emotion distribution learning based on the lexicon-enhanced
multi-task convolutional neural network (LMT-CNN) model. The LMT-CNN model con-
sists of a semantic information module, emotion knowledge module, and multi-task pre-
diction module. Different from the existing EDL model, LMT-CNN comprehensively
considers the linguistic prior knowledge of affective words and text semantic information.
A number of comparative experimental results show that the performance of the LMT-
CNN model is better than the existing EDL methods in emotion distribution prediction
and emotion classification.

In future work, we will consider making more effective use of prior knowledge and
try some different emotion modeling methods to predict the emotion distribution.
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