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Abstract: Much attention is focused on the relationship between rough sets and many-valued modal
logic to deal with approximate reasoning. This paper discusses the graded modal logic and puts
forward the graded many-valued modal logic G(S5). Secondly, by employing the graded operators
that correspond to graded modal operations in G(S5), we introduce the concept of graded upper
and lower rough truth degrees of a logical formula. Then, we propose the graded upper and lower
conditional rough truth degrees. Several basic interesting properties are addressed. Finally, in order to
make a distinction between any two rough formulas in graded many-valued modal logic, the graded
upper and lower rough similarity degrees between two graded modal formulas are established in a
very natural way.
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1. Introduction

In classical logic, every proposition takes one of the two values of truth or false. Each
proposition is either true or false. Many-valued logic is a non-classical logical system. The
values of a proposition cannot be binary. Many-valued logic is different classical logic
by the fundamental fact that they allow for a larger set of truth degrees. The theory that
deals with the logical relations between such propositions is called many-valued logic. It
has been used in computer science and artificial intelligence [1]. Modal logic is widely
studied and a more mature non-classical logic. It provides a good balance between logical
reasoning and computational complexity [2]. Necessity and possibility provide a rich
context for modeling and studying concepts from many fields, including proof theory,
time and cognitive concepts, workflow in software applications, and more. On the other
hand, substructure logic (give up structure rules), especially produced by bounded and
integral exchange surplus logic (thus usually keeping concept lattices and the existence
of absolutely true and false) provides a formal framework, in the form of a kind of very
universal and adaptable way to manage fuzzy sensitive information and resources.

Many-valued modal logic appears in the literature both to pursue the development
of pure theories and to provide a richer framework for modeling complex environments
that may require valued information and qualification operators. Although the earliest
publications on this subject date back to the 1990s [3,4] (focusing on problems on finite
Heyting algebras), it is only in recent years that more systematic work has developed.
Nonetheless, the research may still be too narrow in a sense. The basic idea is to preserve
the general notion of possible world semantics, while allowing formulas to have values
in the many-valued space of each possible world. A brief study of modal system S5
over BL algebra is given in [1], but it is only in more recent work that modal system
over arbitrary Kripke frames (also known in the literature as minimum modal logic)
is studied [5]. Several works since have studied different aspects of this logic. Most
relevant for the present paper are the works related to axiomatizability and proof theoretic
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questions, addressing the minimal modal system over finite MTL algebras [6]. Concerning
computability, Caicedo et al. [7] proposed new semantics and used them to establish the
decidability for Gödel modal logic. They also established the decidability of the extension
of S5 by using the similar methodology.

Rough set theory, proposed by Pawlak in 1982 [8], is a mathematical tool for dealing
with incompleteness and uncertainty (uncertain factors and incomplete information), which
can effectively analyze various incomplete information, such as that which is imprecise,
inconsistent, and incomplete. It can also analyze and reason about data, discover hidden
knowledge and reveal underlying laws. There has been wide interest in the application
of rough sets, such as data mining, data analysis, knowledge discovery, approximate
reasoning, decision making, machine learning, and other related fields [9–13]. Based on
Pawlakian rough set theory, there have been many extended forms of it so far. Its general
extended form is the variable precision rough set, the probabilistic rough set, the decision–
theoretic rough set, the generalized rough set, the tolerance rough set, the dominance rough
set, the fuzzy rough set and the rough fuzzy set [14–18], etc. In some cases, only a portion
of the logical research related to various rough set models is indicated in the literature from
an algebraic point of view [13,19,20]. Pawlakian rough set theory is apparently related
to the modal system S5. Pawlakian approximation space (X, R) of the rough set is just a
Kripke frame for the modal logic S5, where R is an equivalence relation on a set X [21].
The lower and upper approximations can be seen as operations that interpret the necessity
and possibility, respectively. Later, based on rough set theory, various study of logic system
were proposed continuously. There are two main methods in these directions: one formula
is interpreted as a set in an approximate space, and the other is interpreted as a rough
set with respect to the approximate space. Nonetheless, the structure of both methods
remains a Pawlakian rough set. Pawlak discussed the relationship between rough set
theory and modal logic . The results showed that Pawlakian rough set is directly related to
the modal logic system S5 [22]. Along with the introduction of various other upper and
lower approximation operators, other modal systems have also emerged. Furthermore,
the possibility of new modal systems also arises. In 2016, Ma and Chakraborty [23] pointed
out that the P4 logic is exactly the modal system S5. The modal systems for the remaining
logic are so far unknown. For the modal systems P2, P3, C1, C3 and CGr, one feature they
have in common is that the modal property K does not hold.

Later, many literary works have been devoted to the probabilistic rough set model,
variable precision rough set model, graded rough set model, rough logic, and rough
algebra in [10,14,16,24,25], which were extended from rough sets. There has been extensive
discussion on the logical foundation of rough sets and their relationships to non-standard
logic. For example, Yao and Lin explored the relationship between rough set and modal
logic and discussed the graded modal system and graded rough set model [26]. Orłowska
proposed logic for reasoning about concepts using the notion of rough sets, which is
essentially the modal system S5 with the modal operators interpreted using the lower and
upper approximations [9,27]. A similar approach was also adopted by Chakraborty and
Banerjee [19]. The modal semantics of these logic systems have been investigated in many
works in the literature. In [28], the rough logic was defined, the language of which was
taken to be propositional. Modal many-valued logic and fuzzy modal logic were introduced
in [29,30]. Among these research, a formal logic system called the pre-rough logic was
proposed with respect to the pre-rough algebra in [20]. In addition, the algorithm is sound
and complete in rough set semantics and was proved in the same paper. Naturally, the study
of the pre-rough logic has become an important aspect of approximate reasoning [31,32].

The established connections between rough set and modal logic have very important
implications. Based on such relationships, one can enrich each theory by the results from
the other theory. What has been lacking so far is the study on graded many-valued modal
logic. However, some fundamental studies have been published in this direction [3,4],
where some new speculations are put forward, and some new questions are also raised.
In a sense, the current study helps to move in this direction. Modal logic and algebraic
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semantics are always closely related. In the application of computer or artificial intelligence,
most of the time, we deal with vague or uncertain information. The processing method
mainly applies the uncertainty reasoning method based on modal many-valued logic.
In classical many-valued modal logic, the modal necessity operator � has only one level
of operation, while the possibility operator ♦ also has only one level of operation. In the
process of uncertain reasoning, these are not enough and cannot be refined. In order to
solve this problem, this paper introduces the hierarchical modal operators and proposes
the hierarchical roughness truth by extending the hierarchical modal logic, which will help
us better understand the hierarchical modal logic.

The remainder of this paper is organized as follows. In Section 2, we introduce
most of the notions that we will be using throughout the paper and some preliminary
definitions, including rough sets, modal logics, a pre-rough algebra, and a pre-rough logic.
In Section 3, we discuss the graded many-valued modal logic system. In Section 4, we
further introduce the algebraic structure corresponding to the graded many-valued modal
system G(S5). In Section 5, we give the graded operators in the algebraic structure of the
graded many-valued modal logic and investigate the properties of graded operators and
graded rough truth degrees. We obtain some results from them. In Section 6, we propose
the graded conditional rough truth degree of a rough formula in G(S5). Some properties of
the graded conditional rough truth are investigated. In Section 7, we propose the graded
rough similarity between any two rough formulas in G(S5).

2. Rough Sets and Modal System S5

In this section, we briefly review several basic concepts that will be used in the
following sections.

As it is well known, rough set theory is based on the notion of an approximation space,
which is a pair (X, R), X being a non-empty set and R an equivalence relation on it [8,12].
If A ⊆ X, the lower and upper approximations of (X, R) are defined as follows:

R(A) = {x ∈ X|[x]R ⊆ A}, R(A) = {x ∈ X|[x]R ∩ A 6= ∅} (1)

where [x] denotes the equivalence class containing the element x. The triple (X, R, A) is
called a rough set. Note that X is a definable set if and only if R(A) = R(A), and therefore,
we also treat classical sets as special cases of rough sets.

We study modal logic in the context of a language of necessity and possibility as
usual [2]. The language is founded on a countable set of atomic proposition p1, p2, p3, . . ..
These are the simplest sentences. These formulas are formed using logical connectives
¬A, A ∧ B, A ∨ B, A→ B, A↔ B,�A,♦A.

Let us consider the following schemas K, D, T, B, 4 and 5 in modal system and rough
set in Table 1, respectively.

Table 1. Schemas K, D, T, B, 4 and 5 in modal system and rough set, respectively.

Modal Logic Rough Set

(K) �(A→ B)→ (�A→ �B) R(Ac ∪ B) ⊆ (R(A))c ∪ R(B)
(D) �A→ ♦A R(A) ⊆ R(A)
(T) �A→ A R(A) ⊆ A
(B) A→ �♦A A ⊆ R(R(A))
(4) �A→ ��A R(A) ⊆ R(R(A))
(5) ♦A→ �♦A R(A) ⊆ R(R(A))

Where Xc denotes the complement of the set X. The usual axioms of modal system S5 are only with (K), (T), (5)
or (K), (T), (4), (B). The established link in rough set shows that Pawlakian rough set model is a counterpart of
modal system S5.

Banerjee and Chakraborty investigated the algebraic structure of rough sets in or-
der to arrive at rough logic theory. They proposed the pre-rough algebra and the pre-
rough logic [13,20].
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Definition 1 (See [20]). An algebraic structure A = (P,6,u,t, L, 0, 1) is a pre-rough algebra,
if and only if the following conditions hold for any a, b ∈ P:

(1) (P,6,u,t, 0, 1) is a bounded distributive lattice.
(2) ¬¬a = a.
(3) ¬(a t b) = ¬a u ¬b.
(4) L0 = 0, L1 = 1.
(5) La 6 a.
(6) L(a u b) = La u Lb.
(7) La 6 Ma.
(8) La 6 Lb and Ma 6 Mb imply a 6 b.
(9) a→ b = (¬La t Lb) u (¬Ma tMb).

here ∀a ∈ P, Ma = ¬L¬a.

The language of pre-rough logic [13,20] is constructed on the set of atomic formulas
S = {p1, p2, . . . , pm, · · · } and primitive logical connectives ¬,→ and L. The set of all
formulas in the pre-rough logic, denoted by F(S), is a free algebra of type (¬,∧, L) that is
generated by the set S. In the pre-rough logic, three additional connectives ∨, M and→ are
defined as follows: for any A, B ∈ F(S)

A ∨ B = ¬(¬A ∧ ¬B), A→ B = (¬LA ∨ LB) ∧ (¬MA ∨MB), MA = ¬L¬A. (2)

Definition 2 (See [13]). A valuation υ in a pre-rough logic is a map from the set of rough formulas
F(S) to any pre-rough algebra (P,6,u,t,¬, L, 0, 1) satisfying ∀A, B ∈ F(S),

υ(A ∧ B) = υ(A) u υ(B), υ(�A) = L(υ(A)), υ(¬A) = ¬υ(A), (3)

where L is the valuation of necessity operator � and M is the valuation of possibility operator ♦,
respectively, i.e.,

La = 1 if a = 1, Mb = 0 iff b = 0.

Example 1 (See [13]). Consider algebraic structure 3 =
(
{0, 1

2 , 1},6,∧,∨,¬, 0, 1
)
, where ∧ and

∨ are the minimum and maximum, respectively. Give the operations of ¬, L and M in {0, 1
2 , 1}, as

shown in Table 2.

Table 2. The operations of ¬, L and M in {0, 1
2 , 1}.

0 1
2 1

¬ 1 1
2 0

L 0 0 1
M 0 1 1

Then, we have that algebra 3 is a pre-rough algebra and is also the smallest non-trivial
pre-rough algebra.

Meanwhile, axiom schemes and rules of inference are provided. The soundness and
completeness are proved in the pre-rough logic in [20].

3. Graded Many-Valued Modal System G(S5)

Some efforts have been attempted in both rough and modal logic. In this section, a graded
many-valued modal system G(S5), which extends the classical modal system S5 [26,33,34] and
whose language with modal operators �i, is interpreted by employing graded operators
ϕi.

Definition 3 (See [26]). The language of the graded modal system G(S5) consists of the following:

(1) The set of atomic formulas S = {p1, p2, . . .};
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(2) The propositional connectives ¬ and ∧;
(3) The graded modal operators �i;
(4) A finite set of parentheses.

The set of all modal system formulas is denoted by F(S), which is a free algebra of type
(¬,∧,�i) that is generated by the set S.

The remaining logical connections, ∨,→,↔ and ♦i, can be constructed as the following:

(1) A ∨ B = ¬(¬A ∧ ¬B)
(2) A→ B = ¬A ∨ B
(3) A↔ B = (A→ B) ∧ (B→ A)
(4) ♦i A = ¬�i¬A

(5) ♦!i A =

{
¬♦0 A, if i = 0
♦i−1 A ∧ ¬♦i A, if i > 0

Obviously, graded modal operators �i and ♦i are dual operators under the negation
operator ¬ :

�i A = ¬♦i¬A, ♦i A = ¬�i¬A. (4)

If i = 0, then they reduce to normal operators � and ♦, namely,

�0 A = �A, ♦0 A = ♦A.

The axioms of G(S5) are all the instances of the following schemata [26,33,35]:
For any A, B ∈ F(S), and i, i1, i2 ∈ I = {0, 1, 2, . . . , n, . . .},

(Ax.1) A→ ♦i A
(Ax.2) ♦i+1 A→ ♦i A
(Ax.3) ♦i A→ �i♦i A
(Ax.4) �0(A→ B)→

(
�i A→ �iB

)
(Ax.5) �0¬(A ∧ B)→

(
(♦!i1 A ∧♦!i2 B)→ ♦!i1+i2(A ∨ B)

)
The inference rules of G(S5) are as follows:

(MP)
A
A→ B
B

(RN)
A
�0 A

(HS)
A→ B
B→ C
A→ C

(N)
A→ B
¬B→ ¬A

(5)

We write ` A if A is a theorem of G(S5), and write Σ � A if A is a syntactic
consequence of Σ.

Theorem 1. In G(S5), for any A, B ∈ F(S), i ∈ N+,

(1) ` ♦i A↔ ¬�i¬A
(2) ` ♦i¬A↔ ¬�i A
(3) ` ¬♦i A↔ �i¬A

Proof. It is easily verified because �i and ♦i are the dual operators.

Theorem 2. In G(S5), for any A, B ∈ F(S), i ∈ N+,

(1) If ` A→ B, then ` �i A→ �iB and ` ♦i A→ ♦iB.
(2) If ` A↔ B, then ` �i A↔ �iB and ` ♦i A↔ ♦iB.

Proof. (1) On the one hand, due to ` A→ B and the inference RN, it is enough to prove
` �0(A→ B). According to Ax.4, it follows that ` �i A→ �iB. On the another hand, since
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` A→ B, it is easy to show that ` ¬B→ ¬A. Simplifying the result gives ` �i¬B→ �i¬A.
Thus, it turns out that ` ♦i A→ ♦iB.

(2) Thank to the definition of connectives ↔ and the above conclusion , it is now
obvious that the results hold.

Remark 1. Theorem 2 shows some derived rules of inference for G(S5),

(DR1)
A→ B

�i A→ �iB
(DR2)

A→ B
♦i A→ ♦iB

(DR3)
A↔ B

�i A↔ �iB
(DR4)

A↔ B
♦i A↔ ♦iB

(6)

Theorem 3. In G(S5), for any A, B ∈ F(S), i ∈ N+

(1) If i 6 j then ` ♦j A→ ♦i A;
(2) If i 6 j then ` �i A→ �j A.

Proof. (1) When i = j, the proof is trivial. When i < j, by Ax. 2, we have ` ♦j A →
♦j−1 A, ` ♦j−1 A→ ♦j−2 A, . . . ,` ♦i+1 A→ ♦i A. Hence, ` ♦j A→ ♦i A.

(2) By substituting the rule (N) and�i A = ¬♦i¬A into the first case of this theorem, the proof
is easily verified.

4. Algebraic Structure of G(S5)

In order to investigate, quite a few algebraic properties of logical calculi over valuation
domain follow L2n+1, whereas L2n+1 = {0, 1

2n , . . . , 2n−1
2n , 1}. We introduce unary operators

ϕi over L2n+1, where n ∈ N+.
Negative operations come in many forms [1]. In the remainder of this paper, we adopt

the standard negation, i.e.,
¬a = 1− a, for ∀a ∈ [0, 1].

Definition 4. For any k
2n ∈ L2n+1, the operators ϕi are defined as follows:

ϕi

(
k

2n

)
=

{
0, i + k < 2n + 1,
1, i + k > 2n + 1.

(7)

These operators ϕi are called the graded operators on L2n+1. These reflect the ordered
structure of logical values over L2n+1 .

Example 2. When n = 2 and L5 = {0, 1
4 , 1

2 , 3
4 , 1}, Table 3 shows the nagation operator ¬ and the

graded operators ϕ1, ϕ2 on L5.

Table 3. Negation operator ¬ and graded operators ϕ1, ϕ2 on L5.

0 1
4

1
2

3
4 1

¬ 1 3
4

1
2

1
4 0

ϕ1 0 0 0 0 1
ϕ2 0 0 0 1 1

Theorem 4. The algebraic structure L =
(

L2n+1,∧,∨,¬, {ϕi}, 0, 1
)

satisfies the following:

(1) (L2n+1,6,∧,∨, 0, 1) is a bounded distributive lattice and ¬ is a dual involutive homomor-
phism of L2n+1 into itself (i.e., ¬(a ∨ b) = ¬a ∧ ¬b,¬(a ∧ b) = ¬a ∨ ¬b and ¬¬a = a).

(2) ϕi(a) ∧ ¬ϕi(a) = 0; ϕi(a) ∨ ¬ϕi(a) = 1.
(3) ϕi(ϕj(a)) = ϕj(a) .
(4) If i 6 j then ϕi(a) 6 ϕj(a).
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(5) ϕi(¬a) = ¬ϕ2n+1−i (a).
(6) If ϕi(a) = ϕi(b) then a = b.

where a ∧ b = min{a, b}, a ∨ b = max{a, b}, ¬a = 1− a, a, b ∈ L2n+1 and i, j ∈ {1, 2, . . . , n}.

Proof. Clearly, (1)–(3) hold, obviously.
The proof of (4) holds by direct checking. If i + k > 2n + 1 for each k

2n ∈ Ln and i 6 j.
Hence, ϕi(x) = 1 implies ϕj(x) = 1, and thus ϕi(a) 6 ϕj(a).

Now, only (5) needs to be verified. Let x = k
2n . We have that

ϕi(¬x) = ϕi

(
1− k

2n

)
= ϕi

(
2n− k

2n

)
.

Hence, ϕi(¬x) = 0 in case i− k < 1, and ϕi(¬x) = 1 in case i− k > 1.
On the other hand, ¬ϕi(

k
2n ) = 0 if and only if ϕ2n+1−i(

k
2n ) = 1, i.e., if and only if

i− k < 1. The above two states are equivalent. Hence, (5) holds.
Finally, to prove (6), let x = i

2n < y = k
2n , which implies ϕ2n−i(

i
2n ) = 0 while

ϕ2n−i(
k

2n ) = 1. The proof is thus concluded.

Definition 5. For any a ∈ L2n+1, the operators ψi are defined as follows:

ψi(a) = ¬ϕi(¬a). (8)

Those operators ψi are called dual graded operators of ϕi on L2n+1.

Corollary 4.1. For any a, b ∈ L2n+1 and i, j ∈ {1, 2, . . . , n} we can obtain the following properties:

(1) If a 6 b then ϕi(a) 6 ϕi(b).
(2) If i 6 j then ϕi(a) 6 ϕj(a).
(3) ϕi(a ∧ b) = ϕi(a) ∧ ϕi(b).
(4) ϕi(a ∨ b) = ϕi(a) ∨ ϕi(b).
(5) ϕi(a) = ¬ϕ2n+1−i (¬a).

Proof. The proof can be shown similarly as that of Theorem 4.

Following the study of Banerjee and Chakraborty, the algebra of rough sets was
investigated [20] in order to arrive at a logic for the rough logic theory. An algebraic
structure, called graded modal logic algebra, is proposed.

Definition 6. The algebraic structure (L2n+1,∧,∨,¬, {ϕi}i∈I , 0, 1) is called a graded modal
algebra(GM-algebra), if and only if for any a, b ∈ L2n+1:

(1) (L2n+1,6,∧,∨, 0, 1) is a bounded distributive lattice;
(2) ¬¬a = a;
(3) ¬(a ∨ b) = ¬a ∧ ¬b;
(4) ϕi(0) = 0, ϕi(1) = 1;
(5) a 6 ψi(a);
(6) ϕi(a) 6 ψi(a);
(7) ϕi(a ∧ b) = ϕi(a) ∧ ϕi(b);
(8) ϕi(a ∨ b) = ϕi(a) ∨ ϕi(b);

where ψi(a) = ¬ϕi(¬a), ∧ and ∨ are the minimum and maximum, respectively.

Correspondingly, the GM-algebra is framed and observed to be sound and complete
concerning semantics based on rough sets.

Example 3. (1) If L3 = {0, 1
2 , 1}, then we have the graded operator ϕ and its dual graded operator

ψ on L3, as shown in Table 4.
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Table 4. Graded operator ϕ and its dual graded operator ψ on L3.

0 1
2 1

ϕ 0 0 1
ψ 0 1 1

(2) If L5 = {0, 1
4 , 1

2 , 3
4 , 1}, then we have the graded operators ϕ1, ϕ2 and its dual graded

operators ψ1, ψ2 on L5, as shown in Table 5.

Table 5. Graded operators ϕ1, ϕ2 and its dual graded operators ψ1, ψ2 on L5.

0 1
4

1
2

3
4 1

ϕ1 0 0 0 0 1
ϕ2 0 0 0 1 1
ψ2 0 0 1 1 1
ψ1 0 1 1 1 1

Theorem 5. For any a ∈ L2n+1, the structure (ϕi(L2n+1),∧,∨,¬, 0, 1) is a Boolean algebra,
for each i ∈ I.

Proof. The definition of Boolean algebra makes this point clear.

5. Graded Rough Truth Degree in G(S5)

In this section, the concept of graded rough truth for a formula in G(S5), whichplays
an important role of quantitative logic, is introduced by using unary graded operators ϕi
that are discussed in the algebraic structure (L2n+1,∧,∨,¬, ϕi, 0, 1) in the above section.

Let formula A = A(p1, . . . , pm) ∈ F(S) consist of atomic and the logic connectives,
and L2n+1 be a valuation domain.

Definition 7. A valuation function υ is a map from the set of rough formulas F(S) to any GM-
algebra (L2n+1,6,∧,∨,¬, ϕi, 0, 1), i.e., υ : F(S)→ L2n+1, satisfying for any A, B ∈ F(S):

υ(A ∧ B) = υ(A) ∧ υ(B), υ(¬A) = 1− υ(A), υ(�i(A)) = ϕi(υ(A)). (9)

From these three clauses, we can define the behavior of valuations for the other
connectives:

υ(A ∨ B) = υ(A) ∨ υ(B), υ(A→ B) = υ(A)→ υ(B), υ(♦i A) = ψi(υ(A)). (10)

We will also denote by Ω the set of all valuation vectors of a formula A over L2n+1.
With a valuation function υ, we can characterize a proposition by the set of valuation
vectors that are generated by the valuation function, in which the proposition is true. In
other words, we can define a mapping π : F(S)→ Ω as follows:

π(A) = {υ ∈ Ω| |=υ A}, for any A ∈ F(S) (11)

The set π(A) can be thought of as the set of truth evaluations of logical propositions.
It is also considered the occurrence domain of A. The map π can be called an associa-
tive map. An induced function can be built up by substituting x1, x2, . . . , xm for atomic
p1, p2, . . . , pm, respectively, and interpreting the logic connectives ¬,∧ and ϕi as the corre-
sponding operators on L2n+1. Then a m-ary function fA(x1, x2, . . . , xm) : Lm

2n+1 → L2n+1,
called the truth function, is induced by rough formula A. Ω is denoted by the set of all
truth functions. We define Ωm = {υ ∈ Ω : υ(pk) = 0, k > m}. Then, ∀u ∈ Ω, there is a
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unique valuation υ ∈ Ωm, satisfying u(A) = υ(A) and u(pi) = υ(pi) for all i = 1, 2, . . . , m.
By the construction of fA, we have

υ(A) = fA
(
υ(p1), υ(p2), . . . , υ(pm)

)
,

where A = A(p1, . . . , pm) ∈ F(S), υ ∈ Ω.

Definition 8. In G(S5) for any A = A(p1, p2, . . . , pm) ∈ F(S), we define:

πi(A) = {υ ∈ Ω : υ(�i(A)) = 1}, πi(A) = {υ ∈ Ω : υ(♦i(A)) = 1}, (12)

where L2n+1 = {0, 1
2n , · · · , 2n−1

2n , 1} and i = 1, 2, . . . , n. πi(A) and πi(A) are called i−th lower
and upper approximation valuation space with respect to A, respectively.

On the basis of the i-th lower and upper approximations, the positive, negative and
boundary valuation regions of A are defined as follows:

POSi(A) = πi(A), NEGi(A) =
(
πi(A)

)c, BNDi(A) = πi(A) \ πi(A). (13)

The i-th lower and upper approximation valuation spaces satisfy the following properties.

Proposition 1. In G(S5), for any A, B ∈ F(S), we have

(1) If ` A→ B, then πi(A) ⊆ πi(B) and πi(A) ⊆ πi(B).
(2) If i 6 j then πi(A) ⊆ π j(A) and π j(A) ⊆ πi(A).

Proof. (1) It follows from Theorem 3 and Definition 8.
(2) If i 6 j, by Theorem 3 (2), we have �i A → �j A. Hence, πi(�i A) ⊆ πi(�j A).

Therefore, it follows immediately from Definition 4 and Definition 8.
(3) It can be shown similarly.

Proposition 2. In G(S5), for any A ∈ F(S), we have

(1) π1(A) ⊆ π2(A) ⊆ . . . ⊆ πn(A)
(2) π1(A) ⊇ π2(A) ⊇ . . . ⊇ πn(A)

Proof. This proof is similar to that of Proposition 1.

Remark 2. According to Axiom 2 ♦i+1 A→ ♦i A, we have �i A→ �i+1 A. Hence, Proposition 2
is the conclusion that follows from this. Moreover, from Axiom 4, we have

πi(A ∨ B) ⊆ πi(A) ∪ πi(B), for each i.

Definition 9. In G(S5), for any A, B ∈ F(S),

(1) If πi(A) ⊆ πi(B), then A is said to be of i-th lower roughly logical equivalence with B.
(2) If πi(A) ⊆ πi(B), then A is said to be of i-th upper roughly logical equivalence with B.
(3) If πi(A) ⊆ πi(B) and πi(A) ⊆ πi(B), then A and B are said to be of i-th roughly logical

equivalence.

Definition 10. In G(S5), for any formula A = A(p1, . . . , pm) ∈ F(S), i ∈ I, we define

τi(A) =
|πi(A)|
|Ωm|

, τi(A) =
|πi(A)|
|Ωm|

, (14)

where |X| denotes the cardinality of set X which is not null. τi(A) and τi(A) are called the i-th
lower and upper truth degrees for a m-dimension formulas A in G(S5).



Axioms 2022, 11, 341 10 of 16

Remark 3. Since the domain of the truth function fA(x1, x2, . . . , xm) : Lm
2n+1 → L2n+1 is associ-

ated to rough formula A is Lm
2n+1, in which there are a total of (2n + 1)m vectors (x1, x2, . . . , xm),

for each rough formula A, every vector can be viewed as a valuation υ : F(S)→ L2n+1 satisfying
υ(p1) = x1, υ(p2) = x2, . . . , υ(pm) = xm. Hence, for any rough formula A = A(p1, . . . , pm) ∈
F(S), we have |υ(A)| = (2n + 1)m. Moreover, we can obtain the following, i ∈ {1, 2 . . . , n},

τi(A) =
|πi(A)|
(2n + 1)m , τi(A) =

|πi(A)|
(2n + 1)m . (15)

We can interpret the results of rough truth as in the following example.

Example 4. Let A = p1 and B = (p1 ∧ p2) ∨ p3 be rough formulas and L5 = {0, 1
4 , 1

2 , 3
4 , 1} be

the domain of valuation when n = 2. The semantics of operators ¬, ϕ1, ϕ2, ψ1, and ψ2 are all in
Table 6.

Table 6. The semantics for operations ¬, ϕ1, ϕ2, ψ1, ψ2 on L5.

0 1
4

1
2

3
4 1

¬ 1 3
4

1
2

1
4 0

ϕ1 0 0 0 0 1
ϕ2 0 0 0 1 1
ψ2 0 0 1 1 1
ψ1 0 1 1 1 1

According to Definition 8, it is easy to obtain that

π1(A) = {1}, π1(A) = {1
4

,
1
2

,
3
4

, 1}, π2(A) = {3
4

, 1}, π2(A) = {1
2

,
3
4

, 1}.

Thus,

τ1(A) =
1
5

, τ1(A) =
4
5

, τ2(A) =
2
5

, τ2(A) =
3
5

,

and
POS1(A) = {1}, NEG1(A) = {0}, BND1(A) = {1

4
,

1
2

,
3
4
}.

Moreover,

π1(B) =
{
(0, 0, 1), (0,

1
4

, 1), (0,
1
2

, 1), (0,
3
4

, 1), (0, 1, 1), (
1
4

, 0, 1), (
1
4

,
1
4

, 1), (
1
4

,
1
2

, 1),

(
1
4

,
3
4

, 1), (
1
4

, 1, 1), (
1
2

, 0, 1), (
1
2

,
1
4

, 1), (
1
2

,
1
2

, 1), (
1
2

,
3
4

, 1), (
1
2

, 1, 1), (
3
4

, 0, 1),

(
3
4

,
1
4

, 1), (
3
4

,
1
2

, 1), (
3
4

,
3
4

, 1), (
3
4

, 1, 1), (1, 0, 1), (1,
1
4

, 1), (1,
1
2

, 1), (1,
3
4

, 1),

(1, 1, 1), (1, 1, 0), (1, 1,
1
4
), (1, 1,

1
2
), (1, 1,

3
4
)
}

.

Similarly, we can obtain π1(B), π2(B) and π2(B). Hence,

τ1(B) =
29

125
, τ1(B) =

116
125

, τ2(B) =
62
125

, τ2(B) =
93

125
.

Theorem 6. In G(S5), for any A, B ∈ F(S) the following hold:

(1) 0 6 τi(A) 6 τi(A) 6 1.
(2) τi(¬A) = 1− τi(A), τi(¬A) = 1− τi(A).
(3) τi(A ∨ B) = τi(A) + τi(B)− τi(A ∧ B),

τi(A ∨ B) = τi(A) + τi(B)− τi(A ∧ B).
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Proof. (1) According to Definitions 8 and 10, the proof is obvious.
(2) Due to Definition 8 and Theorem 1, we have

πi(¬A) ={υ ∈ Ωm : υ(�i¬A) = 1}
={υ ∈ Ωm : υ(¬♦i A) = 1}
={υ ∈ Ωm : υ(♦i A) = 0}
=Ωm \ {υ ∈ Ωm : υ(♦i A) = 1}
=Ωm \ πi(A).

It is directly available according to Definition 10.
(3) Note that

πi(A ∨ B) = {υ ∈ Ωm : υ(�i(A ∨ B)) = 1} ∪ {υ ∈ Ωm : υ(�i A) ∨ υ(�iB) = 1}
= {υ ∈ Ωm : υ(�i A) = 1} ∪ {υ ∈ Ωm : υ(�iB) = 1}
\ {υ ∈ Ωm : υ(�i(A ∧ B)) = 1}.

Thus, we have πi(A ∨ B) = πi(A) + πi(B)− πi(A ∧ B). The other one can be proved
similarly.

Theorem 7. In G(S5), the following properties hold for any A, B ∈ F(S),

(1) If τi(A) > a, τi(A→ B) > b, then τi(B) > a + b− 1.
(2) If τi(A) > a, τi(A→ B) > b, then τi(B) > a + b− 1.

Proof. Owing to Theorem 6 (2) and (3), we have

τi(A→ B) = τi(¬A ∨ B)

= τi(¬A) + τi(B)− τi(¬A ∧ B).

Then,

πi(B) = πi(A)− 1 + πi(A→ B) + πi(¬A ∨ B)

> πi(A) + πi(A→ B)− 1

> a + b− 1.

The other is similar.

Theorem 8. In G(S5), for any a, b ∈ [0, 1], A, B and C ∈ F(S), the following properties hold:

(1) If τi(A→ B) > a, τi(B→ C) > b, then τi(A→ C) > a + b− 1.
(2) If τi(A→ B) > a, τi(B→ C) > b, then τi(A→ C) > a + b− 1.

Proof. (1) Since `
(
(A→ B)→ ((B→ C)→ (A→ C))

)
, we have

τi((A→ B)→ ((B→ C)→ (A→ C))) = τi((A→ B)→ ((B→ C)→ (A→ C))) = 1.

If τi(A → B) > a and τi(B → C) > b, then τi((B → C) → (A → C)) > τi(A → B)
and τi(A→ C) > a + b− 1 by using Theorem 7 twice.

(2) It can be obtained similarly and is thus omitted.

Theorem 9. In G(S5), for any A ∈ F(S), we have

(1) τ1(A) 6 τ2(A) 6 . . . 6 τn−1(A) 6 τn(A).
(2) τ1(A) > τ2(A) > . . . > τn−1(A) > τn(A).

Proof. It follows immediately from Proposition 2 and Definition 10.
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6. Graded Rough Conditional Truth Degree in G(S5)

In this section, we propose the notion of conditional graded rough truth on the basis
of conditional probability. As a result, a new research for approximation reasoning can be
established in the many-valued modal system G(S5).

To begin with, the notion of conditional truth for formula A given B is defined
as following:

Definition 11. In G(S5), for any A, B ∈ F(S), we define

τi(A|B) = τi(A ∧ B)
τi(B)

, τi(A|B) = τi(A ∧ B)
τi(B)

, (16)

τi(A|B) and τi(A|B) are called the i-th graded conditional lower and upper truth degrees of A on
the condition of B.

Theorem 10. In G(S5), for any rough formula A, B ∈ F(S), we have

(1) 0 6 τi(A|B) 6 τi(A|B) 6 1.
(2) If ` A, then τi(A|B) = τi(A|B) = 1.
(3) If ` B, then τi(A|B) = τi(A), τi(A|B) = τi(A).

Proof. The proofs are clear by Definition 11, so they are omitted here.

Note that, if ` B, then τi(A) and τi(A) are special cases of τi(A|B) and
τi(A|B), respectively.

Theorem 11. In G(S5), for any rough formula A, B, C and D ∈ F(S), we have

(1) τi(A ∨ B|C) = τi(A|C) + τi(B|C)− τi(A ∧ B|C),
τi(A ∨ B|C) = τi(A|C) + τi(B|C)− τi(A ∧ B|C).

(2) If τi(A|C) > a and τi(A→ B|C) > b, then τi(B|C) > a + b− 1,
If τi(A|C) > a and τi(A→ B|C) > b, then τi(B|C) > a + b− 1.

(3) If τi(A→ B|D) > a and τi(B→ C|D) > b, then τi(A→ C|D) > a + b− 1,
If τi(A→ B|D) > a and τi(B→ C|D) > b, then τi(A→ C|D) > a + b− 1.

Proof. The proof is quite similar to Theorems 6–8.

Example 5. In G(S5), assume that A = p1, B = p2 and L5 = {0,
1
4

,
1
2

,
3
4

, 1}. We have

(1) τ1(A→ B) =
9

25
, τ1(A→ B) =

24
25

, τ2(A→ B) =
16
25

, τ2(A→ B) =
21
25

,

τ1(A|B) = 1
5

, τ1(A|B) = 4
5

, τ2(A|B) = 2
5

, τ2(A|B) = 3
5

.

(2) According to Definition 11, we have

τi(A→ B|A) = τi(p1 → p2|p1) =
τi((p1 → p2) ∧ p1)

τi(p1)
.

From Definition 8, we obtain

πi
(
(p1 → p2) ∧ p1

)
= {υ ∈ Ωm : υ

(
�i((p1 → p2) ∧ p1)

)
= 1}

=
{

υ ∈ Ωm : ϕi
(

min{max{1− υ(p1), υ(p2)}, υ(p1)}
)
= 1

}
,

and

πi
(
(p1 → p2) ∧ p1

)
= {υ ∈ Ωm : υ

(
♦i((p1 → p2) ∧ p1)

)
= 1}

=
{

υ ∈ Ωm : ψi
(

min{max{1− υ(p1), υ(p2)}, υ(p1)}
)
= 1

}
.
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So, it is easy to show that

π1((p1 → p2) ∧ p1) = {(1, 1)},

π1((p1 → p2) ∧ p1) = {(
1
4

, 0), (
1
4

,
1
4
), (

1
4

,
1
2
), (

1
4

,
3
4
), (

1
4

, 1), (
1
2

, 0), (
1
2

,
1
4
),

(
1
2

,
1
2
), (

1
2

,
3
4
), (

1
2

, 1), (
3
4

, 0), (
3
4

,
1
4
), (

3
4

,
1
2
), (

3
4

,
3
4
),

(
3
4

, 1), (1,
1
4
), (1,

1
2
), (1,

3
4
), (1, 1)}

and

π2((p1 → p2) ∧ p1) = {(
3
4

,
3
4
), (

3
4

, 1), (1,
3
4
), (1, 1)},

π2((p1 → p2) ∧ p1) = {(
1
2

, 0), (
1
2

,
1
4
), (

1
2

,
1
2
), (

1
2

,
3
4
), (

1
2

, 1), (
3
4

,
1
2
), (

3
4

,
3
4
),

(
3
4

, 1), (1,
1
2
), (1,

3
4
), (1, 1)}.

Hence, we have

τ1(A→ B|A) =
1
5

, τ1(A→ B|A) =
19
20

,

τ2(A→ B|A) =
2
5

, τ2(A→ B|A) =
11
15

.

7. Graded Rough Similarity in G(S5)

The goal of the graded rough similarity in G(S5) is to find the approximate formula of
the error at a different rung. Finally, approximate reasoning of logical formulas is realized.

The logical equivalence between any two formulas plays an important role in logic
systems, as well as rough equality in Pawlakian rough set theory. In this section, we aim to
establish the graded rough similarity degree between any two formulas.

Definition 12. In G(S5), for any A ∈ F(S), i ∈ I, we define

ξ i(A, B) = τi(A↔ B), ξ i(A, B) = τi(A↔ B), (17)

where ξ i(A, B) and ξ i(A, B) are called the graded lower and upper similarity degrees with respect
to A and B, respectively.

The graded rough similarity degrees enjoy the following properties.

Theorem 12. In G(S5), for any A, B ∈ F(S), the following hold:

(1) 0 6 ξ i(A, B) 6 ξ i(A, B) 6 1.
(2) ξ i(A, A) = ξ i(A, A) = 1.
(3) ξ i(A, B) = ξ i(B, A), ξ i(A, B) = ξ i(A, B).

Proof. The proofs can be obtained directly by Definition 10 and Definition 12.

Example 6. Assume that A = p1 and B = p2 in G(S5), L5 = {0,
1
4

,
1
2

,
3
4

, 1}.
(1)All valuation of formula A↔ B are given in Table 7.
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Table 7. All valuations of formula A↔ B.

υ(A)

υ(A ↔ B) υ(B)
0 1

4
1
2

3
4 1

0 1 3
4

1
2

1
4 0

1
4

3
4

3
4

1
2

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

3
4

1
4

1
4

1
2

3
4

3
4

1 0 1
4

1
2

3
4 1

Then, we obtain

ξ1(A, B) =
2

25
, ξ1(A, B) =

23
25

, ξ2(A, B) =
8

25
, ξ2(A, B) =

17
25

.

(2) All valuation of formula A↔ ¬A are given in Table 8.

Table 8. All valuation of formula A↔ ¬A.

0 1
4

1
2

3
4 1

υ(A↔ ¬A) 0 1
4

1
2

1
4 0

Then, we have

ξ1(A,¬A) = 0, ξ1(A,¬A) =
3
5

, ξ2(A,¬A) = 0, ξ2(A,¬A) =
1
5

.

8. Conclusions

In this paper, firstly, we discuss the graded modal system G(S5), which is an extension
of the classical modal systems. Secondly, we introduce the graded operators ϕi over the
valuation domain L2n+1 of modal logic formulas, and propose the algebraic structure of
the many-valued modal system. Some properties are investigated in detail. Thirdly, based
on G(S5), we propose the graded truth degree and graded conditional truth degree of G(S5)
formula by establishing the relation between rough set and graded modal logic. Finally,
we introduce the graded rough similarity between any two rough formulas to make a
distinction of them. As a further research topic, one may develop a kind of approximate
reasoning method in the framework of the graded many-valued modal system later.
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