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Abstract: This paper is devoted to the spectral analysis of one class of integral operators, associated
with the boundary value problems for differential equations of fractional order. Approximation
matrices are also investigated. In particular, the positive definiteness of the studied operators is
shown, which makes it possible to select areas in the complex plane where there are no eigenvalues
of these operators.
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1. Introduction

As is known in fractional calculus and in the theory of mixed-type equations, an
important role is played by the potential function

1
2

1∫
0

u(t)dt
|x− t|1/ρ

with density u(t) and with a power kernel 1
|x−t|1/ρ , which is positive definite for 0 < 1

ρ < 1
according to a fact established by Tricomi [1–8]. There are papers in which various general-
izations of this result were given. First of all, we should note the paper of Gellerstedt [9],
where an operator of the following form was investigated for positive definiteness

Pϕ
01u(x) =

1∫
0

ϕ(|x− t|)u(t)dt

where
ϕ(|x− t|) = |x− t|m/(m+2)P0(c|x− t|4/(m+2))

([9], page 41) which is some generalization of the operator

1
2

1∫
0

u(t)dt
|x− t|1/ρ

.

Another direction was started in [10,11] where, in particular, it was shown that the

operator Ãρ : L2 → L2, for 0 < 1
ρ < 1 (where Ãρ =

x∫
0
(x− t)1/ρ−1u(t)dt) is sectorial and

also that the values of the form (Ãρu, u), for 1 < 1
ρ < ∞, fill the whole complex plane [10].

This manuscript is devoted to the study of the positive definiteness of operators of the form

A[α,β]
γ u(x) = cα

x∫
0

(x− t)1/α−1u(t)dt + cα,β

1∫
0

x1/ρ−1(1− t)1/γ−1u(t)dt,
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which are finite-dimensional perturbations (finite-dimensional perturbations of a special
kind) of a fractional integration operator of a special kind.

We suggest a principally new wide class of positive definite operators, which play an
important role in fractional calculus and in applications. The obtained results are used to
study some very important properties of functions of the Mittag-Leffler type.

2. On the Positive Definiteness of Operators of the Kind A[α,β]
γ

Let us consider the operator

A[α,β]
γ u(x) = cα

x∫
0

(x− t)
1
α−1u(t)dt + cβ,γ

1∫
0

x
1
α−1(1− t)

1
α−1u(t)dt.

This operator arises in the process of determining the solutions of boundary value
problems for fractional differential equations [12].

Let us show that this operator (for specific α, γ, ρ) is positive definite. To highlight
the main ideas, let us consider the simplest case. Let us consider in space L2(0, 1) the
operator A[α,β]

γ for α = β = γ = ρ, 0 < ρ < 2, i.e., we consider the operator Aρ [13]. The
more important case is for 0 < ρ < 1, as in this case, the operator Aρ corresponds to the
differential equations of order more than 1. The case for 1 < ρ < ∞ in fractional calculus is
not so interesting but to complete our investigation, we will to consider some results for
this case too.

First of all we, note that the first term of operator Aρ is a fractional integral J1/ρ of
order 1/ρ.

Let us designate

Ãρu =

x∫
0

(x− t)1/ρ−1u(t)dt.

Obviously, the operator Ãρ is different from the operator J1/ρ by the positive constant.
However, in the following, for easy reading, we will use the operator Ãρ and do not
pay attention to this difference. As is known in fractional calculus and in the theory of
mixed-type equations, an important role is played by the potential

1
2

1∫
0

u(t)dt
|x− t|(1/ρ)

(1)

with density u(t) and with a power kernel 1
|x−t|(1/ρ) which is positive definite, for 0 < 1/ρ < 1,

and this fact was established by F. Tricomi [8].
F. Tricomi [8] showed that the symmetric component of the operator Aρ, i.e.,

ÃρR u =
1
2

1∫
0

u(t)dt
|x− t|1/ρ

is fixed-sign, i.e.,

(ÃρR u, u) =
1
2

1∫
0

1∫
0

u(t)u(x)dtdx
|x− t|1/ρ

≥ 0

is positive definite, i.e., (ÃρR u, u) ≥ 0. It should be noted that the operator Ãρ is strictly
definite (Ãρu, u) > 0 (the equality sign holds if and only if u = 0). A little later, Matsaev
and Palant [11] showed that the operator Ãρ is sectorial (0 < 1/ρ < 1), that is, the values
of the form (Ãρu, u) lie in the angle
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|argλ| < π

2ρ
.

Further, Gokhberg and Krein [10] showed that the values of the form (Ãρu, u) for
(1 < 1/ρ < ∞) fill the whole complex plane. This paper provides further analysis of
these operators.

There is another well-known result. The operator Aρ, for 1 < ρ < 2 for (Aρ : L2 → L2),
is positive definite.

Let us now formulate and prove the following theorem

Theorem 1. Operator −Aρ is positive definite for 1/2 < 1/ρ < 1 and (Aρ : L2 → L2).

Proof. It is known that the operator A is called positive definite if (Au, u) > 0, (u 6= 0).
However, it is very difficult to verify this condition directly. Therefore, we will use the
matrix approximation of the operator Aρ [6]. As in [6], we denote the corresponding matrix
by Tn−1(µ), µ = 1

ρ − 1 (1 < µ < 2)

Tn−1(µ) =


( 1

n )
µ( n−1

n )µ ( 1
n )

µ( n−2
n )µ · · · ( 1

n )
µ( 1

n )
µ

( 2
n )

µ( n−1
n )µ − ( 1

n )
µ ( 2

n )
µ( n−2

n )µ · · · ( 2
n )

µ( 1
n )

µ

...
...

. . .
...

( n−1
n )µ( n−1

n )µ − ( n−1
n )µ ( n−1

n )µ( n−2
n )µ − ( n−3

n )µ · · · ( n−1
n )µ( 1

n )
µ

.

The system of eigenfunctions of the K is complete in the domain of values of the
integral operator K f if and only if both sides in this inequality are equal.

It is known that the operator A is called positive definite if (Au, u) > 0, (u 6= 0).
However, it is very difficult to verify this condition directly. Therefore, we will use the
matrix approximation of the operator Aρ [6]. As in [6], we denote the corresponding matrix
by Tn−1(µ), µ = 1

ρ − 1

Tn−1(µ) =


( 1

n )
µ( n−1

n )µ ( 1
n )

µ( n−2
n )µ · · · ( 1

n )
µ( 1

n )
µ

( 2
n )

µ( n−1
n )µ − ( 1

n )
µ ( 2

n )
µ( n−2

n )µ · · · ( 2
n )

µ( 1
n )

µ

...
...

. . .
...

( n−1
n )µ( n−1

n )µ − ( n−1
n )µ ( n−1

n )µ( n−2
n )µ − ( n−3

n )µ · · · ( n−1
n )µ( 1

n )
µ

.

The matrix Tn−1(µ) has many useful properties. In particular, this matrix is positive,
persymmetric, indecomposable, etc. It is known [6] that one of the necessary conditions for
the positive definiteness of a matrix is the positivity of all its lead main minors. The fact
that these minors are positive was shown in [6]. Next, we need the following lemmas.

Lemma 1. The minors

A
(

i1 i2 · · · ir
j1 j2 · · · jr

)
of the matrix (here µ > 1)

Tn−1(µ) =


( 1

n )
µ( n−1

n )µ ( 1
n )

µ( n−2
n )µ · · · ( 1

n )
µ( 1

n )
µ

( 2
n )

µ( n−1
n )µ − ( 1

n )
µ ( 2

n )
µ( n−2

n )µ · · · ( 2
n )

µ( 1
n )

µ

...
...

. . .
...

( n−1
n )µ( n−1

n )µ − ( n−1
n )µ ( n−1

n )µ( n−2
n )µ − ( n−3

n )µ · · · ( n−1
n )µ( 1

n )
µ

.

for ik ≤ jk, 1 ≤ k ≤ r, are positive. Moreover, they are equal to
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(nµ)r−1(n− jr)µ(i1)µbr(r−1)b(r−1)(r−2)...b21,

where

bki =

{
(ik − ji)µ, ik > ji
0, ik < ji

Proof. Let us consider the minor

Mr = A
(

i1 i2 · · · ir
j1 j2 · · · jr

)
.

For ik ≤ jk, 1 ≤ k ≥ r, we may represent Mr as follows

Mr =


iµ
1

iµ
2

iµ
3
...

iµ
r1

((n− j1)µ(n− j2)µ . . . (n− jr)µ)− nµ


0 0 0 · · · 0

b21 0 0 · · · 0
...

...
...

. . .
...

br1 br2 br3 · · · br(n−1)


for

bki =

{
(ik − ji)µ, ik > ji
0, ik < ji

To calculate the determinant Mr, we consider

det(Mr − λI) = (−1)r det(λI −Mr) = (−1)r det(Ã− xyT) =

(−1)rλr(1− yT Ã−1x).

Here,

Ã = nµ


λ
nµ 0 0 · · · 0
b21

λ
nµ 0 · · · 0

...
...

...
. . .

...
br1 br2 br3 · · · λ

nµ

,

x =


iµ
1

iµ
2

iµ
3
...

iµ
r1

, yT = ((n− j1)µ(n− j2)µ . . . (n− jr)µ).

It is clear that

xr1 = (−nµ

λ
)r−1br(r−1)b(r−1)(r−2)...b21x1 . . .

= (−1)r−1(
nµ

λ
)r−1br(r−1)b(r−1)(r−2)...b21 + . . .

So,

det(Mr − λI) = (−1)rλr(1− yT Ã−1x) =

(−1)rλr(1− (n− jr)µir1xr1 + . . . )
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from this follows

det(Mr) = (nµ)r−1(n− jr)µ(i1)µbr(r−1)b(r−1)(r−2)...b21

which proves the lemma.

To prove that the matrix Tn−1(µ) is positive definite, we have studied the real compo-
nent of this matrix

TR =
1
2
(Tn−1(µ) + T∗n−1(µ)).

Using the high-level mathematical package MATLAB, the eigenvalues of the matrix
TR were considered for various values of µ and the dimension of the matrix N. It was
shown that all eigenvalues of the matrix TR, for any N ≤ 3000 and µ > 0, are positive,
that is, the above calculations confirm the hypothesis that the matrix TR is positive definite.
This became the basis for us to assume that the matrix T(n−1)(µ) under study is positive
definite. It is natural that the operator Aρ corresponding to the matrix T(n−1)(µ) will also
be positive definite.

We give a strong proof of the positive definiteness of the matrix TR(µ). First, let us
write the matrices T6(1/2), T∗6 (1/2), TR(1/2) using the MATLAB package

T6(1/2) =



2.4495 2.2361 2 1.7321 1.4142 1
0.8184 3.1623 2.8284 2.4495 2 1.4142
0.5010 1.2272 3.4641 3 2.4495 1.7321
0.3164 0.7305 1.3542 3.4641 2.8284 2
0.1857 0.4174 0.7305 1.2272 3.1623 2.2361
0.0839 0.1857 0.3164 0.5010 0.8184 2.4495



T∗6 (1/2) =



2.4495 0.8184 0.5010 0.3164 0.1857 0.0839
2.2361 3.1623 1.2272 0.7305 0.4174 0.1857

2 2.8284 3.4641 1.3542 0.7305 0.3164
1.7321 2.4495 3 3.4641 1.2272 0.5010
1.4142 2 2.4495 2.8284 3.1623 0.8184

1 1.4142 1.7321 2 2.2361 2.4495



TR(1/2) =



2.4495 1.5272 1.2505 1.0242 0.8 0.5420
1.5272 3.1623 2.0278 1.5900 1.2087 0.8
1.2505 2.0278 3.4641 2.1771 1.59 1.0242
1.0242 1.5900 2.1771 3.4641 2.0278 1.2505

0.8 1.2087 1.59 2.0278 3.1623 1.5272
0.5420 0.8 1.0242 1.5272 1.5272 2.4495


That is, the following statements hold.

Lemma 2. For any i0 ≤ j, and µ > 1, the following relations hold

ai0,j ≥ ai0,j+1, i0 ≤ j;

ai0,j < ai0,j+1, i0 > j.

Proof. We write the formula for the general element of the matrix

aij = (Ni− ij)µ − θ(i, j)(Ni− Nj)µ.

Obviously, the elements under the main diagonal are calculated as follows, µ > 1

aij = (Ni− ij)µ − (Ni− Nj)µ, i > j,
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and the elements under the main diagonal are

aij = (Ni− ij)µ, i > j.

So, these formulas show that the elements located above the main diagonal decrease.
To consider the elements under the main diagonal, we introduce the generating function

ϕ(x) = (Ni− ix)µ − θ(i, j)(Ni− Nx)µ, µ ∈ (1, 2), x ∈ [1, N].

Obviously, the derivative of this function is positive on the segment x ∈ [1, N],
which means that the function ϕ(x) increases on the segment x ∈ [1, N]. This completes
the proof.

Lemma 3. For any fixed j0 < i, the following relations

ai,j0 ≥ ai+1,j0 , i ≥ j0;

ai,j0 < ai+1,j0 , i < j0

hold.

Proof. The proof of Lemma 2 is similar to the proof of Lemma 1.

Lemma 4. The statements of Lemmas 1 and 2 are valid for the matrices TT
n (µ) (TT

n (µ) is the
transposed matrix, and it shall be reminded that T(µ) for µ = 1 was studied by Krein [10], for
µ = 2, it was studied in [6]).

Lemma 5. The statements of Lemmas 1–3 are also valid for the matrices TR(µ) =
Tn(µ)+TT

n (µ)
2 .

Using these lemmas, we prove the following theorem.

Lemma 6. The matrix TR(µ) =
Tn(µ)+TT

n (µ)
2 is positive definite for µ ∈ (1, 2).

Proof. It is obvious that all main lead minors of the matrix TR(0) are non-negative. In the
same way, all main lead minors of the matrix TR(1) are positive.

Let us show that for µ ∈ (1, 2), all main lead minors of the matrix are TR(µ) 6= 0. To
do this, it is enough to prove that all the rows (columns) of the leading main lead minors of
the matrix are linearly independent. In proving this statement, without loss of generality,
for definiteness, we consider rows with numbers k and k + 1. Then, it suffices to note
that, by Lemma 4, that ak,1

ak+1,1
< 1 and ak,k+1

ak,k
> 1, which proves the linear independence of

these rows.
Let us introduce the following function

detTR(µ) = ∆(µ), µ ∈ (1, 2).

It is known that ∆(2) > 0 and ∆(1) > 0.
From the above-provided statements follows that the matrix Tn−1(µ) is positive defi-

nite. So, the operator Aρ is positive definite too, and this proves the lemma.

From this very important theorem, it follows that the operator Aρ is positive definite
for 1/2 < ρ < ∞.

3. Conclusions

So, our spectral analysis of the operators generated by boundary value problems for
fractional differential equations and boundary conditions of Sturm–Liouville type, using
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matrix calculus, shows that the spectral structure of these operators can be studied by the
matrices we studied above.

4. Discussion

Operators generated (induced) by a differential expression of a fractional order and
boundary conditions of the Sturm–Liouville type are non-self-adjoint and their spectral
structure is almost not studied. The methods proposed by the authors are fundamentally
new. They allow to study the completeness of systems of eigenfunctions and associated
functions of these operators.
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