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Abstract: Various factors make stock market forecasting difficult and arduous. Single-task learning
models fail to achieve good results because they ignore the correlation between multiple related
tasks. Multitask learning methods can capture the cross-correlation among subtasks and achieve a
satisfactory learning effect by training all tasks simultaneously. With this motivation, we assume that
the related tasks are close enough to share a common model whereas having their own independent
models. Based on this hypothesis, we propose a multitask learning least squares support vector
regression (MTL-LS-SVR) algorithm, and an extension, EMTL-LS-SVR. Theoretical analysis shows
that these models can be converted to linear systems. A Krylov-Cholesky algorithm is introduced to
determine the optimal solutions of the models. We tested the proposed models by applying them to
forecasts of the Chinese stock market index trend and the stock prices of five stated-owned banks.
The experimental results demonstrate their validity.

Keywords: multitask learning; EMTL-LS-SVR; Krylov-Cholesky algorithm; stock forecast
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1. Introduction

The stock market is an indispensable part of the securities and financial industries.
It reflects a country’s economic situation and development. However, the behavior of a
stock market is affected by many factors, such as financial and economic policy, business
development, and investor psychology [1]. Due to complex internal factors and the chang-
ing economic environment, forecasting the stock market is a challenge for researchers of
financial data mining [2]. Traditional stock market forecasting methods include securi-
ties investment analysis, nonlinear dynamic methods, time series mining, and statistical
modeling [3].

Securities investment analysis requires close attention to the international and domes-
tic events along with keen market insight [4,5]. Considering the nonlinear character of the
financial trading market, some nonlinear forecasting models have been established on the
basis of nonlinear dynamical theory [6,7]. Chen et al. [8] studied a multifactor time series
model for stock index forecasting, which achieved a low root mean square error. Some
statistical methods require strong modeling and statistical capabilities, which is difficult for
general investors [9].

Many machine learning and deep learning methods are used to forecast the stock
market and analyze stock prices. A high-performance stock trading architecture which inte-
grates neural networks and trees is developed by Chalvatzis et al. [10], which is presented
to enhance profitability during the investment. Zhang et al. [11] presented a model based
on support vector regression (SVR) and a modified firefly algorithm to forecast stock prices.
A back propagation (BP) neural network was extended to predict the stock market [12,13],
but it fell easily into a local optimal solution. Song et al. [14] developed a deep learning
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model to forecast stock price fluctuation, which included hundreds of input-features. To
explore the impact of historical events, a stacked long short term memory network was
adopted to predict stock market behavior [15]. However, their work inevitably built many
irregular hidden network layers. Li et al. [16] proposed MISA-K-ELM, integrating mutual
information-based sentimental analysis with kernel extreme learning machine to forecast
stock prices. Dash et al. [17] proposed a self-evolving recurrent neuro-fuzzy inference
system to predict irregular financial time series data. Text mining was applied to analyze
financial articles and investor sentiment to predict daily stock market behavior [18,19].
Mohanty et al. [20] proposed a hybrid model combined with auto encoder (AE) and kernel
extreme learning machine (KELM), and the prime advantage of the proposed technique
over the conventional SAE is robust prediction of different financial markets with reduction
in error. These methods performed well at forecasting stock market trends, but they ignored
the essential relatedness among stock data.

As an important and ongoing issue in machine learning, multitask learning has
attracted significant attention in many fields, such as supervised learning, semi-supervised
learning, reinforcement learning, and multiview learning [21]. According to the concept
of multitask learning, there is shared useful information among multiple related tasks,
hence the learning effect of tasks can be well enhanced. When there are intrinsic relations
among subtasks, the learning effect of all tasks can be greatly improved by learning them
simultaneously. Gao [22] adopted clustered multitask support vector regression (MT-SVR)
to perform age estimation based on facial images, which required the solution of large-scale
quadratic programming problems. Li et al. [23] proposed multitask proximal support vector
machine (MTPSVR), which incurred a lower computational cost than MT-SVR. Xu et al. [24]
applied multitask least squares support vector machine (MTLS-SVM) to analyze three
components of broomcorn samples. Nevertheless, MTLS-SVM confused the common bias
and the bias in the subtask decision function, and could not flexibly select an appropriate
kernel function according to different information.

In this paper, we develop a multitask learning assumption such that each subtask
model can be obtained by solving a common model and an independent model. Then
multitask learning least squares support vector regression (MTL-LS-SVR) is proposed under
the assumption that the same kernel functions are employed in the common model and
independent models. In addition, we propose an extension of MTL-LS-SVR, EMTL-LS-SVR,
which cannot only consider the internal cross-correlation among subtasks but can select
different kernel functions for the common model and independent models. These features
can improve the prediction performance more efficiently than other training algorithms.
Next, we present the Krylov-Cholesky algorithm to solve the proposed models, which
greatly improves the training speed. Finally, the proposed models are applied to forecast the
Chinese stock market index trend and the stock price movements of five state-owned banks.

2. Least Squares Support Vector Regression

SVR attempts to minimize the generalization error bound under the structural risk min-
imization principle. It is based on a generalized linear regression function
f (x) = ϕ(x)Tω∗ + b∗ in a high-dimensional feature space [25]. The inequality constraints
in SVR are transformed to equality constraints by least squares, which greatly improves
the efficiency of training LS-SVR [26]. Given a set of input samples, LS-SVR trains the
generalized linear regression function to complete the regression prediction by a nonlin-
ear mapping. The decision function of LS-SVR can be obtained by solving the following
optimization problem  minJ(ω, b, ξ) = 1

2‖ω‖
2 + C

2

n
∑

i=1
ξ2

i

s.t.yi = ωT ϕ(xi) + b + ξ i, i = 1, 2, · · · , n
(1)

where J(·) denotes an objective function, the symbol T represents the transpose of a certain
matrix or vector, and ϕ(·) is a nonlinear mapping from the original input space to the
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feature space. C is a penalty coefficient, and ξ = [ξ1, ξ2, · · · , ξn]
T is a slack vector to reflect

whether the samples can be located in the ε-tube. (ω, b) is the generalized weight vector to
be solved. x and y are respective sample attributes and tags.

The Lagrange function method is used to transform the quadratic programming
problem (1) to a linear system [

Q In
IT

n 0

][
α
b

]
=

[
Y
0

]
(2)

where In = [1, 1, · · · , 1]T is an n× 1 vector of ones. α and b are the Lagrange multiplier
vector and threshold. Q = Ω + En

C ∈ Rn×n is a positive definite matrix, and En is an
n-dimensional identity matrix. Ω is an n× n matrix with elements ωi,j = ϕ(xi)

T ϕ
(
xj
)
=

K
(
xi, xj

)
. ϕ(·) is a nonlinear mapping from the original input space to the feature space,

and K(·, ·) is the corresponding kernel function. Solving the linear system (2) gives us the
following regression function

f (x) = ϕ(x)Tω∗ + b∗

=
n
∑

i=1
α∗i K

(
xi, xj

)
+ b∗. (3)

3. Extension of Multitask Learning Least Squares Support Vector Regression

Suppose we have T(T > 1) learning tasks that are distinct but have good internal
cross-correlation. For every task, there are mt training data {(xti , yti )}

mt
i=1, where xti ∈ Rd

and yti ∈ R. Hence, we have m = ∑T
t=1 mt training data.

Multitask learning aims to train subtasks at the same time and uses the effective
information among related tasks to improve the generalization ability of the regression
model. Since multiple tasks are related and different, there is shared information among
all tasks and private information belonging to the subtasks themselves. We assume that
all tasks share a common model ρ0 and each subtask has an independent submodel ηt,
t = 1, 2, · · · , T. The regression function corresponding to the t− th subtask can be expressed
as ρt = ρ0 + ηt. To clearly illustrate multitask learning, Figure 1 shows a block diagram of
our proposed models.

Figure 1. Block diagram of MTL-LS-SVR and EMTL-LS-SVR.

We first establish MTL-LS-SVR, and an extension, EMTL-LS-SVR. Next, we present a
Krylov-Cholesky algorithm to solve large-scale multitask learning problems.

3.1. MTL-LS-SVR

In the multitask learning model MTL-LS-SVR, the subtask model is represented as

ρt = ρ0 + ηt
= 〈ω0, ϕ(·)〉+ 〈υt, ϕ(·)〉+ (b0 + bt)

(4)

where ω0 and ϕ(·) are, respectively, the normal vector and nonlinear mapping function
for the common model ρ0, and υt and ϕ(·) are those of the independent model ηt. b0 is the
bias of the common hyperplane, and bt is the threshold difference between the hyperplane
corresponding to the t− th subtask and the common hyperplane. υt tends to zero if the
subtasks are closely related, and ω0 tends to zero otherwise.
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The MTL-LS-SVR model can be determined by solving the following optimization problem min J = 1
2‖ω0‖2 + λ

2T

T
∑

t=1

(
‖υt‖2 + b2

t

)
+ C

2

T
∑

t=1
‖ξt‖2

s.t. yt = At(ω0 + υt) + (b0 + bt)Imt + ξt, t = 1, 2, · · ·, T
(5)

where ξt =
[
ξt1 , ξt2 , · · · , ξtmt

]T
represents the slack variable vectors for the t − th sub-

task. C is a positive regularization coefficient. The dataset of the t − th subtask is
mapped to the feature space by the nonlinear mapping φ(·), which can be denoted by

At =

[
ϕ(xt1)

T , ϕ(xt2)
T , · · · , ϕ

(
xtmt

)T
]T

. Imt ∈ Rmt×1, is a column vector of ones. For

all the learning tasks, the task-coupling parameter λ balances the trade-off relationship
between the shared information and the private information among all tasks. In particular,
the greater the value of λ, the stronger the degree of association among subtasks; otherwise,
the degree of association is weaker. It can be seen that subtasks are trained at the same time
because they share some internal information.

The Lagrange function of the quadratic programming problem (5) is as follows:

L = 1
2‖ω0‖2 + λ

2T

T
∑

t=1

(
‖υt‖2 + b2

t

)
+ C

2

T
∑

t=1
‖ξt‖2

−
T
∑

t=1
αT

t [At(ω0 + υt) + (b0 + bt)Imt + ξt − yt]
(6)

where αt =
[
αt1 , αt2 , · · · , αtmt

]T
is a nonnegative Lagrange multiplier vector. According to

the Karush–Kuhn–Tucker (KKT) condition, we derive the linear system[
Q(1)

m×m Hm×1
HT

m×1 0

][
αm×1

b0

]
=

[
Ym×1

0

]
(7)

where Q(1) =
(

AAT + T
λ Ω(1) + Em

C

)
is an m × m positive definite matrix, and Ω(1) is a

block-wise diagonal matrix noted as Ω(1) = blkdiag
(
AtAT

t + Imt I
T
mt

)
∈ Rm×m,

t = 1, 2, · · · , T. Em is an m-dimensional identity matrix. H is a column vector of ones, b0

is the threshold of the common hyperplane, and αm×1 =
[
αT

1 , αT
2 , · · · , αT

T
]T . Solving the

linear system (7) gives us the Lagrange multiplier vector α, bias item b0, and regression
parameters corresponding to the common hyperplane and private information. Therefore,
the decision function of MTL-LS-SVR can be obtained as

ft(x) = ϕ(x)(ω∗0 + υ∗t ) + (b∗0 + b∗t )

= ϕ(x)
(

ATα∗ + T
λ AT

t α∗t

)
+ T

λ

mt
∑

i=1
IT

mt α
∗
ti
+ b∗0

=
T
∑

t=1

mt
∑

i=1
α∗ti

K(xti , x) + T
λ

mt
∑

i=1
α∗ti

K(xti , x) + T
λ

mt
∑

i=1
IT

mt α
∗
ti
+ b∗0 .

(8)

3.2. EMTL-LS-SVR

In the MTL-LS-SVR model, to select the same kernel functions for the common model
and independent models cannot effectively distinguish their essential differences. There-
fore, we propose an extension of MTL-LS-SVR, EMTL-LS-SVR. The regression function
corresponding to the t− th subtask can be represented as

ρt = ρ0 + ηt
= 〈ω0, ϕ(·)〉+ 〈υt, φ(·)〉+ (b0 + bt)

(9)
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where ρt represents the joint model of the t− th subtask, ρ0 and ηt respectively denote
the common model and private model. ω0 and ϕ(·) are, respectively, the normal vector
and nonlinear mapping function for the common model, and υt and φ(·) are those of the
independent model ηt. It is obvious that ϕ(·) and φ(·) are different nonlinear mappings,
hence different kernel functions are applied to process the shared information and private
information.

According to the above analysis, the optimization problem of EMTL-LS-SVR can be
obtained as 

min J = 1
2‖ω0‖2 + λ

2T

T
∑

t=1

(
‖υt‖2 + b2

t

)
+ C

2

T
∑

t=1
‖ξt‖2

s.t. yt =
(

Atω0 +
~
Atυt

)
+ (b0 + bt)Imt + ξt, t = 1, 2, · · ·, T

(10)

where the dataset of the t− th subtask is mapped to the feature space by the nonlinear

mapping φ(·) that can be noted as
~
At =

[
φ(xt1)

T , φ(xt2)
T , · · · , φ

(
xtmt

)T
]T

. λ, T, ξt, At,

ϕ(·), Imt , b0, and bt have the same meanings as in the quadratic programming problem (5).
The corresponding Lagrange function of the quadratic programming problem (10) is

L = 1
2‖ω0‖2 + λ

2T

T
∑

t=1

(
‖υt‖2 + b2

t

)
+ C

2

T
∑

t=1
‖ξt‖2

−
T
∑

t=1
αT

t

[(
Atω0 +

~
Atυt

)
+ (b0 + bt)Imt + ξt − yt

] (11)

where αt is the nonnegative Lagrange multiplier vector denoted as αt =
[
αt1 , αt2 , · · · , αtmt

]T
.

Setting the gradient of Lagrange function (11) with respect to ω0, υt, b0, bt, ξt and αt to zero,
we obtain the following equations:

∂L
∂ω0

= 0⇒ ω0 =
T
∑

t=1
AT

t αt = ATα,

∂L
∂υt

= 0⇒ υt =
T
λ Ã

T
t αt,

∂L
∂b0

= 0⇒
T
∑

t=1
IT

mt
αt = 0,

∂L
∂bt

= 0⇒ bt =
T
λ IT

mt
αt,

∂L
∂ξt

= 0⇒ ξt =
1
C αt,

∂L
∂αt

= 0⇒ Atω0 + Ãtυt + (b0 + bt)Imt + ξt = yt.

(12)

Then, refer to Equation (12), we can obtain the linear system[
Q(2)

m×m Hm×1
HT

m×1 0

][
αm×1

b0

]
=

[
Ym×1

0

]
(13)

where Q(2) =
(

AAT + T
λ Ω(2) + Em

C

)
is a positive definite matrix, and Ω(2) is a block-wise

diagonal matrix noted as Ω(2) = blkdiag(
~
At

~
A

T

t + Imt I
T
mt) ∈ Rm×m, t = 1, 2, · · · , T. Em, H, b0,

and αm×1 have the same meanings as for the linear system (7). By solving the linear system
(13), we obtain the Lagrange multiplier vector αm×1 and threshold b0, and the regression
parameters corresponding to the common model and independent sub-models can also be
determined. Therefore, the decision function of EMTL-LS-SVR can be obtained as
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ft(x) = ϕ(x)ω∗0 + φ(x)υ∗t + (b∗0 + b∗t )

= ϕ(x)
(
ATα∗

)
+ T

λ φ(x)
(

~
A

T

t α∗t

)
+ b∗0 + b∗t

=
T
∑

t=1

mt
∑

i=1
α∗ti

K0(xti , x) + T
λ

mt
∑

i=1
α∗ti

Kt(xti , x) + T
λ

mt
∑

i=1
IT

mt α
∗
ti
+ b∗0

(14)

where K0(·, ·) and Kt(·, ·) are the respective kernel functions in the common model and
independent models. It is obvious that EMTL-LS-SVR is reduced to MTL-LS-SVR if and
only if ϕ(·) is equivalent to φ(·).

3.3. Krylov-Cholesky Algorithm

The linear systems (7) and (13) contain respective m + 1 equations, and are difficult
to solve directly if the coefficient matrices are not positive definite. By using the Krylov
methods [27], we can convert these linear systems to the form[

Q(i)
m×m 0m×1

0T
m×1 s

][(
Q(i)−1

Hb0 + α
)

m×1
b0

]
=

[
Ym×1

HTQ(i)−1
Y

]
(15)

where Q(i)
m×m(i = 1, 2) are the respective positive definite matrices when solving MTL-LS-

SVR and EMTL-LS-SVR, which we can denote as Q(i) =
(

AAT + T
λ Ω(i) + Em

C

)
, i = 1, 2.

s = HTQ(i)−1
H is a positive number. Therefore, the linear system (13) is also positive

definite. We will need to calculate the inverses of the large matrices Q(i), which can be time-

consuming. In fact, Q(i) is positive definite and symmetric, hence Q(i)−1
can be simplified by

the Cholesky factorization method [28]. Hence, we develop a Krylov-Cholesky algorithm
to solve the proposed models. To describe the model establishment process, Figure 2 shows
the flowchart of the proposed multitask learning models.

Figure 2. Flowchart of MTL-LS-SVR and EMTL-LS-SVR models.

The Krylov-Cholesky algorithm steps are listed as follows:

(1) Convert the linear system (7) or (13) to the following form using Krylov methods:

[
Qm×m 0m×1
0T

m×1 s

][(
Q−1Hb0 + α

)
m×1

b0

]
=

[
Ym×1

HTQ−1Y

]
(16)
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where s = HTQ−1H is a positive number. Qm×m is a positive definite and symmetric

matrix denoted as Q =
(

AAT + T
λ Ω + Em

C

)
, and Ω is an m×m block-wise diagonal

matrix;
(2) Apply the Cholesky factorization method to decompose Q into Q = LLT , and the

elements lij of the lower-triangular matrix L can be determined from Q;

(3) Calculate L−1, and thus
(
LT)−1

=
(
L−1)T

, Q−1 =
(
L−1)TL−1;

(4) Solve R, τ from QR = H and Qτ = Y, respectively, and record the corresponding
solution R∗ and τ∗;

(5) Calculate s = HTR∗;
(6) Obtain the optimal solution: b∗0 = 1

s HTτ∗ and α∗ = τ∗ −R ∗ b∗0 .

According to the Krylov-Cholesky algorithm, we can obtain the optimal solutions of
linear systems (7) and (13) by solving linear system (16). We can apply the Krylov methods
to convert the original linear system to a new one with a sparser coefficient matrix. We use
the Cholesky factorization method to decompose Q into the product of a lower-triangular
matrix L and its upper-triangular conjugate transpose LT . Q−1 is optimized by solving the
inverse of L. The optimal solutions of linear systems (7) and (13) can be determined by
solving for b0 and α, respectively.

4. Experiments

To verify the effectiveness of the proposed multitask learning models, we compared
them to SVR, LS-SVR, MTPSVR [23], and MTLS-SVR [24]. Experiments were performed
in MATLAB R2016a on a PC with an Intel Core i5-2500 CPU (3.30 GHz) and 8 GB of
RAM. In our experiments, the radial basis function kernel K

(
xi, xj

)
= exp

(
−σ
∥∥xi − xj

∥∥2
)

is employed in MTL-LS-SVR and four comparative models. For EMTL-LS-SVR, we used
kernel functions K0 and Kt in the common model and independent models, respectively, as
referred (14). Three combinations were used:

1) K0 is a linear kernel and Kt is a polynomial kernel.
2) K0 is a linear kernel and Kt is a radial basis function kernel.
3) K0 is a polynomial kernel and Kt is a radial basis function kernel.

For convenience, “L”, “P”, and “R”, respectively, represent linear kernel K
(
xi, xj

)
=〈

xi, xj
〉
, polynomial kernel K

(
xi, xj

)
=
(〈

xi, xj
〉
+ 1
)d, and radial basis function kernel

K
(
xi, xj

)
= exp

(
−σ
∥∥xi − xj

∥∥2
)

. In this paper, “L + P”, “L + R” and “P + R” denote the three
kernel function combinations, hence the last three multitask learning models are denoted
as EMTL-LS-SVR(L + P), EMTL-LS-SVR(L + R), and EMTL-LS-SVR(P + R), respectively.

4.1. Parameter Selection

In general, parameters are crucial to the performance of the model. There exist
two different kernel parameters (σ, d) and the regularized coefficient C in the compared
algorithms, and there is a task-coupling parameter λ in the multitask learning models.
To train the models with appropriate parameters, we set the parameter scopes as σ ∈{

2−4, 2−3, · · · , 23}, d ∈ {2, 3, · · · , 8}, C ∈
{

2−2, 2−1, · · · , 28}, and λ ∈
{

2−3, 2−2, · · · , 24}
in advance. The grid search method was applied to search for the best parameters to avoid
overfitting or underfitting [29]. Datasets were normalized. About 80% of the instances
were randomly chosen from the entire dataset to train the model, and the remaining 20%
formed the test set. Ten-fold cross-validation was used on the training set to search for
the optimal parameters, and the regression accuracy was the average value obtained from
20 independent experiments.

4.2. Evaluation Criteria

Some evaluation indicators were chosen to assess the experimental results and evaluate
our models. Define l and k as the number of training and testing samples, respectively. Let



Axioms 2022, 11, 292 8 of 22

yi and ŷi be the true and predicted values, respectively, of samples xi and y = 1
k

k
∑

i=1
yi. We

used the following indicators to evaluate the algorithms:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (17)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (18)

SSE/SST =
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − y)2 (19)

SSR/SST =
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)2 (20)

Generally, the smaller the values of MAE, RMSE, and SSE/SST are, the better the
algorithm performance will be. SSR/SST increases as SSE/SST decreases [30]. “Accuracy
± S” denotes the average regression accuracy of 20 experiments plus or minus the standard
deviation.

4.3. Forecast of Security of Stock Market Investment Environment

The running trend of the stock market index directly determines the security of the
investment environment. Whether to prevent systemic structural risks or harvest dividends
from stock market investments, accurate forecasts of the stock market index can provide
much meaningful information. In this experiment, we verified the rationality of our models
on stock index datasets, and applied them to forecast the opening index value of the stock
market indices. The stock index datasets included historical data of the Shanghai Securities
Composite Index (SSEC), a SZSE Composite Index (SZI), b Growth Enterprise Index (CNT),
c and SSE SME Composite Index (SZSMEPI). d From the development history of the Chinese
stock market, the crash effect of a rapid change from a bull market to a bear market was
worse than for some international events, such as the Middle East Respiratory Syndrome
Coronavirus (MERS-CoV) in 2012, and the 2019-nCoV out-broken in early 2020. Therefore,
we selected an entire evolutionary period from a bull market to a bear market in Chinese
stock market, with historical data including 1352 trading days, from 25 June 2013, to
4 January 2019. The data from each trading day were used as a sample point, with nine
indicators: opening index, highest index value, lowest index value, closing index, index
changing margin, index changing ratio, trading volume, trading amount, and previous
day’s closing price. The four major stock market indices together compose the stock
market of China, and they are affected by factors such as national policies, trade, and the
international situation. We regard the above four stock indices as four subtasks, which are
distinctive but interrelated, and which conform to the rules of multitask learning method.

To use multitask learning method to analyze the opening stock market index can make
full use of the cross-correlation among different stock indices to obtain a more accurate
prediction. Figure 3 shows the index time series change of the four indices on 1 June 2015.
The horizontal axis represents the trading time (minutes) of stock trading in 240 min, and
the vertical axis represents the change rate of each index on that day (taking the closing
index of the last day as the baseline). Figure 3 shows that the movement of the four stock
market indices is roughly the same, and they reach their highest and lowest points in the
day at approximately the same times. These facts reflect their internal relationships.
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Figure 3. Movement of stock market indices on 1 June 2015.

a http://quotes.money.163.com/trade/lsjysj_zhishu_000001.html (accessed on 1 May 2021)
b http://quotes.money.163.com/trade/lsjysj_zhishu_399001.html (accessed on 1 May 2021)
c http://quotes.money.163.com/trade/lsjysj_zhishu_399006.html (accessed on 1 May 2021)
d http://quotes.money.163.com/trade/lsjysj_zhishu_399005.html (accessed on 1 May 2021)

To predict the opening index, we established a regression model based on the following
assumptions. The opening index of a day is related to the other eight indicators of the
previous day. The opening index of a day is the dependent variable, and the remaining
indicators of the previous day are independent variables.

To verify the performance of the proposed regression models, eight algorithms were
used to perform 20 independent runs on the stock index datasets. Table 1 lists the aver-
age results of 20 independent experiments. Figures 4–7 show the predicted results for
SSEC, SZI, CNT, and SZSMEPI, respectively. Considering the large number of training
samples, only the forecast results of 400 continuous trading days during the peak period
(11 September 2014, to 5 May 2016) are shown in Figures 4a, 5a, 6a and 7a. To further
compare the models, we enlarged the distinct parts labeled by the red dash-dot line that
are 5% continuous trading days, and presented them in Figures 4b, 5b, 6b and 7b. The red
dashed lines with four different hollow symbols denote prediction results of the compared
algorithms, and the blue solid lines with four different solid symbols represent the results
of our proposed multitask learning models.

The experimental results of eight algorithms in predicting the stock indices are sum-
marized in Table 1. For the MAE criterion, it is clear that SVR only has good results on
the CNT dataset. The proposed multitask learning methods always produce the smallest
SSE/SST and SSR/SST, and EMTL-LS-SVR in particular achieves significant performance.
For the RMSE criterion, our MTL-LS-SVR models also achieve the best prediction results.
In summary, SVR and MTLS-SVR have considerable learning effects, and the learning
results of LS-SVR and MTPSVR are unsatisfactory compared to other regression methods.
The results in Table 1 demonstrate that the learning effect of multitask learning models on
different datasets can be further improved by selecting appropriate kernel functions and
adjusting the relevant hyperparameters. Through experimental comparison, it is easy to
find that when there is internal correlation among the learning tasks, multitask learning
models can obtain much better prediction results than single-task learning methods. To
select appropriate kernel functions for different information to establish the regression
models also can greatly improve the learning effect.

http://quotes.money.163.com/trade/lsjysj_zhishu_000001.html
http://quotes.money.163.com/trade/lsjysj_zhishu_399001.html
http://quotes.money.163.com/trade/lsjysj_zhishu_399006.html
http://quotes.money.163.com/trade/lsjysj_zhishu_399005.html
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Table 1. Performance comparisons of eight algorithms on four major stock market indices.

Stock Index Algorithm MAE RMSE SSE/SST SSR/SST (C,σ,λ,d)

SSEC

SVR 8.7363 ± 0.6100 15.0791 ± 2.9735 0.0007 ± 0.0003 0.9992 ± 0.0041 (55,3.85,~,~)
LS-SVR 9.8034 ± 0.9884 17.1879 ± 3.0598 0.0008 ± 0.0003 0.9961 ± 0.0064 (100,1.85,~,~)

MTPSVR 10.299 ± 1.7081 18.9993 ± 2.9656 0.0010 ± 0.0003 0.9990 ± 0.0090 (80,3.45,0.21,~)
MTLS-SVR 9.083 ± 1.8565 16.5463 ± 3.6839 0.0008 ± 0.0004 1.0038 ± 0.0070 (70,2.65,1.26,~)

MTL-LS-SVR 7.0850 ± 1.2081 12.1375 ± 2.9656 0.0005 ± 0.0003 1.0134 ± 0.0090 (100,2.25,0.11,~)
EMTL-LS-SVR(L + P) 8.7002 ± 1.8565 13.1821 ± 3.6839 0.0006 ± 0.0004 1.0180 ± 0.0070 (85,~,1.81,2)
EMTL-LS-SVR(L + R) 8.2580 ± 0.9870 14.5139 ± 2.2211 0.0006 ± 0.0002 1.0152 ± 0.0067 (95,2.65,1.31,~)
EMTL-LS-SVR(P + R) 7.9055 ± 1.4195 12.1985 ± 3.3330 0.0004 ± 0.0003 1.0147 ± 0.0065 (100,1.85,0.86,2)

SZI

SVR 34.307 ± 3.2894 60.0911 ± 10.263 0.0010 ± 0.0003 1.0027 ± 0.0070 (55,3.85,~,~)
LS-SVR 39.772 ± 4.1398 65.2855 ± 10.649 0.0012 ± 0.0004 0.9983 ± 0.0066 (85,0.65,~,~)

MTPSVR 41.355 ± 7.7932 70.3547 ± 14.535 0.0013 ± 0.0005 1.0042 ± 0.0101 (80,3.45,0.21,~)
MTLS-SVR 35.049 ± 4.8879 58.0722 ± 7.9587 0.0010 ± 0.0002 1.0010 ± 0.0102 (70,2.65,1.26,~)

MTL-LS-SVR 30.323 ± 7.7932 47.9612 ± 14.535 0.0008 ± 0.0005 1.0238 ± 0.0101 (100,2.25,0.11,~)
EMTL-LS-SVR(L + P) 31.789 ± 4.8879 48.0880 ± 7.9587 0.0006 ± 0.0002 1.0305 ± 0.0102 (85,~,1.81,2)
EMTL-LS-SVR(L + R) 31.278 ± 3.6882 50.9115 ± 6.5526 0.0007 ± 0.0002 1.0134 ± 0.0060 (95,2.65,1.31,~)
EMTL-LS-SVR(P + R) 34.269 ± 6.7111 57.4735 ± 12.680 0.0008 ± 0.0005 1.0268 ± 0.0096 (100,1.85,0.86,2)

CNT

SVR 6.6680 ± 0.6043 13.3354 ± 2.0972 0.0007 ± 0.0002 1.0035 ± 0.0081 (65,3.05,~,~)
LS-SVR 9.6897 ± 0.8728 17.6334 ± 2.2048 0.0012 ± 0.0003 0.9974 ± 0.0139 (100,1.05,~,~)

MTPSVR 10.483 ± 1.5874 17.1729 ± 2.1407 0.0012 ± 0.0003 1.0006 ± 0.0088 (80,3.45,0.21,~)
MTLS-SVR 9.3258 ± 1.2721 15.4848 ± 1.8014 0.0010 ± 0.0003 0.9985 ± 0.0090 (70,2.65,1.26,~)

MTL-LS-SVR 8.8047 ± 1.5874 12.9715 ± 2.1407 0.0008 ± 0.0003 1.0121 ± 0.0088 (100,2.25,0.11,~)
EMTL-LS-SVR(L + P) 7.5338 ± 1.2721 12.0025 ± 1.8014 0.0005 ± 0.0003 1.0152 ± 0.0090 (85,~,1.81,2)
EMTL-LS-SVR(L + R) 7.6653 ± 0.7791 13.2993 ± 1.3632 0.0007 ± 0.0002 1.0170 ± 0.0095 (95,2.65,1.31,~)
EMTL-LS-SVR(P + R) 8.1940 ± 1.8366 12.9907 ± 2.5260 0.0008 ± 0.0003 1.0162 ± 0.0110 (100,1.85,0.86,2)

SZSMEPI

SVR 24.642 ± 1.6220 42.3225 ± 5.7639 0.0010 ± 0.0002 1.0015 ± 0.0058 (80,1.45,~,~)
LS-SVR 26.818 ± 1.7986 42.5460 ± 5.2053 0.0011 ± 0.0002 0.9979 ± 0.0068 (100,0.95,~,~)

MTPSVR 28.393 ± 4.8609 47.7573 ± 10.486 0.0013 ± 0.0006 0.9975 ± 0.0100 (80,3.45,0.21,~)
MTLS-SVR 25.043 ± 3.2029 42.4982 ± 7.4606 0.0011 ± 0.0003 1.0019 ± 0.0052 (70,2.65,1.26,~)

MTL-LS-SVR 19.548 ± 2.3609 30.7638 ± 10.486 0.0006 ± 0.0006 1.0170 ± 0.0100 (100,2.25,0.11,~)
EMTL-LS-SVR(L + P) 20.723 ± 3.2029 35.2842 ± 7.4606 0.0006 ± 0.0003 1.0105 ± 0.0052 (85,~,1.81,2)
EMTL-LS-SVR(L + R) 22.228 ± 1.6492 34.3454 ± 3.9592 0.0007 ± 0.0001 1.0146 ± 0.0062 (95,2.65,1.31,~)
EMTL-LS-SVR(P + R) 20.014 ± 4.2357 32.6555 ± 8.3170 0.0007 ± 0.0004 1.0157 ± 0.0071 (100,1.85,0.86,2)

Figure 4. Predictions of different regression models on opening index for SSEC (a) Original figure,
(b) Enlarged figure.
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Figure 5. Predictions of different regression models on opening index for SZI (a) Original figure,
(b) Enlarged figure.

Figure 6. Predictions of different regression models on opening index for CNT (a) Original figure,
(b) Enlarged figure.
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Figures 4–7 present the prediction results of the comparative algorithms on the four
stock index datasets. In Figures 4a, 5a, 6a and 7a, it can be seen that the eight methods
produced apparent differences in the prediction results near the 480th day, which should be
due to the mutual influences among stock indices. For clarity, the forecasting details of the
stock indices for 20 continuous trading days around the 480th day are shown in Figures 4b,
5b, 6b and 7b. It can be observed from Figures 4b, 5b, 6b and 7b that MTPSVR and LS-SVR
have larger deviations than MTL-LS-SVR. In addition, SVR and MTLS-SVR are comparable
in learning and superior to MTPSVR, but they are still inferior to the proposed models. In
Figures 4b, 5b and 6b, it can be observed that the four comparative regression models have
obvious prediction deviations. In particular, MTPSVR produces relatively large prediction
errors on many trading days.

The prediction results for stock indices shown in Figures 4–7 and Table 1 further
confirm the superior regression capability and robust performance of MTL-LS-SVR and
EMTL-LS-SVR.

4.4. Forecasting Opening Prices of Five Major Banks

Accurate forecasts of the stock market index can help us to analyze future changes
of the investment environment. Using the stock market index to guide real trading is
the most critical issue for many investors. The five state-owned banks are important
pillars of the Chinese banking industry, and their development is influenced by the coun-
try’s macroeconomic policies and the development of state-owned enterprises. Therefore,
multitask learning models can be used to predict the banks’ stock price trends. In this
experiment, we applied the proposed models to predict stock price trends of the five major
state-owned banks. The bank datasets included 1346 days of trading data of the Industrial
and Commercial Bank of China (ICBC), e Agricultural Bank of China (ABC), f Bank of China
(BOC), g China Construction Bank CCB), h and Bank of Communications (BCM) i from
1 January 2014 to 10 July 2019. The data included eleven attribute indicators: opening
price, highest price, lowest price, closing price, price changing margin, price changing
ratio, trading volume, trading amount, trading amplitude, trading turnover rate, and
previous day’s closing price. Therefore, five interrelated but different learning tasks were
trained simultaneously, and used to confirm the accuracy of our proposed models. In the
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experiment, the opening price of the day is the dependent variable, and the remaining ten
indicators of the previous day are independent variables. The stock (opening) prices on
1346 trading days are shown in Figure 8. It can be seen that the opening prices of the five
major banks almost always fluctuated in the same direction, confirming a strong internal
correlation among them.

Figure 8. Change of stock opening prices of five stated banks.

e http://quotes.money.163.com/trade/lsjysj_601398.html (accessed on 1 May 2021)
f http://quotes.money.163.com/trade/lsjysj_601288.html (accessed on 1 May 2021)
g http://quotes.money.163.com/trade/lsjysj_601988.html (accessed on 1 May 2021)
h http://quotes.money.163.com/trade/lsjysj_601939.html (accessed on 1 May 2021)
i http://quotes.money.163.com/trade/lsjysj_601328.html (accessed on 1 May 2021)

To evaluate the forecast results of the proposed models, eight algorithms were used to
perform 20 independent runs on the bank datasets. Table 2 shows the average prediction
results of 20 independent runs. Figures 9–13 show the predictive effects of different
regression methods for ICBC, ABC, BOC, CCB, and BCM, respectively. To more clearly
distinguish the forecast effect of different models on the bank datasets, only the prediction
results of the 300 continuous trading days from 28 June 2017, to 13 September 2018, are
shown in Figures 9a, 10a, 11a, 12a and 13a. To further estimate the performance of the
models, we selected some distinct forecast areas including 5% continuous trading days,
which are marked by the red dash-dot line in Figures 9a, 10a, 11a, 12a and 13a. The
comparison is shown in Figures 9b, 10b, 11b, 12b and 13b. In the experiment, the red dashed
line with four different hollow symbols shows the prediction results of the compared single-
task methods, and the blue solid line with four different solid patterns shows those of our
proposed multitask learning models.

The experimental results of the eight algorithms for the bank datasets are generalized
in Table 2. For the MAE criterion, it is clear that SVR has good results on the ABC and CCB
datasets. The results show that our EMTL-LS-SVR models not only have the smallest but
obtain the best results in terms of and criteria among the different regression models. It
can be seen from Table 2 that EMTL-LS-SVR(L + P) achieves a better learning effect on the
ABC and BOC datasets, whereas EMTL-LS-SVR(P + R) performs better on the other three
banks’ data.

Figures 9–13 show the forecasting results of the regression algorithms on the opening
prices of the five major state-owned banks. To better distinguish the predictive effects of
the different models on the bank datasets, Figures 9b, 10b, 11b, 12b and 13b present some
significantly different areas, which are drawn based on the natural exponential function
values corresponding to the source data. From Figures 9b, 10b and 11b, we can see that the
fitting degrees of MTL-LS-SVR and EMTL-LS-SVR are preferable on the ICBC, ABC, and
BOC stock datasets, whereas the prediction results obtained by LS-SVR, MTLS-SVR, and
MTPSVR apparently differ from the real data. In Figures 12b and 13b, the predictions of
MTL-LS-SVR and EMTL-LS-SVR appear to have a slight deviation, perhaps because there

http://quotes.money.163.com/trade/lsjysj_601398.html
http://quotes.money.163.com/trade/lsjysj_601288.html
http://quotes.money.163.com/trade/lsjysj_601988.html
http://quotes.money.163.com/trade/lsjysj_601939.html
http://quotes.money.163.com/trade/lsjysj_601328.html
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is only a weak internal cross-correlation between CCB and BCM and the other state-owned
banks. The fitting degree of SVR on CCB is better than that on the other state-owned
banks, but it produces a high error on the 997th day in Figure 11b. MTPSVR also produces
larger prediction deviations on the 998th day, as shown in Figure 10b. As shown in
Figures 9b and 12b, both LS-SVR and MTLS-SVR produce apparent prediction deviations
over many trading days. In Figure 13b, it can be seen that MTPSVR produces relatively
large prediction deviations over many trading days, and MTLS-SVR also produces an
unsatisfactory prediction result on the 997th day.

Table 2. Performance comparisons of eight algorithms on stock data of China’s five state banks.

Bank Stock
Price Algorithm MAE RMSE SSE/SST SSR/SST (C,σ,λ,d)

ICBC

SVR 0.0144 ± 0.0012 0.0245 ± 0.0049 0.0008 ± 0.0003 0.9980 ± 0.0050 (80,2.25,~,~)
LS-SVR 0.0196 ± 0.0015 0.0276 ± 0.0070 0.0010 ± 0.0005 0.9968 ± 0.0070 (70,0.65,~,~)

MTPSVR 0.0252 ± 0.0025 0.0263 ± 0.0060 0.0011 ± 0.0005 0.9939 ± 0.0124 (75,2.25,0.06,~)
MTLS-SVR 0.0263 ± 0.0032 0.0278 ± 0.0075 0.0010 ± 0.0008 0.9978 ± 0.0157 (75,3.05,1.81,~)

MTL-LS-SVR 0.0145 ± 0.0025 0.0220 ± 0.0060 0.0006 ± 0.0005 1.0109 ± 0.0124 (90,3.45,0.91,~)
EMTL-LS-SVR(L + P) 0.0164 ± 0.0032 0.0230 ± 0.0075 0.0007 ± 0.0008 1.0487 ± 0.0157 (100,~,1.61,2)
EMTL-LS-SVR(L + R) 0.0156 ± 0.0037 0.0232 ± 0.0092 0.0006 ± 0.0008 1.0088 ± 0.0115 (100,1.45,1.41,~)
EMTL-LS-SVR(P + R) 0.0143 ± 0.0012 0.0203 ± 0.0063 0.0005 ± 0.0005 1.0146 ± 0.0086 (85,1.45,0.46,2)

ABC

SVR 0.0098 ± 0.0009 0.0171 ± 0.0033 0.0013 ± 0.0005 0.9989 ± 0.0032 (50,3.45,~,~)
LS-SVR 0.0110 ± 0.0008 0.0184 ± 0.0027 0.0015 ± 0.0004 0.9964 ± 0.0046 (90,1.45,~,~)

MTPSVR 0.0137 ± 0.0021 0.0211 ± 0.0040 0.0019 ± 0.0007 1.0038 ± 0.0216 (75,2.25,0.06,~)
MTLS-SVR 0.0124 ± 0.0019 0.0216 ± 0.0062 0.0021 ± 0.0014 0.9975 ± 0.0101 (75,3.05,1.81,~)

MTL-LS-SVR 0.0100 ± 0.0021 0.0150 ± 0.0040 0.0010 ± 0.0007 1.0505 ± 0.0216 (90,3.45,0.91,~)
EMTL-LS-SVR(L + P) 0.0101 ± 0.0019 0.0147 ± 0.0028 0.0008 ± 0.0005 1.0141 ± 0.0101 (100,~,1.61,2)
EMTL-LS-SVR(L + R) 0.0105 ± 0.0015 0.0167 ± 0.0034 0.0011 ± 0.0006 1.0130 ± 0.0117 (100,1.45,1.41,~)
EMTL-LS-SVR(P + R) 0.0096 ± 0.0009 0.0149 ± 0.0033 0.0009 ± 0.0006 1.0253 ± 0.0111 (85,1.45,0.46,2)

BOC

SVR 0.0120 ± 0.0013 0.0250 ± 0.0055 0.0019 ± 0.0008 0.9998 ± 0.0084 (70,3.85,~,~)
LS-SVR 0.0134 ± 0.0015 0.0262 ± 0.0056 0.0021 ± 0.0009 0.9973 ± 0.0069 (95,2.25,~,~)

MTPSVR 0.0164 ± 0.0030 0.0278 ± 0.0061 0.0024 ± 0.0010 0.9991 ± 0.0210 (75,2.25,0.06,~)
MTLS-SVR 0.0153 ± 0.0019 0.0272 ± 0.0060 0.0025 ± 0.0011 0.9971 ± 0.0122 (75,3.05,1.81,~)

MTL-LS-SVR 0.0128 ± 0.0030 0.0189 ± 0.0061 0.0011 ± 0.0010 1.0424 ± 0.0210 (90,3.45,0.91,~)
EMTL-LS-SVR(L + P) 0.0113 ± 0.0019 0.0177 ± 0.0060 0.0009 ± 0.0011 1.0209 ± 0.0122 (100,~,1.61,2)
EMTL-LS-SVR(L + R) 0.0118 ± 0.0021 0.0190 ± 0.0070 0.0010 ± 0.0012 1.0159 ± 0.0176 (100,1.45,1.41,~)
EMTL-LS-SVR(P + R) 0.0118 ± 0.0015 0.0182 ± 0.0062 0.0010 ± 0.0011 1.0433 ± 0.0162 (85,1.45,0.46,2)

CCB

SVR 0.0203 ± 0.0018 0.0376 ± 0.0055 0.0010 ± 0.0003 0.9979 ± 0.0042 (50,3.85,~,~)
LS-SVR 0.0264 ± 0.0014 0.0510 ± 0.0048 0.0016 ± 0.0003 0.9946 ± 0.0048 (85,0.65,~,~)

MTPSVR 0.0238 ± 0.0056 0.0432 ± 0.0070 0.0013 ± 0.0004 0.9956 ± 0.0246 (75,2.25,0.06,~)
MTLS-SVR 0.0245 ± 0.0073 0.0509 ± 0.0142 0.0015 ± 0.0011 0.9961 ± 0.0133 (75,3.05,1.81,~)

MTL-LS-SVR 0.0208 ± 0.0056 0.0327 ± 0.0070 0.0007 ± 0.0004 1.0558 ± 0.0246 (90,3.45,0.91,~)
EMTL-LS-SVR(L + P) 0.0224 ± 0.0073 0.0330 ± 0.0142 0.0007 ± 0.0011 1.0134 ± 0.0133 (100,~,1.61,2)
EMTL-LS-SVR(L + R) 0.0225 ± 0.0031 0.0374 ± 0.0055 0.0009 ± 0.0003 1.0098 ± 0.0121 (100,1.45,1.41,~)
EMTL-LS-SVR(P + R) 0.0208 ± 0.0024 0.0316 ± 0.0046 0.0006 ± 0.0005 1.0118 ± 0.0097 (85,1.45,0.46,2)

BCM

SVR 0.0204 ± 0.0021 0.0430 ± 0.0069 0.0021 ± 0.0006 0.9970 ± 0.0162 (80,2.85,~,~)
LS-SVR 0.0245 ± 0.0025 0.0483 ± 0.0067 0.0027 ± 0.0007 0.9924 ± 0.0154 (75,1.85,~,~)

MTPSVR 0.0278 ± 0.0028 0.0565 ± 0.0082 0.0031 ± 0.0008 0.9916 ± 0.0205 (75,2.25,0.06,~)
MTLS-SVR 0.0259 ± 0.0039 0.0418 ± 0.0121 0.0025 ± 0.0013 0.9996 ± 0.0163 (75,3.05,1.81,~)

MTL-LS-SVR 0.0203 ± 0.0028 0.0333 ± 0.0082 0.0011 ± 0.0008 1.0370 ± 0.0205 (90,3.45,0.91,~)
EMTL-LS-SVR(L + P) 0.0220 ± 0.0039 0.0352 ± 0.0121 0.0014 ± 0.0013 1.0404 ± 0.0163 (100,~,1.61,2)
EMTL-LS-SVR(L + R) 0.0195 ± 0.0053 0.0308 ± 0.0103 0.0013 ± 0.0010 1.0270 ± 0.0187 (100,1.45,1.41,~)
EMTL-LS-SVR(P + R) 0.0191 ± 0.0022 0.0278 ± 0.0089 0.0012 ± 0.0008 1.0242 ± 0.0138 (85,1.45,0.46,2)
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Figure 9. Predictions of different regression models on stock opening price for ICBC (a) Original
figure, (b) Enlarged figure.
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Figure 11. Predictions of different regression models on stock opening price for BOC (a) Original
figure, (b) Enlarged figure.

Figure 12. Predictions of different regression models on stock opening price for CCB (a) Original
figure, (b) Enlarged figure.
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Figure 13. Predictions of different regression models on stock opening price for BCM (a) Original
figure, (b) Enlarged figure.

The experimental results in Table 2 and Figures 9–13 generally show that EMTL-LS-
SVR and MTL-LS-SVR have better learning ability and more robust performance than
the other models. The prediction results of different regression models for stock market
indices and bank stock prices further verify their advantages. In summary, our proposed
multitask learning models cannot only infer stock market crash signals but can accurately
forecast stock price fluctuations. These results indicate that multitask learning models can
capture the internal relationships among subtasks, and have more robust performance
than single-task regression algorithms. In other words, multitask learning methods can
use more information than single-task learning methods. Therefore, MTL-LS-SVR and
EMTL-LS-SVR can achieve better learning effects.

5. Discussion

In the experiments section, the proposed multitask learning models are applied to
perform forecasts of the Chinese stock market index trend and the stock prices of five stated-
owned banks. In order to further discuss the performance differences between algorithms,
the Friedman test with its corresponding Bonferroni-Dunn test [31] are employed for the
experiments. For simplicity, we only analyze the prediction results of different algorithms
on the two experimental datasets based on MAE and RMSE. Table 3 lists average ranks for
all algorithms on two experimental datasets.



Axioms 2022, 11, 292 18 of 22

Table 3. Average ranks of all algorithms in the Friedman test on the two experimental datasets.

Algorithm Metric SSEC SZI CNT SZSMEPI ICBC ABC BOC CCB BCM p-Value

SVR
MAE 5 5 1 5 2 2 4 1 4 3.222
RMSE 5 6 5 5 5 5 5 5 6 5.222

LS-SVR
MAE 7 7 7 7 6 6 6 8 6 6.667
RMSE 7 7 8 7 7 6 6 8 7 7

MTPSVR
MAE 8 8 8 8 7 8 8 6 8 7.667
RMSE 8 8 7 8 6 7 8 6 8 7.333

MTLS-SVR
MAE 6 6 6 6 8 7 7 7 7 6.667
RMSE 6 5 6 6 8 8 7 7 5 6.444

MTL-LS-SVR
MAE 4 3 2 3 5 4 1 4 5 3.444
RMSE 3 2 1 4 3 1 1 3 4 2.444

EMTL-LS-SVR(L + P) MAE 3 2 3 4 4 5 3 5 2 3.444
RMSE 4 3 4 3 4 4 4 4 2 3.556

EMTL-LS-SVR(L + R) MAE 2 4 4 2 1 1 2 2 1 2.111
RMSE 2 4 3 2 1 2 2 1 1 2

EMTL-LS-SVR(P + R) MAE 1 1 5 1 3 3 5 3 3 2.778
RMSE 1 1 2 1 2 3 3 2 3 2

The Friedman test results are computed based on the two static parameters χ2
F and FF.

Based on the null hypothesis that all the algorithms are equivalent, the Friedman statistic
can be computed by the following equations:

χ2
F =

12N
K(K + 1)

[
K

∑
i=1

R2
i −

K(K + 1)2

4

]
, (21)

FF =
(N − 1)χ2

F
N(K− 1)− χ2

F
. (22)

where N denotes the number of experiment datasets and K denotes the number of the

comparative algorithms. Ri =
1
N

N
∑

j=1
ri

j is the average rank of the i− th algorithm on the

N experiment datasets used, and ri
j represents the ranking of the prediction results of the

i− th algorithm on the j− th experiment dataset among the K algorithms.FF is distributed
according to the F-distribution with (k− 1) and (k− 1)(N − 1) degrees of freedom.

For this experiment, there are k = 8 and N = 9. Based on the Equations (21) and
(22), we can obtain χ2

F
∼= 47.937 and FF ∼= 25.459 for MAE criteria, and χ2

F
∼= 47.937 and

FF ∼= 25.459 for RMSE criteria, where FF is distributed according to the F-distribution with
(k− 1)(N − 1) = 56 degrees of freedom. The critical value of F(7, 56) for significance level
α = 0.05 is 2.178, which means the critical value is 2.178 based on a 95% confidence interval.
For MAE and RMSE criteria, we find that the values of FF are much larger than the critical
value, and thus the null hypothesis can be rejected and the eight algorithms have significant
differences. Further, it can be seen from Table 3 that the proposed multitask learning models
rank smaller than the other comparative algorithms and the EMTL-PSVM(L + R) obtain the
smallest average rank for the MAE and RMSE criteria.

For further pairwise comparison, the Bonferroni-Dunn test is used [31]. The perfor-
mance of two models are significantly different if their average ranks differ by more than

the critical difference CD = qα

√
K(K+1)

6N . For this experiment, we find that qα = 2.829
for α = 0.1 and K = 8, then we can obtain that CD = 2.829. This means there is a 90%
confidence level when the rank difference of two models is bigger than CD. Based on
Table 3, we can compute the average rank deviations between the other methods and the
EMTL-LS-SVR(L + R) for MAE as follows:

d(SVR− EMTL− LS− SVR(L + R)) = 3.222− 2.111 = 1.111 < 2.829,
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d(SVR− EMTL− LS− SVR(L + R)) = 3.222− 2.111 = 1.111 < 2.829,

d(LS− SVR− EMTL− LS− SVR(L + R)) = 6.667− 2.111 = 4.556 > 2.829,

d(MTPSVR− EMTL− LS− SVR(L + R)) = 7.667− 2.111 = 5.556 > 2.829,

d(MTLS− SVR− EMTL− LS− SVR(L + R)) = 6.667− 2.111 = 4.556 > 2.829,

d(MTL− LS− SVR− EMTL− LS− SVR(L + R)) = 3.444− 2.111 = 1.333 < 2.829,

d(EMTL− LS− SVR(L + P)− EMTL− LS− SVR(L + R)) = 3.444− 2.111 = 1.333 < 2.829,

d(EMTL− LS− SVR(P + R)− EMTL− LS− SVR(L + R)) = 2.778− 2.111 = 0.667 < 2.829,

where d(a− b) denotes the average rank deviations between the algorithm a and b. Simi-
larly, the average rank differences between the other methods and the EMTL-LS-SVR(L + R)
for RMSE can be expressed as follows:

d(SVR− EMTL− LS− SVR(L + R)) = 5.222− 2 = 3.222 > 2.829,

d(LS− SVR− EMTL− LS− SVR(L + R)) = 7− 2 = 5 > 2.829,

d(MTPSVR− EMTL− LS− SVR(L + R)) = 7.333− 2 = 5.333 > 2.829,

d(MTLS− SVR− EMTL− LS− SVR(L + R)) = 6.444− 2 = 4.444 > 2.829,

d(MTL− LS− SVR− EMTL− LS− SVR(L + R)) = 2.444− 2 = 0.444 < 2.829,

d(EMTL− LS− SVR(L + P)− EMTL− LS− SVR(L + R)) = 3.556− 2 = 1.556 < 2.829,

d(EMTL− LS− SVR(P + R)− EMTL− LS− SVR(L + R)) = 2− 2 = 0 < 2.829.

In addition, Table 4 shows all of the comparison results between EMTL-LS-SVR(L + R)
and the other comparative algorithms on the average rank deviations. The “Tag” represents
the relation between d(a− b) and the CD value. “Tag” is 1 when d(a− b) is larger than
CD; otherwise, “Tag” is 0. From Table 4 can we know that, in terms of MAE criteria, the
average rank difference between LS-SVR, MTPSVR, MTLS-SVR, and EMTL-LS-SVR(L + R)
are larger than the critical value, which illustrates the performance of EMTL-LS-SVR(L + R)
is significantly better than that of LS-SVR, MTPSVR, and MTLS-SVR. However, there
are only slightly deviations between EMTL-LS-SVR(L + R) and SVR. For RMSE criteria,
the performance of EMTL-PSVR(L + R) is superior to that of two single-task learning
methods, MTPSVR and MTLS-SVR. Additionally, whether it is MAE or RMSE, there are
slightly deviations between EMTL-LS-SVR(L + R) and other three forms, MTL-LS-SVR,
EMTL-LS-SVR(L + P) and EMTL-LS-SVR(P + R).
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Table 4. Comparison results between EMTL-LS-SVR(L + R) and other algorithms on average rank
deviations.

Title 1 MAE Tag RMSE Tag

SVR 1.111 0 3.222 1 *

LS-SVR 4.556 1 ** 5 1 ***

MTPSVR 5.556 1 *** 5.333 1 ***

MTLS-SVR 4.556 1 ** 4.444 1 **

MTL-LS-SVR 1.333 0 0.444 0
EMTL-LS-SVR(L + P) 1.333 0 1.556 0
EMTL-LS-SVR(P + R) 0.667 0 0 0

Remark: In Table 4, set d to represent the absolute value of the difference between average rank deviation and the
CD value. * denotes d is between [0, 1], ** denotes d is between [1, 2], *** denotes d is between [2, 3], **** denotes
d is between [3, 4].

In summary, the advantages of MTL-LS-SVR and its extension EMTL-LS-SVR are
all evaluated whether from a experimental analysis view or from a statistical testing
perspective. The superiority of MTL-LS-SVR and EMTL-LS-SVR models are benefited from
they can effectively capture the correlation among multiple learning tasks to improve the
prediction performance of the model. Meanwhile, selecting appropriate kernel functions
for shared information and private information can more effectively deal with different
information, which makes our proposed model have strong robust performance. For
the fair, the traditional algorithms can achieve a better learning effect on the small-scale
problems, while deep learning models have better advantages in dealing with large-scale
data mining problems [32]. Therefore, how to effectively integrate multitask learning and
deep learning to solve the real-world scenarios is also an attractive issue.

6. Conclusions

In this paper, we proposed an assumption that multiple related tasks share a common
model and have their own independent models. Based on this assumption, we developed
the MTL-LS-SVR model and an extension, EMTL-LS-SVR. MTL-LS-SVR makes good use of
the advantages of least squares support vector regression and multitask learning. Meantime,
the regularized parameter λ is introduced in MTL-LS-SVR and EMTL-LS-SVR to balance
the shared information and private information among learning tasks. When learning tasks
are related, superior performance can be achieved by adjusting λ and selecting appropriate
kernel functions. Additionally, a Krylov-Cholesky algorithm is presented to optimize the
solution procedures of the proposed models, which reduces the time to solve large-scale
multitask learning problems. We tested the proposed models on the two stock datasets
and compared the experimental results of different algorithms, which show that the EMTL-
LS-SVR model can achieve a superior prediction effect and robust performance with the
single-task learning method.

For the limitations of the MTL-LS-SVR algorithm, the correlations among learning
tasks must be evaluated in advance when use it to make prediction and analysis on relevant
real scenarios; otherwise, the learning effect may be weaker because of the potential
negative transfer effect. Considering the advantages of neural networks, determining how
to effectively apply the deep learning technique to solve multitask learning problems will
be important future work for us.
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