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Abstract: We propose a differential quadrature method (DQM) based on cubic hyperbolic B-spline
basis functions for computing 3D wave equations. This method converts the problem into a system
of ODEs. We use an optimum five-stage and order four SSP Runge-Kutta (SSPRK-(5,4)) scheme to
solve the obtained system of ODEs. The matrix stability analysis is also investigated. The accuracy
and efficiency of the proposed method are demonstrated via three numerical examples. It has been
found that the proposed method gives more accurate results than the existing methods. The main
purpose of this work is to present an accurate, economically easy-to-implement, and stable technique
for solving hyperbolic partial differential equations.
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1. Introduction

Some of the existing numerical approaches for solving wave equations as well as frac-
tional wave equations involve the temporal extrapolation method, finite difference method
(FDM), finite volume method (FVM), finite element method (FEM), and boundary element
method (BEM) [1–5]. It has been noticed that the most popularly used numerical approaches
for solving 3D wave equations are based on the FDM [6,7]. In short, the FDM is utilized
to handle the time derivative, and the space derivatives are discretized by other numeri-
cal techniques. In particular, the radial basis and B-spline basis functions-based collocation
methods are extensively applied for solving 3D wave equations. Ranocha et al. [8] set up
fully discrete conservative techniques for various disseminative wave equations. Recently,
Wang et al. [9] presented radial basis function-based single-step mesh free technique for 2D
variable coefficients wave equation. Bakushinsky and Leonov [10] presented a fast Fourier
transform-based algorithm to solve the 3D wave inverse problem in a cylindrical system.

In recent decades, wave equations have been approximated by numerous researchers.
Dehghan [11] approximated the solution of 1D hyperbolic PDEs with nonlocal boundary
specifications, while in [12], the author used ADI, fully implicit, fully explicit FD methods,
and the Barakat and Clark type explicit formulae to approximate the 2D Schrodinger
equation. Mohanty and Gopal [13] presented an off-step discretization-based technique
for the approximation of 3D wave equations. Titarev and Toro [14] implemented fourth-
order accurate ADER schemes for 3D hyperbolic systems. Zhang et al. [15] proposed an
improved element-free Galerkin (EFG) method, while EFG method and Meshless local
Petrov-Galerkin (MLPG) method have been proposed by Shivanian [16]. Recently, Shukla
et al. [17] proposed an Expo-MCBDQM to approximate the aforementioned equations.

Bellman et al. [18] introduced DQM. DQM based on various basis functions has
been presented to solve several PDEs such as sinc DQM [19], Fourier expansion based
DQM [20], harmonic DQM [21], quintic B-spline DQM [22] and many more. The authors
of [23–26] proposed a cubic B-spline (CB-spline) based DQM for the Burgers’, coupled
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Burgers’, Sine-Gordon, and advection-diffusion equations, respectively while the authors
of [27] proposed an exponential CB-spline based DQM for the Burgers’ equation. The
authors of [28] proposed a polynomial differential quadrature method to solve the two-
dimensional Sine-Gordon equation. Korkmaz and Dag [29] proposed CB-Spline based
DQMs to simulate the boundary forced RLW equation, while in [30], they proposed Quartic
as well as quintic B-spline based differential quadrature methods for the advection-diffusion
equation. Jiwari [31] proposed Lagrange interpolation as well as CB-spline based DQMs
to solve the hyperbolic PDEs. The authors in [32] presented a new cubic B-spline-based
semi-analytical method for solving 3D anisotropic convention-diffusion-reaction problems.
Ali et al. [33] considered nonlinear spin dynamics in Heisenberg ferromagnetic spin chain
mode for solving travelling waves using the unified method.

Recently, a modified auxiliary equation mapping method was applied to study the
new exact travelling and solitary wave solutions of the coupled Whitham-Broer-Kaup,
(2+1)-dimensional Broer-Kaup-Kupershmit and Drinfel’d-Sokolow-Wilson equations [34].
Seadawy et al. [35] studied a new modified 3-dimentional fractional Benjamin-Bona-
Mahony equations by using conformable fractional order derivatives in both spatial and
temporal variables. Furthermore, in [36], an extended modified auxiliary equation mapping
method was used highlight the solutions for the 3D fractional WBBM equation.

B-spline basis functions have several interesting properties and are the basis of the
vector space generated by the spline with minimal support and with respect to a certain
degree of smoothness and domain partition. Ahlberg et al. [37] considered cubic splines
with a deficiency of 2 in the real domain, satisfying the condition that they should be easily
constructed, and the error between them and the given function as well as those between
their derivatives must easily allow for accurate estimates, although they did not work on
the error bounds in detail. Lu [38] suggested using interpolated complex cubic splines with
a deficiency of 2 with advantages over those with a deficiency of 1 in that it is much easier
to construct them and much easier to estimate the error bounds.

Motivated by the aforementioned work, we propose a DQM based on hyperbolic
B-spline functions to approximate the 3D wave equations. All geometric characteristics of
the proposed hyperbolic B-spline curves are similar to the classical B-spline, but the shape
adjustability is an additional quality that the classical B-spline curves do not hold. The
main purpose of this work is to present an accurate, economically easy-to-implement, and
stable technique for solving hyperbolic partial differential equations. We consider

∂2u
∂t2 + (α1 − δ f (u))

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 − α2u + p̂(x, y, z, t), (x, y, z) ∈ Ω, (1)

with
u|t=0 = ξ1, and ut|t=0 = ξ2, (2)

and with boundary conditions

u(x, y, z, t) = ζ, (x, y, z) ∈ ∂Ω, (3)

where Ω = {(x, y, z) : x, y, z ∈ [0, 1]} is the problem domain and ∂Ω is its boundary. The
functions f , ξ1, ξ2 and ζ are known whereas u = u(x, y, z, t) is to be determined. The terms
α1, α2, δ are real constants.

The rest of the paper is organized as follows. In Section 2, the procedure of the cubic
hyperbolic B-spline DQM is described. Section 3 examines the stability analysis of the
proposed method. Section 4 demonstrates the computational results. Finally, Section 5
presents the conclusion of our study.

2. The Hyperbolic B-Spline Differential Quadrature Method

In this section, we consider the problem (1)–(3) when α1, α2, δ, f (u), p are known and
u is to be evaluated. We apply the cubic hyperbolic B-spline DQM to approximate 3D wave
Equations (1)–(3). First, we split Ω = {(x, y, z) : 0 ≤ x, y, z ≤ 1} into equal length mesh
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hx = 1
Mx−1 , hy = 1

My−1 and hz =
1

Mz−1 . For discrete form, we denote uijk = u
(

xi, yj, zk, t
)
,

i = 1, 2, . . . , Mx, j = 1, 2, . . . , My and k = 1, 2, . . . , Mz.
In DQM, we approximate uxx, uyy and uzz as given below:

∂puijk

∂xp =
Mx

∑
r=1

a(p)
ir urjk, i = 1, 2, . . . , Mx, (4)

∂puijk

∂yp =
My

∑
r=1

b(p)
jr uirk, j = 1, 2, . . . , My, (5)

∂puijk

∂zp =
Mz

∑
r=1

c(p)
kr uijr, k = 1, 2, . . . , Mz, (6)

where uijk = u
(

xi, yj, zk, t
)
, and a(p)

ir , b(p)
jr , c(p)

kr are the weighting coefficients corresponding

to
∂puijk
∂xp ,

∂puijk
∂yp and

∂puijk
∂zp , respectively, at time t.

The cubic hyperbolic B-spline functions are given as [39]:

H fi(x) =



(Si−2)
3

sinh(3h)sinh(2h)sinh(h) , [xi−2, xi−1),
−Si(Si−2)

2−Si+1Si−1Si−2−Si+2(Si−1)
2

sinh(3h)sinh(2h)sinh(h) , [xi−1, xi),
Si−2(Si+2)

2+Si+2Si+1Si−1+Si(Si+2)
2

sinh(3h)sinh(2h)sinh(h) , [xi, xi+1),
−(Si+2)

3

sinh(3h)sinh(2h)sinh(h) , [xi+1, xi+2),
0, otherwise,

(7)

where Si = sinh(x− xi) and h = xi+1 − xi.
The cubic hyperbolic B-spline functions {H f0, H f1, . . . , H fM, H fM+1} form a basis

over Ω. Table 1 shows the values of cubic hyperbolic B-spline functions with derivatives at
the knots, where

Υ1 = Υ3 = (sinh(h))3

sinh(3h)sinh(2h)sinh(h) , Υ2 = 2sinh(2h)(sinh(h))2

sinh(3h)sinh(2h)sinh(h) ,
Υ4 = 3

2sinh(3h) , Υ5 = − 3
2sinh(3h) .

Table 1. The values of cubic hyperbolic B-spline functions at the knots.

xi−2 xi−1 xi xi+1 xi+2

H fi(x) 0 Υ1 Υ2 Υ3 0
H f ′ i(x) 0 Υ4 0 Υ5 0

Preserving the matrix system remains diagonally dominant, we modify the hyperbolic
B-spline functions as:

Ĥ f1(x) = H f1(x) + 2H f0(x)
Ĥ f2(x) = H f2(x)− H f0(x)
Ĥ fm(x) = H fm(x) for m = 3, . . . , Mx − 2
Ĥ fMx−1(x) = H fMx−1(x)− H fMx+1(x)
Ĥ fMx (x) = H fMx (x) + 2H fMx+1(x)

, (8)
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where the modified cubic hyperbolic B-spline functions
{

Ĥ f1, Ĥ f2, . . . , Ĥ fMx

}
form basis

over Ω. Next, in
∂uijk
∂x , we use the modified basis functions Ĥ fr(x), r = 1, 2, . . . , Mx in (4) to

evaluate a(1)ij . Then, Equation (4) yields

Ĥ f ′r(xi) =
Mx

∑
q=1

a(1)iq Ĥ fr
(
xq
)
, i = 1, 2, . . . , Mx, (9)

which can be written in the form of tridiagonal system as follows:

A
→
x [i] =

→
B [i], for i = 1, 2, . . . , Mx, (10)

where A = [Ĥ fij] is the Mx ×Mx matrix given by

A =



Υ2 + 2Υ1 Υ3 0 0 · · · 0 0
Υ1 −Υ3 Υ2 Υ3 0 · · · 0 0

0 Υ1 Υ2 Υ3 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · Υ1 Υ2 Υ3 0
0 0 · · · 0 Υ1 Υ2 Υ3 −Υ1
0 0 · · · 0 0 Υ1 Υ1 + 2Υ1


,

→
x [i] = [a(1)i1 , a(1)i2 , . . . , a(1)iMx

]
T

is the unknown vector and

→
B [1] =



2Υ5
Υ4 −Υ5

0
0
...
0
0


,
→
B [2] =



Υ5
0
Υ4
0
...
0
0


, · · · ,

→
B [Mx − 1] =



0
0
...
0
Υ5

0
Υ5


,
→
B [Mx] =



0
0
...
0
0

Υ5 −Υ4
2Υ4


.

We solve the system (10) to find the weighting coefficient vector a(1)ij . Similarly, by

fixing x and z in
∂uijk

∂y and using the modified cubic hyperbolic B-spline functions Ĥ fr(y),

r = 1, 2, . . . , Mx in Equation (5), and fixing x and y in
∂uijk

∂z and using the modified cubic

hyperbolic B-spline functions Ĥ fr(z), r = 1, 2, . . . , Mx in Equation (6), we can compute b(1)ij

and c(1)ij .

Next, for computing a(p)
ij , b(p)

ij and c(p)
ij , we use the Shu’s [40] recurrence relations

a(p)
ij = p

a(1)ij a(p−1)
ii −

a(p−1)
ij

xi − xj

, if j 6= i; a(p)
ii = −

Mx

∑
j=1,j 6=i

a(p)
ij , for i, j = 1, 2, . . . , Mx, (11)

b(p)
ij = p

b(1)ij b(p−1)
ii −

b(p−1)
ij

yi − yj

, if j 6= i; b(p)
ii = −

My

∑
j=1,j 6=i

b(p)
ij , for i, j = 1, 2, . . . , My, (12)

c(p)
ij = p

c(1)ij c(p−1)
ii −

c(p−1)
ij

zi − zj

, if j 6= i; c(p)
ii = −

Mz

∑
j=1,j 6=i

c(p)
ij , for i, j = 1, 2, . . . , Mz. (13)
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Now, using ut = w, utt = wt and substituting the approximated uxx, uyy and uzz by
the cubic hyperbolic B-spline DQM in problem (1) and (2), we have

duijk

dt
= wijk, (14)

and

dwijk

dt
=

Mx

∑
r=1

a(2)
ir

urjk +
My

∑
r=1

b(2)
jr

uirk +
Mz

∑
r=1

c(2)
kr

uijr −
(

α1 − δ f (uijk)
)

wijk − α2uijk + Pijk, (15)

where i = 0, 1, · · · , Mx, j = 0, 1, · · · , My, k = 0, 1, · · · , Mz,. Using Equation (3) in the
above equation, we have

duijk

dt
= wijk, (16)

and

dwijk

dt
=

Mx−1

∑
r=2

a(2)
ir

urjk +
My−1

∑
r=2

b(2)
jr

uirk +
Mz−1

∑
r=2

c(2)
kr

uijr −
(

α1 − δ f (uijk)
)

wijk − α2uijk + Pijk, (17)

where,

Pijk = a(2)i1 u1jk + a(2)iMx
uMx jk + b(2)j1 ui1k + b(2)jMy

uiMyk + c(2)k1 uij1 + c(2)kMz
uijMz + p̂ijk. (18)

Finally, we apply SSPRK-(5,4) scheme [41] to solve the above systems.

3. Stability Analysis

For stability, we rewrite Equations (16) and (17) by choosing α1, α2 ≥ 0 and α1 > δ f as
follows:

d
→
X

dt
= Â

→
X +

→
X̂, (19)

where,
→
X =

[
u w

]tr,
→
X̂ =

[
N P

]tr, Â =

[
N I
F (−α1 + δ f )I

]
, N and I are null and

identity matrices, respectively. We have F = Fx + Fy + Fz − α2 I where Fx, Fy and Fz are

(Mx − 2)(My − 2)(Mz − 2) order matrices for a(2)ij , b(2)ij and c(2)ij , respectively, and given as
follows:

Fx =


a(2)22 Ix a(2)23 Ix . . . a(2)2(Mx−1) Ix

a(2)32 Ix a(2)33 Ix . . . a(2)3(Mx−1) Ix
...

...
. . .

...
a(2)(Mx−1)2 Ix a(2)(Mx−2)3 Ix . . . a(2)(Mx−1)(Mx−1) Ix

, (20)

Fy =


X̃y Ny . . . Ny
Ny X̃y . . . Ny
...

...
. . .

...
Ny Ny . . . X̃y

; X̃y =


b(2)22 Iz b(2)23 Iz . . . b(2)2(My−1) Iz

b(2)32 Iz b(2)33 Iz . . . b(2)3(My−1) Iz
...

...
. . .

...
b(2)(My−1)2 Iz b(2)(My−2)3 Iz . . . b(2)(My−1)(My−1) Iz

, (21)

Fz =


X̃z Nz . . . Nz
Ny X̃z . . . Nz
...

...
. . .

...
Nz Nz . . . X̃z

; X̃y =


c(2)22 Iz c(2)23 Iz . . . c(2)2(Mz−1) Iz

c(2)32 Iz c(2)33 Iz . . . c(2)3(Mz−1) Iz
...

...
. . .

...
c(2)(Mz−1)2 Iz c(2)(Mz−2)3 Iz . . . c(2)(Mz−1)(Mz−1) Iz

. (22)
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The order of null matrices Ny and Nz are (My− 2)(Mz− 2) and (Mz − 2), respectively
which is same as the order of identity matrices Ix and Iz.

Now, we suppose that λA be an eigenvalue of A associated with the eigenvector
(X1, X2)

tr, where the order of each component vector is (Mx − 2)(My − 2)(Mz − 2). Then,
we have [

O I
F (−α1 + δ f )I

][
X1
X2

]
= λA

[
X1
X2

]
, (23)

which implies that IX2 = λAX1 and FX1 − (α1 − δ f )X2 = λAX2.
Thus, we have

FX1 = λA(λA + α1 − δ f )X1. (24)

This illustrates that λA(λA + α1 − δ f ) is the eigenvalue of F as follows:

F = −α2 I + F1. (25)

The eigenvalues of F1 with hx = hy = hz = 0.2, 0.1 and 0.05 are represented in
Figure 1, where real and negative eigenvalues are observed. Equation (25) implies that all
eigenvalues of B are real and negative.
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Now, let λA = x + iy, then we have (λA + α1 − δ f )λA =
(
x2 + (α1 − δ f )x− y2) +

i(2x + (α1 − δ f ))y is negative and real, that is,

x2 + (α1 − δ f )x− y2 < 0 and 2xy + (α1 − δ f )y = 0. (26)

From Equation (26), we conclude that x = −0.5(α1 − δ f ) if y 6= 0 and x < −(α1 − δ f )
if y = 0. Since α1 > δ f and so x < 0, we conclude that the real part of λA will be negative.
Therefore, the proposed method is stable for the 3D wave equations discretized system.

4. Computational Results

Now, we consider three examples of the 3D wave Equation (1) to check the accuracy
and efficiency of the proposed method.

Example 1. We consider Equation (1) for δ = 0 and αi = 2, i = 1, 2 with the analytical
solution u(x, y, z, t) = e−2tsinhx sinhy sinhz.
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The p̂(x, y, z, t) is described appropriately. We choose h = 0.1, 0.05 and ∆t = 0.01.
Table 2 shows the comparison between the proposed method and the existing ones in terms
of RMS error norms. It can be noted that the present solutions are more accurate than the
solutions presented in [16] by EFG and MLPG methods, and Expo-MCBDQM [17]. Figure 2
illustrates the absolute error norms for fixed z = 0.5 with h = 0.05 at t = 1 while Figure 3
shows the behavior of the solutions. From Figures 2 and 3, one can notice that the absolute
error norms are very small, and analytical and numerical solutions are very close each
other which shows the accuracy of the proposed method.

Table 2. Comparison between the present method and existing methods with h = 0.1 and ∆t = 0.01
at different values of t for Example 1.

t Present Method EFG Method [16] MLPG Method [16] Expo-MCBDQM [17]

0.1 9.131 × 10−7 1.361376 × 10−1 6.389040 × 10−4 1.013 × 10−6

0.2 9.126 × 10−7 1.108673 × 10−1 1.621007 × 10−3 1.666 × 10−6

0.3 9.751 × 10−7 9.031794 × 10−2 2.069397 × 10−3 1.725 × 10−6

0.4 9.357 × 10−7 7.555177 × 10−2 1.851491 × 10−3 1.498 × 10−6

0.5 9.263 × 10−7 6.113317 × 10−2 1.406413 × 10−3 1.196 × 10−6

0.6 8.105 × 10−7 5.076050 × 10−2 1.120239 × 10−3 9.059 × 10−7

0.7 6.102 × 10−7 4.276296 × 10−2 8.762877 × 10−4 7.061 × 10−7

0.8 4.458 × 10−7 3.416178 × 10−2 5.762842 × 10−4 5.566 × 10−7

0.9 3.614 × 10−7 3.072394 × 10−2 7.778958 × 10−4 4.758 × 10−7

1.0 3.326 × 10−7 2.562088 × 10−2 8.638225 × 10−4 4.417 × 10−7
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Example 2. Next, we consider Equation (1) for α1 = δ = κ, α2 = 0 and f (u) = u2 with the
analytical solution u(x, y, z, t) = sin πx sin πy sin πz e−κt.

The function p̂(x, y, z, t) is described appropriately and we choose the parameters
h = 0.05, 0.1, ∆t = 0.01, and κ = 3 for the numerical approximation of this example.
The proposed method is again compared with EFG [16] and MLPG [16] methods, and
Expo-MCBDQM [17] in terms of RMS error norms and shown in Table 3. It is noticed
that the proposed method shows better solutions than the solutions presented in [16,17].
Figure 4 illustrates the absolute error norms for z = 1, h = 0.05 at t = 1 while Figure 5
demonstrates the comparison of the analytical and numerical solutions, where a close
agreement is noticed between analytical and numerical solutions. From Figure 4, one can
notice that the absolute error norms are very small in 10−19, which shows that the proposed
method provides very accurate results.

Example 3. Finally, we consider Equation (1) for α1 = α2 = 0, δ = −2 and f (u) = u with
the analytical solution u(x, y, z, t) = sin πx sin πy sin πz sin t.

The function p̂(x, y, z, t) is chosen appropriately. We choose the parameters h = 0.05
and 0.1, ∆t = 0.01. The present solutions are compared with the solutions obtained by
EFG [16] and MLPG [16] methods, and Expo-MCBDQM [17] in terms of RMS error norms
and shown in Table 4. Again, it is noticed that the proposed method provides better
solutions than the existing methods. Figure 6 illustrates the absolute error norms for
z = 0.5, h = 0.05 at t = 1. Figure 7 shows the comparison of the analytical and numerical
solutions.

Table 3. Comparison between the present method and existing methods with h = 0.1 and ∆t = 0.01
at different values of t for Example 2.

t Present Method EFG Method [16] MLPG Method [17] Expo-MCBDQM [17]

0.1 4.472 × 10−6 1.653265 × 100 2.777931 × 10−3 5.667 × 10−6

0.2 8.511 × 10−6 1.005632 × 100 8.477482 × 10−3 9.701 × 10−6

0.3 2.23 × 10−6 9.786343 × 10−1 1.352534 × 10−2 1.231 × 10−5

0.4 5.02 × 10−6 7.456237 × 10−1 1.583307 × 10−2 1.512 × 10−5

0.5 1.143 × 10−5 6.213675 × 10−1 1.550351 × 10−2 1.824 × 10−5

0.6 1.062 × 10−5 4.354421 × 10−1 1.367202 × 10−2 2.222 × 10−5

0.7 1.231 × 10−5 1.345213 × 10−1 1.052578 × 10−2 2.570 × 10−5

0.8 1.324 × 10−5 9.973233 × 10−2 6.216680 × 10−3 2.866 × 10−5

0.9 2.014 × 10−5 7.132423 × 10−2 5.280951 × 10−3 3.117 × 10−5

1.0 2.1025 × 10−5 6.124572 × 10−2 2.276681 × 10−3 3.329 × 10−5
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Table 4. Comparison between the present method and existing methods with h = 0.1 and ∆t = 0.01
at different values of t for Example 3.

t Present Method EFG Method [16] MLPG Method [16] Expo-MCBDQM [17]

0.1 1.673 × 10−7 1.435666 × 10−3 8.903029 × 10−5 2.887 × 10−7

0.2 2.481 × 10−7 3.867576 × 10−3 9.910264 × 10−5 1.257 × 10−6

0.3 1.522 × 10−6 5.033494 × 10−3 1.590358 × 10−4 2.944 × 10−6

0.4 4.137 × 10−6 7.655177 × 10−3 3.776687 × 10−4 5.348 × 10−6

0.5 7.465 × 10−6 9.119769 × 10−3 4.781290 × 10−4 8.787 × 10−6

0.6 3.304 × 10−6 1.034540 × 10−2 6.416380 × 10−4 1.361 × 10−5

0.7 1.007 × 10−5 3.279875 × 10−2 8.809498 × 10−4 2.029 × 10−5

0.8 1.716 × 10−5 5.233178 × 10−2 9.279331 × 10−4 2.918 × 10−5

0.9 3.014 × 10−5 6.072234 × 10−2 1.059260 × 10−4 4.049 × 10−5

1.0 4.221 × 10−5 7.545088 × 10−2 1.529316 × 10−3 5.432 × 10−5
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Computational Complexity

The system of equations, where the coefficient matrix is tridiagonal, is solved by
using the Thomas algorithm which takes 3M subtractions, 3M multiplications, and 2M + 1
divisions. Therefore, the algorithm needs a total of 8M + 1 simple arithmetic operations.
Therefore, the Thomas algorithm requires O(n) operations. The computational cost of the
SSPRK-(5,4) technique is same as the cost of traditional ODE solvers. Hence, the proposed
technique is not too complex from the computational point of view.

5. Conclusions

This work proposed a differential quadrature method based on cubic hyperbolic
B-spline functions together with SSPRK-(5,4) scheme to solve 3D wave equations. The
numerical examples show that the proposed method provides more accurate solutions
than those discussed in [16,17]. The matrix stability analysis is also investigated, and
we found that the proposed method is stable. Additionally, the method is economically
easy-to-implement for solving hyperbolic partial differential equations. Moreover, the
computational complexity shows that the proposed technique is not too complex from the
computational point of view.
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