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Abstract: In this manuscript, with grounding in Liu–Lin axioms of greyness degree and infor-

mation content, we provide new results that relate to these concepts in consideration of a number 

of mathematical operations over a sequence of grey numbers. In particular, we derive greyness de-

gree results of summation, conic combination, and convex combination of a sequence, as well as 

inverse of a number and normalization of a number over a sequence. Then, we turn our attention to 

prove information content results for the union and intersection of a sequence. We illustrate our 

results by using a simple Monte Carlo simulation in the multi-attribute decision-making context, 

and by using an interesting dice-rolling experiment. Through our analysis, we also provide some 

new definitions, such as for conic combination, convex combination, normalization, and union and 

intersection operations. The novelty of the derived results in this study is that they can help re-

searchers and practitioners of grey systems in tracking probable intensifications and reductions in 

the greyness degree in successive application steps of their working methods. Moreover, re-

searchers are provided with two results to calculate information content for the union and inter-

section of grey numbers in an uncomplicated manner. 

Keywords: grey number; greyness degree; information content; mathematical operations of grey 

numbers; Monte Carlo simulation; information representation 
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1. Introduction 

Through introducing a primary paper, Deng [1] initiated the paradigm of grey sys-

tems, which stand for a class of complex systems under partially known and imprecise 

system parameters. In a series of following accounts [2–5], he promoted an alternate 

system of thinking and its basic principles for uncertainty modelling under this para-

digm. Today, we recognize that the theoretical basis of grey systems and their engineer-

ing and socio-technical inferences carry forward well in a variety of applicable models. 

The grey system continues growing as an independent theory encompassing several 

domains, such as grey prediction, grey decision making, grey control, grey relational and 

generating spaces, and grey input-output analysis. Our current manuscript is not meant 

to be an exhaustive analysis of inquiries into theory and applications of the grey system 

in the first place; hence, we summarized a selection of studies in this body of work in 

Table 1 for interested readers. In this table, we reserved three columns after the source 

information: the features column lists which attribute or trait the paper brings to the in-

terest of the readers; the methods and theories column records which celebrated method, 

applicable concept, or theory is utilized in the analysis; and the cases and illustrations 

column is reserved to specify the outline chosen to verify study findings. For notable 
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assessments on the current state of developments and future prognoses on grey systems 

research, one may also refer to in-depth reviews [6–9]. 

Table 1. Summary of subject literature on grey systems. 

Source  Features Methods and Theories Cases and Illustrations 

[10] Inconsistent grey judgments Lexicographic goal programming Numerical examples 

[11] Grey decision making Preference programming Project selection 

[12] Greyness degree Theorem proving Proofs 

[13] Extended grey numbers Grey number operations Numerical examples 

[14] Grey decision making Goal programming Numerical example 

[15] Uncertain structural optimization Nonlinear programming Optimization of an automobile frame 

[16] Post-optimality analysis Lexicographic goal programming Numerical examples 

[17] Kernels of grey numbers Grey number operations Numerical examples 

[18] Nonlinear grey programming Hybrid algorithms Optimization of composite laminated plate 

[19] Grey extent analysis Probability theory Supplier selection 

[20] Entropy of grey numbers Similarity measure Numerical example 

[21] Grey robust program Nonlinear programming Municipal solid waste management 

[22] Grey linear program Model decomposition Evacuation planning 

[23] Grey cognitive map Cognitive mapping Analyzing IT project risk 

[24] Grey linear programming Modified simplex method Numerical example 

[25] Grey number comparison Probability theory Numerical examples 

[26] Uncertain regression Multivariate analysis Prediction model examples 

[27] Similarity and nearness Grey relational analysis Numerical example 

[28] Kernels of grey numbers Grey number operations Numerical examples 

[29] Discrete linguistic labels Compensatory programming Budget allocation 

[30] Grey target decision making  Grey relational analysis Evaluation of occupational ability 

[31] Data consistency Data envelopment analysis Numerical example 

[32] Grey potential degree Game theory Numerical examples 

[33] Visualization  Probability theory Numerical examples 

[34] Grey number comparison Partial orders Proofs 

[35] Grey information axioms  Grey number operations Proofs 

[36] Dominance grey degree Ranking  Numerical example 

[37] Linguistic labels Grey possibility degree R&D project evaluation 

[38] Linguistic labels Grey relational analysis Supplier selection 

[39] Dynamic grey target Grey relational analysis Numerical example 

[40] Grey linear program Primal simplex algorithm Numerical example 

[41] Visualization  Ranking Numerical example 

[42] Grey target decision making  Dynamic decision making Numerical example 

[43] Greyness degree Ranking Numerical example 

[44] Grey linear assignment  Hungarian algorithm Numerical example 

[45] Operational competitiveness rating Ranking Numerical examples 

[46] Diet problem  Grey linear programming Animal nutrition case 

[47] Clustering of grey numbers Possibility definition Numerical example 

[48] Project management Sensitivity analysis Numerical example 

[49] Comparative analysis Order relations Numerical example 

[50] Empirical data Grey relational analysis Healthcare sector case 

[51] Staged solution procedure Grey linear programming Comparative analysis 

[52] Probability function of a grey number Information representation Numerical example 

[53] Information transformation Grey prediction Traffic congestion analysis 

[54] Multiple-criteria decision making Grey arithmetic Production manager selection 

[55] Multiple-criteria decision making Grey arithmetic Comparative analysis 

[56] Ordinal priority  Membership functions Supplier selection 

[57] Group decision making Grey arithmetic Evaluating travel websites 

[58] Multiple-criteria decision making Hybrid grey decision model E-learning platform assessment 

[59] Group decision making Grey clustering Two case studies 

[60] Expected utilities Grey relational analysis Emergency management 
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[61] Time-delay grey model Possibility theory Simulation 

[62] Uncertainty quantification Possibility index Safety prediction of laminated plates 

[63] Consensus building Distance-metric optimization Case study, computational experiment 

The essential element of a grey system is the grey number. It stands for a number 

whose cardinality is not explicitly known, yet its span is known as a closed interval. As 

such, the conventional representation of a grey number is carried out by determining two 

values, referred to as the left and right projections, delimiting this range. There exist some 

other representations; for example, there are discrete [13] and kernel representations 

[17,28,64] of grey numbers. Nevertheless, in this paper, we will limit our attention to the 

conventional representation of grey numbers, i.e., representation as closed intervals. 

When used to typify quantitative phenomena, any grey number has an intrinsic 

character attached to it, namely, its greyness degree, or simply the greyness. Greyness de-

gree revolves around what we can not know about a parameter of concern when repre-

sented by a particular grey number, i.e., it is a measure of the representation ability of a 

grey number. Let � denote a grey number, and suppose we have an estimate of the 

temperature on a given day represented by �� = [17,24] on a Celsius scale. It is apparent 

that we do not have a good estimate. All we know is that the weather will either be chilly 

or mild, or of some warmth that is in between these two conditions, giving no practical 

information for our everyday purposes, for example, in deciding whether to go for a 

picnic or not. In this case, a considerable greyness degree is attached to this information, 

that is, to the grey number ��. Suppose now we have an estimate �� = [37,44] about the 

temperature on a different day. Obviously, this estimate is much more valuable than ��, 

as it provides a useful body of information to us. We definitely know that the weather 

will be very hot for any practical purpose. Thus, the greyness degree attached to �� 

should be smaller than that attached to �� in this case. Observe from this example that, 

although the spans of these numbers over the Celsius scale are of the same length, their 

ability to convey information is different. 

On the other hand, there exists yet another essential attribute associated with grey 

numbers, namely, the information content. Information content held within a grey number 

is an extent which shows awareness of the researcher about a particular grey system 

under study. Liu and Lin [65] argue that this measure can not be irrelevant to the back-

ground where the grey number of concern is initially introduced. Had this been the case, 

it would be impossible to assess the scope of information that is conveyed by the grey 

number. In order to see this, suppose we introduce the grey number �� = [5,12] with no 

background evidence attached. We do not know whether the information carried by �� 

is useful or not. Now, let us introduce a background which communicates that the grey 

number is an estimate of percentage GDP growth of a particular country. Instantly, we 

retain a fair amount of information in attaining the grey number ��. 

These two examples really show the existence of a collection of unique principles 

that make up the concepts of greyness degree and information content. One may trace 

these roots by surveying the axiomatic background of greyness degree and information 

content established by Liu [12], and later by Liu and Lin [65]. 

Research on greyness degree and information content is in its infancy. In particular, 

studies on greyness degree and information content results that consider basic mathe-

matical operations of grey numbers are very limited. These preliminary results are 

merely constrained to the papers of Liu [12] and Liu and Lin [65] under the interval rep-

resentation of grey numbers; Yang’s [13] treatment of discrete grey numbers; and a sub-

sequent stream of research by Yang and Liu [17,28], and by Liu et al. [64] under the kernel 

representation of grey numbers. In these accounts, mathematical operations are analyzed 

by considering two grey numbers at a time. 

What remains necessary to develop is a collection of greyness degree results that 

will work when a group or sequence of grey numbers is considered. This is because re-

searchers should be able to track the amplifications and reductions in greyness degree in 
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successive application steps of the working method through their analyses. In the current 

paper, we aim to generalize the above results in this manner, under the interval repre-

sentation of grey numbers with some new additions that consider distinct operations 

such as the summation of a sequence of grey numbers, their conic combination, their convex 

combination, the inverse of a grey number, and the normalization over a sequence of grey 

numbers. Although these operations are very common in many grey systems, for exam-

ple in grey prediction systems, and as will be clear later in this paper, grey deci-

sion-making systems, currently we do not know the effect of application steps on grey-

ness degree as one continues with these necessary operations while analyzing such sys-

tems. Similarly, in considering the information content, we bring in two general results 

that relate to the union and intersection of a sequence of grey numbers. 

With these aspirations in mind, this manuscript is organized in the following man-

ner. In Sections 2 and 3, we first provide a brief overview of Liu–Lin axioms on the 

greyness degree of grey numbers, and then we develop our operation results through a 

number of theorems, respectively. Sections 4 and 5 are organized in a similar manner, 

where we first provide a brief overview of Liu–Lin axioms on the information content of 

grey numbers, and then we develop our operation results through a number of theorems, 

respectively. Section 6 is reserved for illustrating our arguments that are related to 

greyness degree. In this line, we initially introduce a multiple-attribute decision-making 

case which will be useful for illustration purposes; subsequently, we demonstrate grey-

ness degree results with the aid of a simple Monte Carlo simulation over this setting. 

Then, to illustrate our line of reasoning on the information content, we design a 

dice-rolling experiment in Section 7. Finally, we come to an end with our conclusions in 

Section 8. 

2. Liu–Lin Axioms on Greyness Degree 

In this section, we briefly overview the axiomatic background of the greyness degree 

concept. 

Definition 1. (Left and right projection; information field) 

Let � ≥ 0  and � > � be two values delimiting the span of a grey number � = [�, �]. Then, � 

and � are called the left and right projections, respectively; and the closed interval [�, �] is called 

the information field of the grey number �. 

Definition 2. (Length of the information field [12]) 

Under the above notation, �(�) = (� −  �) is called the length of the information field of grey 

number �. 

We also introduce the notation �(�) to denote the greyness degree of this number. 

We will maintain this convention throughout this paper unless otherwise stated. In two 

successive studies [12,65], Liu and Lin established five essential axioms regarding grey-

ness degree. 

Axiom 1. �(�) ≥ 0. 

Their first axiom states that each grey number has an intrinsic greyness degree as-

sociated with it. 

Axiom 2. If �(�) = 0, then �(�) = 0. 

The above axiom establishes that when the left and right projections of a grey 

number are equal, the number degenerates into a singleton whose greyness degree is 

zero. Then, the number is called a white number, i.e., its cardinality is known precisely. 
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Axiom 3. If � ⟶  −  ∞ or � ⟶ ∞, then �(�) ⟶ ∞. 

This axiom indicates that when (left) right projection of a grey number is translated 

to (minus) infinity, the number degenerates into a black number whose greyness degree is 

illimitable. 

Axiom 4. �(� ∙ �) = �(�) where � is a scalar. 

Their fourth axiom specifies that multiplying a grey number with a scalar will not 

alter its greyness degree. 

In grey systems theory, the function prescribing degrees of affinity for a grey num-

ber to assume particular values from its information field is called a weight function. In 

order to understand the fifth axiom of greyness degree, the following suggestion [65] is 

useful. When the weight function of a grey number is not known, the mean value whiten-

ization is determined as follows: 

�̂ =
1

2
∙ (� + �) (1) 

and can be substituted for the expected value of the grey number. 

Axiom 5. �(�) ∝ �(�) and �(�) ∝ 1/�̂ where �̂ is the mean value whitenization of the grey 

number �. 

This last axiom establishes the definition of greyness degree. The axiom literally 

states that the greyness degree of a grey number is directly proportional to the length of 

its information field, whereas it is inversely proportional to its associated expected value. 

Hence, based on this last axiom, the following definition of the greyness degree is recog-

nized: 

Definition 3. (Greyness degree of a grey number [12,65]) 

�(�) =
�(�)

�̂
=

2(� −  �)

(� + �)
. (2) 

Example 4. We now revisit the temperature estimates instance under this definition. 

Greyness degrees for the aforementioned two temperature estimates �� and �� can be 

calculated as follows: 

�(��) =
2(24 −  17)

(24 + 17)
= 0.341;    �(��) =

2(44 −  37)

(44 + 37)
= 0.172.  

This result shows that the greyness degree associated with grey number �� is con-

siderably smaller than that attached to ��, as we have anticipated. 

3. Greyness Degree Results of Mathematical Operations 

In this section, we organize greyness degree results that relate to mathematical op-

erations on a sequence of grey numbers. These include the following: summation, conic 

combination, convex combination, and normalization. The only exception is the inverse 

operation that is associated with a single grey number. 
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Theorem 6. (Greyness degree of summation) 

For a sequence of �  grey numbers �� = [��, ��]  with �� ≥ 0  and �� > �� for � = 1, … , �: 

�(�� + ⋯ + ��) ≤ �(��) + ⋯ + �(��). (3) 

Proof of Theorem 6. In generalizing the analysis for two grey numbers ([65], p.35), for the 

L.H.S. of the inequality we have the following: 

�(�� + ⋯ + ��) =
2[(�� + ⋯ + ��)  − (�� + ⋯ + ��)]

[(�� + ⋯ + ��) + (�� + ⋯ + ��)]
=

2(��  − �� + ⋯ + ��  − ��)

(�� + ⋯ + �� + �� + ⋯ + ��)

=
2(��  − ��)

(�� + ⋯ + �� + �� + ⋯ + ��)
+ ⋯ +

2(��  −  ��)

(�� + ⋯ + �� + �� + ⋯ + ��)
.

(4) 

For the R.H.S. we have the following: 

�(��) + ⋯ + �(��) =
2(��  − ��)

(�� + ��)
+ ⋯ +

2(��  − ��)

(�� + ��)
. (5) 

A member-to-member comparison of (4) and (5) gives the following: 

2(��  − ��)

(�� + ⋯ + �� + �� + ⋯ + ��)
≤

2(��  − ��)

(�� + ��)
;  � = 1, … , �, 

which, after some arrangement, requires the following statements: 

⎩
⎪
⎨

⎪
⎧

  

 ��  − �� ≥ 0          ∀�,

���� + ���

�

���
���

≥ 0 ∀�,           (6) 

must hold true where � is another index. It is easy to see that (6) holds ∀� by the defini-

tion of �� and ��. □ 

Definition 5. (Conic combination of a sequence of grey numbers) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > ��, and respective weights 

�� ≥ 0 for � = 1, … , �, we define �∗ = �� ∙ �� + ⋯ + �� ∙ ��. Then, �∗ is called the conic com-

bination of grey numbers �� = [��, ��]. 

Theorem 7. (Greyness degree of conic combination) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > �� for � = 1, … , �: 

�(�∗) ≤ �(��) + ⋯ + �(��). (7) 

Proof of Theorem 7. By Theorem 6 we have the following: 

�(�∗) = �(�� ∙ �� + ⋯ + �� ∙ ��) ≤ �(�� ∙ ��) + ⋯ + �(�� ∙ ��). (8) 

Moreover, since �� are scalars, by Axiom 4 we obtain the following: 

�(�� ∙ ��) + ⋯ + �(�� ∙ ��) = �(��) + ⋯ + �(��). (9) 

Equations (8) and (9) together yield the desired result. □ 

Definition 6. (Convex combination of a sequence of grey numbers) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > ��, and respective weights 

�� ≥ 0  for � = 1, … , �  such that ∑ ��
�
��� = 1 , we define � ∗∗ = �� ∙ �� + ⋯ + �� ∙ ��.  Then, 

� ∗∗ is called the convex combination of grey numbers �� = [��, ��]. 
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Theorem 8. (Greyness degree of convex combination) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > �� for � = 1, … , �: 

�(�∗∗) ≤ �(��) + ⋯ + �(��). (10) 

Proof of Theorem 8. This follows from the proof of Theorem 7, and is therefore omitted.□ 

Definition 7. (Inverse of a grey number [65]) 

For a grey number � = [�, �] with � > 0 and � > �, its inverse, denoted by � � �, is given by the 

following: 

� � � = �
1

�
,
1

�
�. (11) 

Theorem 9. (Greyness degree of inverse) 

For a grey number � = [�, �] with � > 0 and � > �: 

�(� � �) = �(�). (12) 

Proof of Theorem 9. Let � be a scalar such that � = � ∙ �. By Axiom 4, we have the fol-

lowing: 

�(� � �) = �(� ∙ � � �), 

from which we deduce the following: 

�(� ∙ � � �) = � �� ∙ �
1

�
,
1

�
�� = � �� ∙ � ∙ �

1

�
,
1

�
�� = � ��

� ∙ �

�
,
� ∙ �

�
�� = �([�, �]) = �(�),

which completes the proof.□ 

Definition 8. (Multiplication of two grey numbers [28,65]) 

For two grey numbers �� = [��, ��] and �� = [��, ��] with �� ≥ 0 and �� > ��  for � = 1,2, 

their multiplication is given by the following: 

�� ∙ �� = [�� ∙ ��,  �� ∙ ��]. (13) 

Definition 9. (Normalization of a grey number) 

The normalization of a grey number ��  over a sequence of � grey numbers �� = [��, ��] with 

�� > 0 and �� > �� for � = 1, … , �, denoted by ��
∗, is given by the following: 

��
∗ = �� ∙ �� ��

�

���

�

 � �

. (14) 

Theorem 10. (Greyness degree of normalization) 

For a grey number �� and its normalization ��
∗ over a sequence of � grey numbers �� = [��, ��] 

with �� > 0 and �� > �� for � = 1, … , �, the following statements hold true: 

����
∗� ≥ max ������, � ��� ��

�

���

�

 � �

�� . (15) 

Proof of Theorem 10. In generalizing the analysis for multiplication of two grey numbers 

([65], p.35), note that we have the following: 
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� ��

�

���

= �� ��, � ��

�

���

�

���

� , �� ��

�

���

�

 � �

= �
1

∑ ��
�
���

,
1

∑ ��
�
���

 � 

and hence, 

��
∗ = �

��

∑ ��
�
���

,
��

∑ ��
�
���

 �, 

and then, for its greyness degree we have the following: 

����
∗� =

2 ∙ �
��

∑ ��
�
���

 − 
��

∑ ��
�
���

�

�
��

∑ ��
�
���

+
��

∑ ��
�
���

�

. (16) 

Next, consider the terms ��/ ∑ ��
�
���  in (16). If they are substituted by ��/ ∑ ��

�
��� , the 

value of the numerator of quotient (16) will decrease, whereas the value of its denomi-

nator will increase; hence, the value of the quotient will decrease. Thus, by such substi-

tution we have the following: 

����
∗� =

2 ∙ �
��

∑ ��
�
���

 − 
��

∑ ��
�
���

�

�
��

∑ ��
�
���

+
��

∑ ��
�
���

�

≥

2 ∙ �
��

∑ ��
�
���

 − 
��

∑ ��
�
���

�

�
��

∑ ��
�
���

+
��

∑ ��
�
���

�

=

2 ∙ �
��  − ��

∑ ��
�
���

�

�
�� + ��

∑ ��
�
���

�

 

=
2 ∙ ���  − ���

��� + ���
= �����. 

(17)

Similarly, if the terms ��/ ∑ ��
�
���  in (16) are substituted this time by ��/ ∑ ��

�
��� , again, the 

value of the numerator of quotient (16) will decrease whereas the value of its denomi-

nator will increase; hence, the value of the quotient will decrease. Thus, by this second 

substitution we must have the following: 

����
∗� =

2 ∙ �
��

∑ ��
�
���

 − 
��

∑ ��
�
���

�

�
��

∑ ��
�
���

+
��

∑ ��
�
���

�

≥

2 ∙ �
��

∑ ��
�
���

 − 
��

∑ ��
�
���

�

�
��

∑ ��
�
���

+
��

∑ ��
�
���

�

 

=

2 ∙ �
�� ∙ ∑ ��

�
���  − �� ∙ ∑ ��

�
���

∑ ��
�
��� ∙ ∑ ��

�
���

�

�
�� ∙ ∑ ��

�
��� + �� ∙ ∑ ��

�
���

∑ ��
�
��� ∙ ∑ ��

�
���

�

=
2 ∙ �� ∙ (∑ ��

�
���  − ∑ ��

�
��� )

�� ∙ (∑ ��
�
��� + ∑ ��

�
��� )

 

=
2 ∙ (∑ ��

�
���  − ∑ ��

�
��� )

(∑ ��
�
��� + ∑ ��

�
��� )

= � �� ��

�

���

�. 

(18) 

From (17) and (18) we obtain the following: 

�  

����
∗� ≥ �����,       

  ����
∗� ≥ � �� ��

�

���

� ,
 

which, together with Theorem 9, yields the desired result.□ 

4. Liu–Lin Axioms on Information Content 

In this section, we briefly overview the axiomatic background of the information 

content concept. 

Recall from the introduction that given a grey number yet without background in-

formation ascribed to it, it is not possible to assess the amount of useful information the 
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number conveys. Let � denote such a background, and let �(��) denote the measure of 

this background where grey numbers �� are introduced. 

Definition 10. (Remanent set of a grey number [65]) 

If the background of introduction for a grey number � = [�, �] with �� ≥ 0 and �� > �� is � 

with � ⊂ �, then ∼ � = � −  � is called the remanent set of �. 

Let �(�) denote the information content of the grey number �. Liu and Lin [65] ar-

gue that �(�) satisfies the following axioms: 

Axiom 11. 0 ≤ �(�) ≤ 1. 

Their first axiom states that any grey number is accompanied with an information 

content that ranges between 0 and 1. If this attribute is 0, the grey number carries no 

useful information; if it is 1, the number carries exact information, i.e., its cardinality is 

exactly known. 

Axiom 12. �(�) = 0. 

Their second axiom states that the background data itself does not yield any useful 

information. 

Example 11. Suppose the speedometer of a manufactured car is scaled between 0 km/h 

and 220 km/h. When a person is driving this car at 90 km/h, suppose we instantly ques-

tion its actual speed. From three probable answers to our question, the grey number �� =

[90,90] carries the exact information, hence its information content is 1; the grey number 

�� = [0,220] carries no useful information, since it envelopes the background; hence, its 

information content is 0; and the grey number z� = [70,110] carries quite useful infor-

mation, hence its information content is between 0 and 1. 

Axiom 13. �(�) ∝ �(~�) and �(�) ∝ 1/�(�). 

This last axiom establishes the definition of information content. The axiom literally 

states that the information content of a grey number is directly proportional to the 

measure of its remanent set, whereas it is inversely proportional to the measure of its 

background. Hence, based on this last axiom, the following definition of the information 

content is recognized: 

Definition 11. (Information content of a grey number [65]) 

�(�) =
�(∼ �)

�(�)
. (19) 

5. Information Content Results of Mathematical Operations 

In this section, we organize information content results that relate to union and in-

tersection operations on a sequence of grey numbers. 

Definition 12. (Union of a sequence of grey numbers) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > �� for � = 1, … , �, their 

union is given by the following: 

� ��

�

���

= {� ∶  � ∈ ��  ∨   � ∈ ��  ∨   ⋯ ∨   � ∈ ��}. (20) 
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Definition 13. (Intersection of a sequence of grey numbers) 

For a sequence of � grey numbers �� = [��, ��] with �� ≥ 0 and �� > �� for � = 1, … , �, their 

intersection is given by the following: 

� ��

�

���

= {� ∶  � ∈ ��  ∧   � ∈ ��  ∧   ⋯ ∧   � ∈ ��}. (21) 

Liu and Lin [65] developed formulae for the information content of the union and 

intersection operations of two grey numbers under the conditions that �(�) = 1, and 

that the grey numbers are independent from the measure. The same conditions apply to 

our analysis. 

Theorem 14. (Information content of union) 

For a sequence of �  grey numbers �� = [��, ��]  with �� ≥ 0 and �� > ��  for � = 1, … , � , if 

�(�) = 1 and �� are independent from the measure, the information content of their union is 

given by the following: 

� �� ��

�

���

� = � �(��)

�

���

. (22) 

Proof of Theorem 14. We generalize the analysis for two grey numbers ([65], p.42). 

� �� ��

�

���

� = � �∼ � ��

�

���

� = � �� ∼ ��

�

���

� = � �(∼ ��)

�

���

= � �(��)

�

���

. □ (23) 

Theorem 15. (Information content of intersection) 

For a sequence of �  grey numbers �� = [��, ��]  with �� ≥ 0 and �� > ��  for � = 1, … , � , if 

�(�) = 1 and �� are independent from the measure, the information content of their intersection 

is given by the following: 

� �� ��

�

���

� = ����(��)� (24) 

where ��(�(��)) is a function of information contents �(��), the term structure of which 

depends on the set union laws associated with the cardinality �. 

Proof of Theorem 15. We generalize the analysis for two grey numbers ([65], p.42). 

� �� ��

�

���

� = � �∼ � ��

�

���

� = � �� ∼ ��

�

���

� = ��
� ��(∼ ��)� = ����(��)�. □ (25) 

6. Illustration of Greyness Degree Results: A Simple Monte Carlo Simulation 

6.1. A Multiple-Attribute Decision-Making Case as a Test Bed 

Suppose that a decision maker is exploring a multiple-attribute decision-making 

problem with �  decision alternatives under �  attributes that are common to such 

choices. For the sake of a more casual and natural comprehension of the decision situa-

tion and its interdependencies, the decision maker evaluates the performance of each 

decision alternative according to each attribute, assessing a linguistic term from a 

pre-determined linguistic label set illustrated in Table 2. In order to fit the linguistic as-

sessments into a mathematical framework, each linguistic label is assigned a grey num-

ber from a common scale. In multiple-attribute decision making, typically odd numbers 

of scale-points are employed; hence, the decision maker considers a 9-point scale in this 
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case. Then, he/she selects the appropriate grey number for each of his/her assessments 

and fills out a decision matrix � = �����
�×�

 to be further processed, where � = 1, … , � is 

an index for decision alternatives, and � = 1, … , � is an index for attributes. 

Table 2. Linguistic label set for assessments. 

Linguistic Label Underlying Grey Number Test Number Interval 

Unsatisfactory performance [0, 3/2] 0.0000 −  0.1666 

Poor performance [3/2, 3] 0.1667 −  0.3333 

Mediocre performance [3, 9/2] 0.3334 −  0.5000 

Acceptable performance [9/2, 6] 0.5001 −  0.6667 

Good performance [6, 15/2] 0.6668 −  0.8334 

Exceptional performance [15/2, 9] 0.8335 −  1.0000 

Suppose that the decision maker works through the decision matrix using the simple 

additive weighting method (SAW), and suppose w.l.o.g. that the attributes under study are 

benefit attributes, i.e., the more-the-better type. In SAW, each attribute is associated with 

the following positive weight �� ≥ 0, ∀� such that: 

� ��

�

���

= 1, (26) 

and, for each decision alternative, it is combined with normalized performance scores to 

obtain a composite performance score. The main implementation steps the decision 

maker goes through, under the SAW algorithm, are as follows: 

Step 1. For each column of the decision matrix � = �����, find column sums ��: 

�� = � ���

�

���

,    ∀�. (27) 

Step 2. Normalize each performance score ��� according to its respective column sum �� 

to obtain normalized performance scores ���
∗ : 

���
∗ = ��� ∙ ����

 � �
,      ∀�, �. (28) 

Step 3. Calculate a composite performance score �� for each decision alternative, con-

sidering corresponding attribute weights �� and normalized performance scores ���
∗ : 

�� = � ��

�

���

∙ ���
∗ ,      ∀�. (29) 

Step 4. Obtain a final ranking of decision alternatives according to their composite scores. 

6.2. A Monte Carlo Simulation on the Decision Matrix 

The main implementation steps of the above multiple-attribute decision-making 

problem require appropriate mathematical operations to verify our arguments devel-

oped in Section 3. Observe that a single decision matrix instance of order � × � yields � 

summation instances of individual sequences of � grey numbers, � × � normalization 

instances, and � convex combination instances of sequences of � grey numbers. 

For our purposes, we prepared 10 instances of order 4 × 5 decision matrices as a 

small test bed. In order to assign the performance scores to entries of these matrices, we 

utilized a Monte Carlo simulation. In this implementation, we initially generated test 

numbers between 0 and 1 from a random number generator. Subsequently, we assigned 

the grey number that matched with the appropriate test number interval to entries of 
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these matrices, while adhering to the representation given in Table 2. Hence, we obtained 

the instances that are summarized in Table 3. 

Table 3. Test instances. 

Instance Underlying SAW Step Numbers of Instances 

Summation Step 1 50 

Normalization Step 2 200 

Convex combination Step 3 40 

We implemented the SAW algorithm for each decision matrix in order to collect 

numerical data. Specifically, we organized data regarding greyness degree of summa-

tion, normalization, and convex combination operations. Since the inverse operation 

yields the same greyness degree as the original number, and the conic combination yields 

very similar results to the convex combination, they are left out of this illustration. 

Firstly, we compare the terms of Equation (3). Figure 1 is a depiction of results for 

summation instances following Step 1 of the SAW algorithm. Instance numbers in this 

graph as well as other graphs in the sequel are not relevant to our analysis, and w.l.o.g. 

re-indexed after resultant greyness degree data are sorted in order. 

 

Figure 1. Greyness degree results for summation. 

It is recognizable from this graph that as the sum of individual greyness degrees 

along each column intensify, the greyness degree series for column sums follow with a 

lower envelope. This is clearly in line with the argument in Theorem 6. 

Secondly, we compare the terms of Equation (15). Figure 2 is an illustration of the 

results for normalization instances following Step 2 of the SAW algorithm. Similarly, note 

that the maximum series for either the individual greyness degrees or the greyness of the 

inverses for respective columns is a lower envelope to the greyness degrees of normali-

zation. This verifies our findings in Theorem 10. The stepwise structure that is observable 

in the lower series is because we use a pre-determined set of discrete linguistic labels at 

the assessment; as we sort the resultant greyness degree data, inevitably, equal values 

follow alongside each other. 
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Figure 2. Greyness degree results for normalization. 

Thirdly, we compare the terms of Equation (10). Figure 3 is a summary of the results 

for convex combination instances following Step 3 of the SAW algorithm. Expectedly, we 

recognize that as the sum of individual greyness degrees along each row intensify, the 

greyness degree series of convex combination for the rows follows with a lower enve-

lope. This verifies our findings in Theorem 8. 

 

Figure 3. Greyness degree results for convex combination. 

7. Illustration of Information Content Results: A Dice-Rolling Experiment 

In this section we illustrate our arguments that relate to information content with the 

aid of a dice-rolling experiment. For this purpose, consider an unusual yet fair 8-faceted 

die illustrated in Figure 4. In this experiment, the observer rolls the die once, and notes 

the number that shows up on the top facet of the die. 
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Figure 4. An 8-faceted die. 

In this case, obviously we have � = {1, … ,8}. Now suppose that we do not hold our 

assumption that the grey numbers under study are continuous, and for this section allow 

discrete representations of grey numbers. Then, consider the following three numbers: 

�� = {2,3,4,7}, �� = {1,3,4,5}, and �� = {4,5,6,7}. Let the measure with this back-

ground be the probability measure. Clearly, we have �(�) = 1. 

In order to find the information content of the union of these grey numbers, first we 

observe �� ∪ �� ∪ �� = {1, … ,7}, then find the following: 

∼ (�� ∪ �� ∪ ��) = � − (�� ∪ �� ∪ ��) = {8}. (30) 

We then utilize the following: 

�(�� ∪ �� ∪ ��) =
��∼ (�� ∪ �� ∪ ��)�

�(�)
=

1/8

1
=

1

8
. (31) 

Now, in order to find this information content result with our arguments, we employ 

Theorem 14 and just obtain the following: 

� �� ��

�

���

� = � �(��)

�

���

=
4/8

1
∙

4/8

1
∙

4/8

1
=

1

8
, (32) 

which shows that Theorem 14 works perfectly. 

On the other hand, in order to find the information content of the intersection of 

these grey numbers, we again observe �� ∩ �� ∩ �� = {4}, then find the following: 

∼ (�� ∩ �� ∩ ��) = � − (�� ∩ �� ∩ ��) = {1,2,3,5,6,7,8}. (33) 

Then, similarly we utilize the following: 

�(�� ∩ �� ∩ ��) =
��∼ (�� ∩ �� ∩ ��)�

�(�)
=

7/8

1
=

7

8
. (34) 

Again, in order to find this information content result with our arguments, we employ 

Theorem 15 and obtain the following: 

� �� ��

�

���

� = ����(��)� (35) 

and then see that we need the appropriate set union law: 

����(��)� = �(��) + �(��) + �(��)  −  �(��) ∙ �(��) −  �(��) ∙ �(��) 

− �(��) ∙ �(��) + �(��) ∙ �(��) ∙ �(��) 
(36) 

Thus, we obtain the following: 
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����(��)� = �
4

8
+

4

8
+

4

8
�  − �

4

8
∙

4

8
�  − �

4

8
∙

4

8
�  − �

4

8
∙

4

8
� + �

4

8
∙

4

8
∙

4

8
� =

7

8
, (37) 

which therefore shows that Theorem 15 works as intended. 

8. Conclusions and Future Research Directions 

Greyness degree and information content are two unique features with grey num-

bers, both of which have intrinsic principles and appealing deeds. They are valuable 

concepts worth inspecting both from an axiomatic and mathematical viewpoint, and 

from an information science notion. Liu and Lin [12,65] provide an introduction to these 

concepts and proposed a series of preliminary mathematical results in considering 

mathematical operations of two grey numbers. 

In the current note, we extended their preliminary results by considering opportu-

nities to ponder a sequence of grey numbers in addition to a number of new mathemat-

ical operations. To that aim, we developed greyness degree results that relate to summa-

tion, conic combination, convex combination, and normalization on a sequence of grey 

numbers. As an auxiliary result to explore normalization, we also solved for the inverse 

operation which is associated with a single grey number. In due course, we will give new 

definitions, such as for conic combination, convex combination, normalization, and union 

and intersection over a sequence of grey numbers. 

We showed that after operations such as summation and conic and convex combi-

nation, the total greyness degree observed in a sequence reduces in the final results. We 

also showed that normalization is the step where greyness degree amplifies during im-

plementation steps of an algorithm under study, such as in the algorithm of the SAW 

method we examined in this paper. 

Furthermore, we developed two results that are useful to calculate information 

content of union and intersection of a sequence of grey numbers in an uncomplicated 

manner. The authenticity of our formulae is demonstrated with an interesting example 

that brings together concepts from set theory and probability theory. 

We strongly believe that our results will be useful to researchers who study grey 

systems, grey prediction, grey decision making, and grey control models, as well as those 

interested in information theory and information representation. 

Could the presented uncertainty representation principles and arguments be ap-

plied to solve engineering problems? We strongly believe that this is probable, given the 

modeling principle of uncertainty under interval representation of grey numbers and the 

novel use of existing well-grounded methods, such as the Monte Carlo method that we 

used in this study, which is suitable to simulating probability of occurrence of phenom-

ena. 

One such area of application, for example, may be in the stability analysis of un-

derground structures. In this domain, there are important issues regarding the stability of 

surrounding rock when a structure is built in a specific geological location. Numerical 

simulations that consider the behavior of the surrounding masses of rock may be studied, 

where significant parameters such as the rock stress can be modeled under the uncer-

tainty representation. Then, these parameters can be used to forecast possible defor-

mations in the surrounding rock content. 

Another closely related engineering problem is to determine the degree of cracking 

in rock massifs. In this domain, issues that relate to directions and angles of cracks are 

essential to evaluate the extent of structural disturbance in a massif. However, most of 

the time, it is very difficult for engineers to obtain a complete/exact set of relevant geo-

mechanical data. In this case, an approach that brings together the capabilities of uncer-

tainty representation principles, which we studied in this paper, and the competence of 

traditional methods of measurement may provide promising results in unifying a reliable 

set of input data in order to analyze the degree of cracking in a rock massif. 
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In the future, we propose that interested researchers should analyze similar opera-

tional rules under different representations of grey numbers and compare their results 

with our findings. Moreover, we propose that researchers should apply the principles of 

uncertainty representation studied in this paper, and at the same time try to employ tra-

ditional methods of their specific domain to solve intricate engineering problems, two of 

which we analyzed above. 
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