
Citation: Khayrullin, R.; Ershov, D.;

Malahov, A.; Levina, T. Mathematical

Models of the Processes of Operation,

Renewal and Degradation of a Fleet

of Complex Technical Systems with

Metrological Support. Axioms 2023,

12, 300. https://doi.org/10.3390/

axioms12030300

Academic Editor: Clemente Cesarano

Received: 25 January 2023

Revised: 6 March 2023

Accepted: 8 March 2023

Published: 15 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Mathematical Models of the Processes of Operation, Renewal
and Degradation of a Fleet of Complex Technical Systems with
Metrological Support
Rustam Khayrullin 1,2 , Denis Ershov 2,3,*, Alexander Malahov 2,3 and Tatyana Levina 3

1 Department of “Fundamental Education”, Mytishchy Branch of University,
Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, 129337 Moscow, Russia

2 Metrology Scientific Head Center, 13 Komarova Street, Moscow Region, 141000 Mytischy, Russia
3 Department of “Standartizaion, Engineering Faculty, Moscow Polytechnic University,

Metrology and Sertification”, 38, Bolshaya Semenovskaya Street, 107023 Moscow, Russia
* Correspondence: ershov.metrolog@mail.ru

Abstract: (1) Background: The aim of the study is to develop a set of models for managing a fleet of
complex technical systems with metrological support, allowing the simulation and management at
all the stages of the life cycle of the complex technical systems, as well as to simulate the functioning
of large fleets of complex technical systems, including up to several hundred thousand samples;
(2) Methods: The authors use methods of mathematical modeling, methods of the theory of Markov
and semi-Markov processes, methods of optimization, methods of reliability theory, and methods
of probability theory and mathematical statistics; (3) Results: an interconnected set of mathematical
models for managing a fleet of complex technical systems with metrological support was developed
and the applied software was developed; (4) Conclusions: The set of models presented in the article
allows for the adequate simulation of all the stages of the life cycle of large complex technical
systems fleets, including up to several hundreds of thousands of samples, to optimize the functioning
processes of a fleet of complex technical systems, to form strategies for fleet development, and to
assess the risks associated with false and undetected failures, as well as the risks associated with the
degradation of complex technical systems.

Keywords: complex technical system; measuring equipment; metrological support; measuring
instruments

MSC: 60J20; 60-02

1. Introduction

A considerable amount of scientific research is devoted to the problem of modeling
complex technical systems (CTS) [1–28]. We understand complex technical system as
stationary or mobile special-purpose objects with measuring instruments (MI) installed on
them, which should be metrologically maintained during long-term operation. In the last
half of the century, both CTS themselves and their models have undergone a rather rapid
evolution process. Starting from models with 3–5 states and going up to models with up
to several hundreds and thousands of states. At the same time, the theoretical base and
technical capabilities for modeling CTS with several tens of thousands and even hundreds
of thousands of states have been created.

On the qualitative side, simple models allowed modeling only of the basic states of
the CTS, which describe the operation processes. The models have been evolving toward
a more detailed description of the operation processes (taking into account metrological
support technologies, false failure states and undetected failure states), the CTS degra-
dation processes (first degradation level, second degradation level and so on) and the
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CTS updating processes (by purchasing the new CTS samples, by upgrading the existing
CTS samples, by developing the newest modern CTS samples). Thus, by now there is a
need for models that describe all stages of the CTS life cycle. These models should allow
the simulation of large CTS fleets, including up to several hundreds of thousands of STS
samples. The models should make it possible to manage the process of development of
such CTS fleets, taking into account the range of modern tasks to be solved by means of the
CTS and the need to solve promising tasks in the future.

Let us first conduct a retrospective comparative analysis of CTS models, with a sep-
arate description of the main characteristics of each model, as well as the assumptions
underlying their implementation. Let us describe the strengths and weaknesses of the
models. Additionally, we will then formulate the goal of our scientific research and we will
provide a statement on the problem that will be investigated in this article.

2. Scientific Literature Review

Professor L.I. Volkov [1] proposed the semi-Markov model of aircraft operation control,
which has five states: workable status; periodic verifications of the operational status;
recovery after the occurrence of the valid state, false failure state; the hidden failure
state; the unworkable state (including the hidden failure state); and the state of periodic
verifications with hidden failure.

The classical model developed by Professor E.I. Sychev [2], designed to control the
process of operation of the CTS with measuring instruments (MI) installed on them to
provide metrological support, in contrast to the model by Professor L.I. Volkov, already has
six states. Model [2] describes the operation process more correctly. From the fourth un-
workable state (including hidden failure), two states were separately highlighted: the state
of undetected failure and detected failure. The model takes into account the characteristic
features of the CTS with metrological support.

The model [2] assumes the identity of the recovery of the CTS after both a false failure
and a valid failure. In practice, for some types of CTS, after a false failure, repeated control
is carried out according to the failed technical parameter, and after a detected failure,
the system is restored, for example, by adjusting or replacing the faulty element with a
serviceable one. In the model [3] developed by Professor V.I. Mishchenko, which already
includes seven states, the above-mentioned features and limitations have been eliminated.
The model [3] takes into account the intensity of the CTS operation.

Note that the models described above do not take into account the component of
maintenance efficiency, determined by the availability of spare parts and their replenish-
ment strategy.

The further direction for the development of the models for the operation of the
CTS is to take into account the possibilities of reserving the MI and the possibilities of
replenishment with spare parts and tools. In [4], the model of the process for the functioning
of the MI with metrological support for doubly redundant MI is proposed, which allows
for the taking into account of the features of the maintenance associated with the possibility
of providing spare parts, and taking into account the different strategies for replenishing
spare parts, tools and accessories. In the model [4], which takes into account eight states, it
is assumed: that the detection of failures by the MI occurs only during verification; there
are no errors in determining the technical condition of the MI; and the MI in storage do
not fail.

In [5], a new approach has been developed to assess the impact of metrological support
on achieving the goals of the CTS operation: a graph with an arbitrary number of states is
constructed, the edges of the graph that represent possible state transitions are attributed
both probabilistic characteristics of the transitions (values of the distribution functions or
simply the transition probabilities) and the costs associated with the corresponding transi-
tions. The following states are selected: serviceable, faulty, emergency and catastrophic.
The results from the study, on the influence of the volumes of metrological control for
various conditions on the effectiveness of the object for its intended purpose, are presented.
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As a criterion of efficiency in the various solved tasks, both the readiness coefficient and
the technical and economic indicator were used.

It should be noted that all the models analyzed above do not allow modeling and
the taking into account of conditions corresponding to the different levels of degradation
of the CTS (different levels of deterioration of the metrological reliability characteristics),
leading to time and resource costs necessary both for restoring the CTS and bringing it back
into working condition. Further development of the CTS operation models takes place in
terms of taking into account the aging and degradation processes [6–26] of the CTS (or MI
installed on them) and reduction of the metrological reliability.

Thus, in [6] the model with four degradation groups is considered, having one work-
able state and four states corresponding to the different levels of degradation. This model
describes the process of operation of the CTS, for which repair is possible with the restora-
tion of the resource in full. In [7], a model with three degradation groups is considered,
which allows for the modeling of the processes of operation, renewal and degradation of
the CTS fleet. It is assumed that as a result of the repair, the resource of the CTS cannot be
fully restored.

The works analyzed in this section form the basis (starting point) for the research
presented in the article. This article summarizes the results of the work [5–8]: a set of
models describing the processes of operation, renewal and degradation of the CTS are
presented. To describe the operation process, the classical model [2] is used as it is the
most adequate for the CTS class considered in the article. To describe the processes of
degradation and renewal of the CTS fleet, new additions to the classical model developed
by the author are presented (the model of false and undetected failures, the model of
degradation and renewal of the fleet, including CTS with full and incomplete restoration of
the resource during repair and metrological maintenance).

3. Statement on the Research Problem

It is necessary to develop a set of interrelated mathematical models of CTS fleet
management models, allowing for the simulation and management of all stages of the CTS
life cycle. The developed set of interrelated models should allow for the simulation of
the functioning of large fleets of CTS, including up to several hundreds of thousands of
CTS samples. The set of models shall allow for the taking into account of the degradation
processes of CTS sample ageing, processes on park development due to the procurement
of new samples, the modernization of existing samples and the development of new
promising CTS samples. The set of interrelated models should allow for the management
of the process of development of such CTS fleets, taking into account a number of modern
requirements, and the need to solve promising tasks and problems in the future.

4. Materials and Methods

At first in Section 4.1.1, the results of calculating the readiness coefficient for different
failure distribution laws using the classical operation model are presented. The model
of false and undetected failures is described in Section 4.1.2. Section 4.1.3 describes and
analyzes the models of failure and degradation of the CTS (a fan model, a drift model of
the metrological characteristics and two diffusion models). In Section 4.2, the model of
operation of the CTS is described, taking into account the degradation processes and the
full restoration of the resource, and in Section 4.3, the model of the CTS with incomplete
restoration of the resource is described.
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4.1. The Classical Model
4.1.1. Construction and Study of the Classical Model for Different Laws on the Distribution
of Failures of the Complex Technical System

Let us denote {Ei, i = 1, 2, . . . n} as a finite set of states in which a specific sample of
the CTS can be located. The readiness coefficient of the CTS, the operation process of which
is described by the semi-Markov model [2], is calculated by the formula:

KA =
n

∑
i=1

πiwi/
n

∑
i=1

πiψi, (1)

where πi is the relative fraction of the number of steps during which the CTS is in state Ei,
wi is the mathematical expectation of the time of operation of the CTS in state Ei, and ψi is
the mathematical expectation of the time that the CTS stays in state Ei.

At the same time:
n
∑

i=1
πi = 1, ψi =

n
∑

i=1
Pij M(τij) =

n
∑

i=1
Pij

∞∫
0

τijdF(τij),

wi =

{
ψi − for workable conditions of CTS
0− for unworkable conditions of CTS

,

where Pij are the elements of the state transition probability matrix P∗ =
∥∥∥P∗ij

∥∥∥, F∗(τij) is
the transition probability distribution function, and M(τij) is the mathematical expectation
of the transition time.

A continuously operating CTS with periodic verification of the technical condition is
ready for use at that time τ if it is operational at that moment and is not under verification
or repair. The results of the control are used to make a decision on the possibility of further
application of the CTS. If the CTS is recognized as workable, according to the results of
the verification, then it is included in the work. If the CTS is found to have failed, then its
repair is carried out, as a result of which a complete restoration of its operability occurs.
The transition graph is shown in Figure 1.
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Figure 1. Graph of state transitions.

Possible conditions of the CTS: E1 is workable, E2 is unworkable (failure), E3 is
verification of the failed CTS, E4 is recovery, E5 is verification of a workable CTS, and E6 is
undetected failure.
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The transition probability matrix has the following form:

P∗ =



0 F(TK) 0 0 1− F(TK) 0
0 0 1 0 0 0
0 0 0 1− β 0 β
1 0 0 0 0 0

1− α 0 0 α 0 0
0 0 1 0 0 0

,

where F(τ) is the integral function of the distribution of the failure time, F(TK) is the
probability of failure during the time between two verifications, TK is the time interval
between verifications (TIBV) of the technical condition, α is the conditional probability of a
false failure, and β is the conditional probability of an undetected failure.

We assume that the duration of the control (verification of the technical condition)
and the duration of the restoration (repair) are deterministic values equal to tK and
tB, respectively.

The system of equations for finding πi, i = 1, 2, . . . , 6 has the form:

π1 = π4 + (1− α)π5, π2 = F(TK)π1, π3 = π2 + π6, π4 = (1− β)π3 + απ5,
π5 = [1− F(TK)]π1, π6 = βπ3, π1 + π2 + π3 + π4 + π5 + π6 = 1.

The solution of the system has the form:

π1 = 1
A (1− β)

π2 = 1
A F(TK)(1− β)

π3 = 1
A F(TK)

π4 = 1
A{F(TK) + α(1− F(TK)}(1− β)

π5 = 1
A [1− F(TK)](1− β)

π6 = 1
A βF(TK)

, (2)

where A = 2[1− β + F(TK)] + α[1− F(TK)](1− β).
The values vi, i = 1, 2, . . . , 6 are equal to:

v1 =
TK∫
0

τdF(τ) + TK[1− F(TK)]

v2 = TKF(TK)−
TK∫
0

τdF(τ)

v3 = tK
v4 = tB
v5 = tK
v6 = TK

. (3)

Assuming that w1 = v1, w2 = 0, w3 = 0, w4 = 0, w5 = 0, w6 = 0, and substituting (2)
and (3) into (1), we obtain the formula for calculating the CTS readiness coefficient:

KA =
I + TKB

BI + TK

{
B + [F(TK)]

2 + βF(TK)
1−β

}
+ tk

[
B + F(TK)

1−β

]
+ tB[F(TK) + αB]

, (4)

where B = 1− F(TK), I =
TK∫
0

τ · dF(τ).

Next, we will conduct a study of the readiness coefficient for various laws on the
distribution of the failure time. The failure time of the CTS is considered as a random
variable. Analysis of statistical data has shown that the most suitable laws for describing
the failure time are the exponential law, Rayleigh’s law, the Weibull distribution and
the truncated normal distribution, with the appropriate choice of parameters for these
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distributions. The statistical function of the distribution of the failures is located inside the
“curved band” covering the theoretical distribution functions.

In the case of the exponential distribution law, the expression for the readiness coeffi-
cient (4) takes the form:

KΓ =
1− e−λTK(

λTK
1−β + e−λTK

)
·
(
1− e−λTK

)
+ λtk

(
(1−e−TK )βp

1−β + 1
)
+ λtB

(
1− e−λTK (1− αp)

) .

For Rayleigh’s law, the integral I can be calculated numerically or using the standard
Laplace function, for Weibull’s law it can be calculated numerically or using the gamma
function; and for the truncated normal distribution it can be calculated numerically or
using the standard Laplace function.

The calculations were carried out using the following values from the initial data:
tK = 1, tB = 1, α = 0.1, β = 0.1, and λ = 0.0025 for the different values of TK. Figure 2
shows the dependences of the readiness coefficients KA on the periodicity of the verifi-
cation TK, for the distribution laws described above. The maximum values of KA for the
Rayleigh, normal, exponential and Weibull laws are equal to: 0.976, 0.963, 0.955, and 0.950,
respectively, and reach values equal to 65, 55, 50, and 40. Note that the maximum value
of the coefficient for each distribution law is reached at a single point. It can be seen that
maxKA is “practically insensitive” to TK. So, in a fairly wide range of changes to TK, the
readiness coefficient takes values close to the maximum. In particular, when changes to TK
take place in the range 25 ≤ TK ≤ 60, the variation of KA is no more than 2–3%.
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The low sensitivity of the maximum value of the readiness coefficient to the periodicity
of the technical condition monitoring makes it possible to develop strategies that are “non-
strict” and easy to implement in practice, for carrying out checks on the technical condition
of the CTS with metrological support.

4.1.2. Development of the Classical Model: The Model of False and Undetected Failures

The probabilities of false and undetected failures [8] for the specific samples of the
CTS depend on the corresponding probabilities of false and undetected failures of the
individual components of the CTS (1), (2), on the configuration of the CTS using methods
on the redundancy of the components, nodes and blocks of the CTS.

Let p be the actual value of the measured (controlled) parameter and ε be the measure-
ment error. The measurement result is presented in the form r = p + ε. The general scheme
of the diagnosis and decision-making based on the one-parameter method of tolerance
control is shown in Figure 3.
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Here δ is the tolerance for the controlled parameter, and f (x) and fe(x) are the distribu-
tion density functions of the measured parameter and the measurement error, respectively.
It can be seen that the probability of making the right decision can be increased (within
certain limits) by reducing the total error of the erroneous decision.

The different physical nature and, consequently, the heterogeneous range of the
changes in the measured values leads to the need to introduce dimensionless standardized
operational parameters for the MI. As a normalizing element, we take the mean square
deviation σx of the measured parameter x; δ = ∆/σx is the relative operational tolerance,
where ∆ is the technical tolerance; z = σε/σx is the relative parametric measurement error,
σε is the mean square deviation of the MI error.

The model is based on formulas for the conditional probabilities of false and unde-
tected failures, respectively [8]:

α(δ, z) =


δ∫
−δ

fcu(y)


−δ−y

z∫
−∞

fo(τ)dτ+
∞∫

δ−y
z

fo(τ)dτ

dy

/


δ∫
−δ

fcu(y)dy

, (5)
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β(δ, z) =


−δ∫
−∞

fcu(y)


δ−y

z∫
−δ−y

z

f0(τ)dτ

dy +

∞∫
δ

fcu(y)


δ−y

z∫
−δ−y

z

f0(τ)dτ

dy

/


−δ∫
−∞

fcu(y)dy +

∞∫
δ

fcu(y)dy

, (6)

where f0(τ) and fcu(y) are the functions of the distribution densities of the measured value
and the MI error, respectively.

For normally distributed measured values and MI errors, Formulas (5) and (6) take
the form:

α(δ, z) =
1

2π


δ∫
−δ

exp
(
−y2

2

)
−δ−y

z∫
−∞

exp
(
−τ

2

2

)
dτ +

∞∫
δ−y

z

exp
(
−τ

2

2

)
dτ

dy

/P1, (7)

β(δ, z) =
1

2π


−δ∫
−∞

exp
(
− y2

2

)
δ−y

z∫
−δ−y

z

exp
(
− τ

2

2

)
dτ

dy +

∞∫
δ

exp
(
− y2

2

)
δ−y

z∫
−δ−y

z

exp
(
− τ

2

2

)
dτ

dy

/P2, (8)

P1 =
1√
2π

δ∫
−δ

exp
(
−y2

2

)
dy, P2 =

1√
2π


−δ∫
−∞

exp
(
−y2

2

)
dy +

∞∫
δ

exp
(
−y2

2

)
dy


For other distribution laws on the measured value and measurement error, the model

(5), (6) were investigated in [8].
The dependences of the probabilities α(δ, z) and β(δ, z), as well as the probability

α(δ, z) + β(δ, z) of an erroneous decision δ on the tolerance value at z = 0.5 are shown in
Figure 4.
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Figure 4. Dependences of the probability of an erroneous decision )( β+α , as well as the proba-
bilities of false and undetected failures on the value of the reduced tolerance δ  on 5.0=z . 

Note also that the error solution function reaches its minimum at some internal 
point )1;0(∈δ , as is the case with the normal distribution of the measured value and the 
measurement error. 

The two-dimensional dependences of the probabilities of false and undetected fail-
ures on the magnitude of the dimensionless measurement error z  and the dimension-
less tolerance for the controlled parameter δ  are shown in Figure 5a,b. 

 
Figure 5. Probability of false failures (a); probability of undetected failures (b). 

  

Figure 4. Dependences of the probability of an erroneous decision (α+β), as well as the probabilities
of false and undetected failures on the value of the reduced tolerance δ on z = 0.5.

Note also that the error solution function reaches its minimum at some internal point
δ ∈ (0; 1), as is the case with the normal distribution of the measured value and the
measurement error.

The two-dimensional dependences of the probabilities of false and undetected fail-
ures on the magnitude of the dimensionless measurement error z and the dimensionless
tolerance for the controlled parameter δ are shown in Figure 5a,b.
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less tolerance for the controlled parameter δ  are shown in Figure 5a,b. 

 
Figure 5. Probability of false failures (a); probability of undetected failures (b). 

  

Figure 5. Probability of false failures (a); probability of undetected failures (b).

4.1.3. Development of the Classical Model: Models of Failures and Degradation of the
Complex Technical System

All failure models that allow for the taking into account of the degradation pro-
cesses occurring in the CTS can be conditionally divided into probabilistic, empirical, and
probabilistic physical models, that includes among other things, the Markov models of
degradation and failures.

In the fan model [9–11], also called a distribution and belonging to the category of
probabilistic models, the defining parameter (DP) is represented as a linear function of
time, shown in Figure 6a.
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Figure 6. The model of a random degradation process and a scheme for the formation of a
time-to-failure distribution: (a) α distribution (fan process); (b) DN distribution law; (c) DM
distribution law.

Here, t is the operating time for the failure; X is random variable of the DP; DP* is the
normalized value of the DP at which the failure occurs; and f is the function of density of
the distribution of the operating time for the failure.

The distribution function of the operating time up to a given level DP* is given by the
distribution function [9–11]:

F(t) = Φ
(

t− µ

vt

)
, (9)

where Φ is the normalized normal distribution function; µ = 1/a is the parameter of the
scale of degradation, a is the mathematical expectation of the rate of change of the DP (the
average rate of the degradation process), normalized to the limit value; and ν is the shape
parameter (coefficient of the variation of the degradation process).

The empirical model of the “drift of metrological characteristics” [6,7] is based on
the assumption on a linear law of change of the MI zero mark and an exponential law of
increasing measurement error:

m0(t) = m00 + vmt, σ(t) = σ0 +
vz

az
(exp(azt)− 1), (10)

where σ0 is the value of the initial error, vz is the average initial velocity of the error increase,
az is the parameter characterizing the acceleration of the error increase, m00 is the initial
value of the zero drift (usually assumed to be zero), and vm is the average velocity of the
zero drift.
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Let us now consider the Markov models of degradation and failures, widely used
in applied problems. In these models, it is assumed that the degradation process can be
approximated by a continuous Markov process of the diffusion type [9–11] and is described
by a stochastic differential equation of the Ito type:

dx(t) = A(t)dt + B(t)dη(t), (11)

where x(t) is the value of the DP; A(t) and B(t) are deterministic functions characterizing
the change in the mean value and variance of the DP (drift coefficient and diffusion
coefficient); and η(t) is a random variable of the Gaussian type.

The problem of determining the distribution of time before the first failure of the MI,
in this case, is reduced to solving the problem of the first achievement of the upper limit of
the DP* (see Figure 6b,c). This problem can be solved if the conditional probability density
ω(t, x) of the process transition from one state to another is known.

For a Markov diffusion-type processes, a partial differential equation (the Fokker–
Planck–Kolmogorov equation) follows from (11):

∂ω(t, x)
∂t

+ A(t)
∂ω(t, x)

∂x
− (B(t))2

2
∂2ω(t, x)

∂x2 = 0, (12)

where A(t) and B(t) are the coefficients of the equation depending on the operating
conditions of the MI, and the physical and chemical processes occurring in the materials
from which the MI is made. To solve (12), it is necessary to set boundary conditions
that depend on the type of implementation of a random process, in particular, on their
monotonic nature (Figure 6b) or non-monotonic nature (Figure 6c). You also need to set the
initial conditions: t = t0, x = x0.

After finding the function ω(t0, x0; t, x), satisfying the given initial conditions, the
density function f (t) of the distribution of the time to reach the boundary DP* (the density
function of the distribution of the time to failure) can be calculated by the formula [11]:

f (t) = −
t∫

−∞

∂ω(t0, x0; t, x)
∂t

dx

In case of one DP, Equation (12) can be integrated analytically. The distribution
function for the diffusion monotone distribution (DM distribution) has the form [11]:

F(t) = DM(t; µ, ν) = Φ
(

t− µ

v
√

µt

)
, (13)

Here, µ = 1/a.
The distribution density function f (t) for (13) at µ = 0.1 is shown in Figure 7a.
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The distribution function for the diffusion non-monotonic distribution (DN distribu-
tion) has the form [11]:

F(t) = DN(t; µ, ν) = Φ
(

t− µ

v
√

µt

)
+ exp

(
2
ν2

)
Φ
(
− t− µ

v
√

µt

)
. (14)

The corresponding distribution density functions f (t) for (14) at ν = 0.8 are shown in
Figure 7b.

The failure rates for DM distribution and DN distribution have the form:

λDM(t) =
(t + µ) exp

(
− (t−µ)2

2ν2µt

)
2νt
√

2πµt ·Φ
(

µ−t
v
√

µt

) , λDN(t) =

(
νt
√

2πt
)−1√

µ · exp
(
− (t−µ)2

2ν2µt

)
Φ
(

µ−t
v
√

µt

)
− exp

(
2
ν2

)
·Φ
(
− µ−t

v
√

µt

)
Thus, distribution density functions f (t), distribution functions F(t), and failure rate

functions λ(t), are calculated using finite analytical formulas using the standard Laplace
function Φ(t).

In case of several DP distribution densities f (t), distribution functions F(t), and failure
rates λ(t), can only be calculated numerically.

The process of degradation of the mechanical components of the CTS, due to the
irreversibility of the destruction processes (mechanical wear, fatigue straining, etc.), is
considered to be a process with monotonous realizations of a random variable. DM distri-
bution is used for CTS nodes containing electromechanical elements (relay and connector
contacts, sliding electrical contacts, gears, etc.) [11].

The process of degradation of the CTS, which include integrated circuits and com-
plex electronic devices, also has non-monotonic implementations of a random variable.
Therefore, the degradation of such CTS is described by the DN distribution [11].

We will analyze the models of failures and degradation of the CTS. Degradation and
failures models differ significantly from a physical point of view. In particular, the fan
process assumes that its characteristics are completely determined by the initial state (the
quality of the manufacturing samples of the components of the CTS), and do not depend
on the mechanical, physical and chemical degradation processes occurring in the circuits
and mechanisms of the components of the CTS, under the influence of external conditions
and time.

The drift model of metrological characteristics [10], clearly demonstrates the departure
of the zero mark of the MI and CTS with the increase in measurement error over time. The
model assumes preliminary processing of statistical data in order to determine estimates of
the drift parameters.

The Markov models (12), (13) are based on the use of probabilistic characteristics,
the operating conditions of the CTS, as well as on the use of the physical and chemical
properties of the materials. The advantage of Markov models [12,13] is that they have
accurate analytical expressions for all statistical characteristics, including statistical mo-
ments. In addition, there are no analytical expressions for the statistical moments of the fan
α distribution law. These moments are determined by approximate dependencies, which
complicates the use of a fan distribution in practice.

The density distribution function of the DM distribution occupies an intermediate
position between the, widely used in practice, normal distribution (which is symmetrical)
and the more elongated distribution.

The density curves of the DN distribution have a more significant insensitivity thresh-
old, a more positive kurtosis and are more asymmetric than the DM distribution.

The intensities of the diffusion distributions have finite limits:

lim
t→∞

λDM(t) = lim
t→∞

λDN(t) =
1

2µν2 .
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Here, are some important properties of diffusion distributions for practical application:
1. Where a random variable T is described by a DM distribution of the form DM(t; µ, ν),

then the random variable x = cT (c = const) is also described by a DM distribution of the
form DM(t; cµ, ν).

2. Where a random variable T is described by a DM distribution of the form DM(t; µ, ν),
then the random variable θ = 1

T is also described by a DM distribution of the form

DM
(

t; 1
µ , ν
)

.
3. Where a random variable T is described by a DN distribution of the form DN(t; µ, ν),

then the random variable x = cT (c = const) is also described by a DN distribution of the
form DN(t; cµ, ν).

4. The sum of n random variables obeying the distribution of the form DN(t; µ, νi) is

described by the DN distribution of the form DN

(
t; nµ, 1/

√
n
∑

i=1
ν−2

i

)
.

5. The sum of n random variables obeying a distribution of the form DN(t; µi, ν) is

described by a DN distribution of the form DN
(

t;
n
∑

i=1
µi, ν/

√
n
)

.

6. The sum of n random variables obeying the DN distribution of the form DN(t; µ, ν)

is described by the DN distribution of the form DN
(

t; nµ, ν√
n

)
.

The proof of properties 1–6 can be carried out by replacing the variables and definitions
of functions (13)–(14).

Some additional properties of diffusion distributions are described in [11].
Analysis of the graphs on the distribution functions shows that distributions (9), (12),

(13) have different zones of high reliability. This means that the estimation of small-level
quantiles, i.e., the assignment of a gamma-percent resource, significantly depends on the
selected type of failure model of the CTS.

Diffusion models can be parameterized quite simply in the presence of statistical
information. For example, when parameterizing based on statistical data on the moments
of failure {ti, (i = 1, 2, . . . , N)}, the estimates of the parameters

^
µ and

^
ν calculated using

the maximum likelihood method for the DM distribution have the form:

^
µ =

1
N

N

∑
i=1

ti,
^
ν =

√
^
µ ·

√√√√ 1
N

N

∑
i=1

1
ti
− N

(
N

∑
i=1

ti

)−1

,

and for DN distributions have the form:

^
µ = N

(
N

∑
i=1

1
ti

)−1

+
N
2

(
N

∑
i=1

(
^
µ + ti)

−1
)−1

− N2

4

(
N

∑
i=1

(
^
µ + ti)

−1
)−2

− N

(
N

∑
i=1

1
ti

)−1
√√√√ 1

N

N

∑
i=1

ti − N

(
N

∑
i=1

1
ti

)−1

,

^
ν =

√√√√ 1
^
µ N

N

∑
i=1

ti +

^
µ

N

N

∑
i=1

1
ti
− 2

Thus, diffusion models are more preferable (adequate), since, unlike the fan distri-
bution and the drift model of metrological characteristics, they can be used to control the
degradation and reliability of the CTS, based on the taking into account of the physical pat-
terns implemented through time-dependent variable coefficients A(t) and B(t) in Equation
(12). The task of developing models of physical processes for the purpose of construct-
ing coefficients A(t) and B(t) is an independent scientific task and is not considered in
this article.
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4.2. The Model of Operation of a Complex Technical System Fleet with a Fully Recoverable Resource

The attribution of a set of CTS to one or another degradation group is carried out on
the basis of structural and functional analysis of the metrological reliability indicators [2,6,7],
which includes the types of failures, the consequences of the failures, as well as determination
and analysis of the rational composition of the controlled parameters and an assessment of
the required recovery time of the CTS. In this paper, the controlled states of the CTS will be
evaluated using the probabilities of a false failure α, an undetected failure β and the time tB
required for recovery after the failure is detected (the recovery time depends on the “severity”
of the malfunction detected during monitoring). At low values of these estimated indicators,
we will refer the CTS to the first group of degradation. As the degradation increases (as
these indicators increase), we will refer the CTS to the second, third and fourth groups of
degradation, respectively. Without going into the details of assigning parameters of criteria for
attribution to a particular degradation group, we note that the number of degradation levels
is determined by a set of types and types of CTS under consideration, their characteristic
features, as well as the specific task being solved.

Figure 8a shows a graph with one fully workable state E1 and four states corresponding
to different levels of degradation (malfunction): E2, E3, E4 and E5 [6]. Let us distinguish the
three parts in the classical model [2]: the initial operational state E1, the failure state E2 and
the subgraph corresponding to the control function (highlighted in Figure 8b by rectangle
C2). Then, the classical model can be represented as a “serial connection” E1, C2 and
E2 [14,15]. The states of the subgraph: K3 is verification of a failed MI, K4 is the restoration
of the CTS, K5 is verification of a working MI and K6 is the state of an undetected failure
of the CTS. The probabilistic characteristics of the state transition are the same as in the
classical model [2].
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Figure 8. Graphs and subgraphs of the CTS operation model with full resource recovery: (a) with the
control of four degradation states; (b) with the control of one degradation state (classical model).

Note that if the control subgraph is completely removed from the graph in Figure 8b
and the probabilistic characteristics are set on the edges of the remaining graph, then a
simple model will be obtained that describes the operation of a small gun [6].

Figure 8a uses the notation: E1 is a fully functional state and four states corresponding
to different levels of degradation of the CTS; E2 is the first group of degradation (functional
state with minor deviations of the normalized metrological characteristics); E3 is the second
group of degradation (a state with some deviations of the metrological characteristics, from
which it is possible to return to a fully functional state with small resource costs); E4 is the
third group degradation (a state from which it is possible to return to a fully functional state
with costs associated with sufficiently resource-intensive maintenance); and E5 is the fourth
“heavier” group of degradation. As the degradation group number increases, returning to
the state E1 becomes more and more resource intensive.
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Let us “attach” four metrological control systems, C2, C3, C4 and C5, between the
fully functional state E1 and the other four states, similar to the one shown in Figure 8a
(“fan connection”). We will use the corresponding upper indices for the probabilistic and
deterministic parameters of the model of each subsystem, describing samples of the CTS
with different levels of degradation.

Then, the system of equations describing the semi-Markov stationary model will take
the form [6]:


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(15)

Here, αi, (i = 2, 3, 4, 5) is the conditional probability of a false failure, βi is the condi-
tional probability of an undetected failure and γi = Fi(TK)δj, (j = 1, 2, 3) are the probability
of a transition from a state of degradation to the next, more severe, state number j + 1.

Model (15) is a system of 21 equations. The rank of the system is 20. Exclude one of
the equations (for example, the last equation of the system (15)) and add a normalization
condition, as follows:

π1 +
4

∑
i=1

6

∑
j=2

π
(i)
j = 1 (16)

Then, the resulting system of linear inhomogeneous Equations (15) and (16) will have
a unique solution that can be obtained using standard algorithms and methods for solving
the corresponding systems [5,6].

Initial data: the total number of states is 21 and the number of degradation levels is
four. As the CTS degrades, the duration of the verification and recovery time increase, and
reliability decreases.

As generalized parameters characterizing the distribution of the control volumes by
the degradation groups, the duration TIBV T(i)

K for each of the four degradation groups
was selected. As a result of the calculations, the dependence of the readiness coefficient on
the TIBV was constructed:

KA = KA(T
(1)
K , T(2)

K , T(3)
K , T(4)

K ), (17)

and the analysis of the influence of the TIBV of the different degradation groups (i = 1, 2,
3, 4) on the readiness coefficient was carried out. When constructing the dependence (17),
the probabilities of false and undetected failures were set as average values for each of the
degradation groups, namely: α4 > α3 > α2 > α1, β4 > β3 > β2 > β1.

The calculations have shown that if three arguments out of four are fixed in function
(17), for example T(2)

K = c(2)∗, T(3)
K = c(3)∗, T(4)

K = c(4)∗, c(i)∗ = const then the dependence

of function (17) on the remaining variable T(1)
K will have the form shown in Figure 9. If two

arguments out of four are fixed in function (17), for example T(1)
K = c(1)∗ and T(2)

K = c(2)∗

then the readiness coefficient KA, as functions of two variables, will be convex upwards
(Figure 9). The maximum of the readiness coefficient KA is reached at a single internal
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point. Here and further, an asterisk in the upper index means that the corresponding value
is set and fixed.
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Figure 9. Dependence of the readiness coefficient KA on the TIBV for technical conditions E3 and E4.

The calculations have shown that the maximum value of the readiness coefficient is
achieved if the TIBV for the fourth degradation group is about 1.3 times less than for the
third group.

The developed model allows us to calculate the optimal duration of the TIBV for the
CTS of different degradation groups. If it is impossible to provide optimal TIBV values for
some degradation groups in practice, then in (17) “possible” TIBV values should be set
for these groups and local optimum TIBV durations for the remaining degradation groups
should be calculated.

Note that the model of interaction of the CTS with the MI with a simplified form of
technical condition control can be represented as a graph (Figure 8a), if you remove the
control subgraphs C2–C5 and set the probabilistic characteristics of the state transitions
on the edges of the remaining graph. Such a model, supplemented with a formula for
calculating the average total resource costs SUM = S12 p12 + S23 p23 + S34 p34 + S45 p45
(where S12, S23, S34, S45 are unit costs and p12, p23, p34, p45 are probabilities of the state
transitions), was used in [6] when calculating the technical and economic indicators of the
metrological support system, when forming programs for the long-term development of
the CTS fleet.

The models described in Section 4.1 and 4.2 do not allow modeling processes of CTS
fleet renewal, and do not allow for the taking into account of the procurement of new CTS
samples, or the modernization of existing CTS samples and the development of promising
CTS samples. The model presented in Section 4.3 of the article allows modeling for all stages
of the life cycle, including procurement, modernization and development of advanced
CTS samples.

4.3. The Model of Operation of the Complex Technical System Fleet with a Partially Recoverable Resource

Next, we will distribute the CTS into three degradation groups [7]: the first is the start
of operation of the CTS, the sample remains operational and the changes are insignificant;
the second is where the operation and resource consumption of the CTS sample continue,
the changes in characteristics are significant and the rate of change is average; and the third
is a long-term operation, where the changes in characteristics are very significant and the
rate of change is high. The number of degradation groups is determined by a set of types
and the types of CTS under consideration, as well as the specific task being solved.
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Figure 10 presents a graph of the operation model of the updated CTS fleet, with three
degradation groups and two subgraphs modeling the process of updating the CTS fleet.
The upper indices in parentheses indicate the number of the degradation group. Each
degradation group will be modeled using the classical model [2], described in Section 4.1.1.
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Each of the two subgraphs describing the upgrade process include three states:
E(l)

7 , l = 2, 3 are the in-depth diagnostics of the technical condition; E(l)
8 , l = 2, 3 is the

repair of the CTS; and E(l)
9 , l = 2, 3 is the purchase (or development and production) of a

new similar model of the CTS. The probabilistic parameters of the main state transitions are
shown in Figure 10, in Greek letters. Certain shares of the CTS, from the secondω(2) and
thirdω(3) degradation groups, in case of failure of the CTS are sent for in-depth diagnostics
of the technical condition, in order to determine the feasibility of updating (replacing with a
new model of the CTS) or continuing operation after repair. To simplify, some probabilistic
characteristics are not indicated in Figure 10, but they can be easily restored, taking into
account that the sum of the probabilities of the transitions from each vertex of the graph
are equal to one. If one edge comes out of the vertex, then the corresponding transition
probability is one, and if two edges come out of the vertex, and the probability of one
transition is written on the graph, then the probability of the second transition is equal to
the difference of one and the known probability of the first transition.
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Here π(j)i are the stationary probabilities of finding the CTS in the corresponding states;
α(j), j = 1, 2, 3, β(j), j = 1, 2, 3 are the conditional probabilities of false and undetected
failures, respectively; γ(j) = Fj(TK) is the probability of failure during the time interval TK

between the verifications; Fj(T) is exponential distribution function; and (χ(j), η(j), j = 1, 2)
are the probabilities of the transitions of the corresponding states from the j degradation
group to the next (j + 1) group. The first three systems (18) describe the processes of the
CTS operation for the three degradation groups, and the fourth system (18) describes the
process of updating the CTS fleet.

Model (18) is a homogeneous system of 24 linear algebraic equations. The rank of the
system is 23. Exclude one of the equations (for example, the last equation of the system
(18)) and add a normalization condition instead, as follows:

6

∑
i=1

3

∑
j=1
π
(j)
i +

9

∑
i=7

3

∑
j=2
π
(j)
i = 1 (19)

Then, the resulting system of linear inhomogeneous algebraic equations (18) will have
a unique solution [7].

The readiness coefficient KA of the fleet of the CTS is calculated by the formula [2]:

KA =

(
∑

j
π
(j)
1 ψ

(j)
1

)
/

(
∑
i,j
π
(j)
i ψ

(j)
i

)
(20)

Hereψ(j)
i is the mathematical expectation of the time (average time) of the CTS being in

the corresponding states E(j)
i (assumed to be known). In the numerator (20), summation by

index j is performed for all workable states, and in the denominator (20) is the summation
by both index i and index j for all states (the index i is responsible for unworkable states).

As parameters characterizing the distribution of the metrological control volumes
and the quality of the metrological control by degradation groups, the duration of the
TIVB T(j)

K , j = 1, 2, 3 for each of the three degradation groups, the relative values of
the operational tolerances for the controlled parameters δ(j), j = 1, 2, 3 and the relative
measurement errors z(j), j = 1, 2, 3, were selected.

As a result of the solution for system (18), the dependence of the CTS readiness
coefficient for use on the above metrological parameters, organizational, technical and
technical parameters is constructed:

KA = KA(T
(1)
K , T(2)

K , T(3)
K , α(1), α(2), α(3), β(1), β(2), β(3),ω(2),ω(3), µ(2),µ(3)), (21)

moreover, the functions of the conditional probabilities of false failures and undetected
failures depend on the relative operational tolerance and relative measurement errors:

α(1) = α(1)(δ(1), z(1)), α(2) = α(2)(δ(2), z(2)), α(3) = α(3)(δ(3), z(3)),
β(1) = β(1)(δ(1), z(1)), β(2) = β(2)(δ(2), z(2)), β(3) = β(3)(δ(3), z(3))

that are calculated using Formulas (5)–(8).
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In (21), the following parameters are presented: ω(2), ω(3) are the proportion of
samples sent for in-depth diagnostics of the CTS samples from the number of samples
received for verification; and µ(2), µ(3) are the parameters characterizing the process of
updating the CTS fleet (so, for example, in special cases µ(j) = 0, where all inoperable CTS
samples are changed to new ones, and where µ(j) = 1 they are repaired). The parameters
ω(j), µ(j) are conditionally attributed to the organizational and technical categories. The
readiness coefficient also depends on other technical parameters, for example η(1), η(2), χ(1),
χ(2), which characterize the degradation process of the CTS fleet (operational parameters),
and the average time ψ(j)

i spent by the CTS sample in various states. These parameters are
determined based on the processing of the available statistical information and the relevant
criteria for classifying the CTS into different degradation groups.

Note that the parameters ψ(j)
9 (time spent in the state E(i)

9 ) allow you to model both the
purchase and development of new samples of CTS. To simulate the procurement of new
samples of CTS we have to set ψ(j)

9 sufficiently small, and to simulate the development of
new samples, we have to set the CTS at medium and large.

Note that the constructed dependence (21), like (17), is smooth, so its extreme proper-
ties can be effectively investigated using standard gradient methods.

On the basis of solving a series of problems on the extremum of a function of several
variables (21), the influence of the TIBV T(j)

K of the CTS from different degradation groups
and the relative tolerances on controlled parameters δ(j) on the readiness coefficient are
analyzed KA.

Consider the effect of the duration of the TIBV on the readiness coefficient KA. Let us
fix all the arguments (21), with the exception of three: T(i)

K , i = 1, 2, 3. If we additionally,

fix any two arguments T(i)
K out of three, for example T(2)

K = C(2)∗
TK

, T(3)
K = C(3)∗

TK
, then the

dependence of function (21) on the remaining argument T(1)
K will have the form given in [2]:

convex upwards with a single maximum.
An asterisk in the upper index means that the corresponding value is set and fixed. If

one of the three arguments is fixed in function (21) (for example, T(3)
K = C(3)∗

TK
), then the

readiness coefficient curve KA, as well as the functions of the other two arguments, T(1)
K and

T(2)
K , will be convex upwards (Figure 11). The maximum of the readiness coefficient KA will

be reached at a single internal point in the parameter plane, T(1)
K × T(2)

K . The dependences
of the readiness coefficient KA on the frequency of the control for the first and third groups,
and for the second and third groups of degradation, have a similar form.
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Optimization (21) for three groups of degradation showed that the characteristic ratio
of the TIBV durations is 80:45:30, thus, the higher the degradation group, the more often
CTS verifications are required.

Consider the effect of the relative operating tolerances δ(j), j = 1, 2, 3 on KA. Similarly
to the above, we fix all the arguments (21), with the exception of three δ(j), j = 1, 2, 3. Then,
the dependence of the readiness coefficient KA on relative operational tolerances is similar
to its dependence on the TIBV, T(i)

K , i = 1, 2, 3.
The calculations have shown that the general form of dependence KA on two toler-

ances, at a fixed value of the third tolerance, has the form of surfaces shown in Figure 12.
The surface of the readiness coefficient KA as a function of two arguments will be convex
upwards, where the maximum is reached at a single internal point in the parameter plane,
δ(1) × δ(2), δ(1) × δ(3) or δ(2) × δ(3). Optimization of the KA of three relative tolerances
simultaneously showed that their characteristic ratio is 0.07:0.09:0.13, thus, the higher the
degradation group, the greater the tolerance.
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The study of the joint dependence KA on the TIBV and tolerances showed that the
maximum of the function of six variables is achieved at a single internal point of a set of
parameters, T(1)

K × T(2)
K × T(3)

K × δ(1) × δ(2) × δ(3). The optimal values of the arguments

were: T(1)
K = 81.59, T(2)

K = 50.46, T(3)
K = 32.55, δ(1) = 0.072, δ(2) = 0.0872 and δ(3) = 0.128.

At the same time, the optimal values of the probabilities of false and undetected failures
were: α(1) = 0.227, α(2) = 0.267, α(3) = 0.347, β(1) = 0.171, β(2) = 0.222 and β(3) = 0.323.
The calculations have shown that with an increase in the number of the degradation group,
the TIBV decreases, the tolerances for controlled parameters and the probabilities of false
and undetected failures increase. The probabilities of false failures slightly exceed the
corresponding probabilities of undetected failures for each degradation group.

We describe the results of a study on the stationary distribution of the CTS samples
in different degradation groups, depending on the rate of degradation processes. The
rate of degradation is determined using transition probabilities χ(i), η(i). The lower the
corresponding probability, the slower the degradation processes proceed. Four variants
differing in the rate of degradation were investigated: η(1) = 0.25, χ(1) = 0.2, η(2) = 0.35,
χ(2) = 0.3 (option 1); η(1) = 0.025, χ(1) = 0.02, η(2) = 0.35, χ(2) = 0.3 (option 2); η(1) =
0.025, χ(1) = 0.02, η(2) = 0.035, χ(2) = 0.03 (option 3); and η(1) = 0.025, χ(1) = 0.02;
η(2) = 0.035, χ(2) = 0.003 (option 4). Note that the variants are arranged in order of
decreasing degradation rate. The distribution of the proportion of working samples of the
CTS by degradation groups at different values of these parameters is shown in Figure 13.



Axioms 2023, 12, 300 20 of 24

Axioms 2023, 12, x FOR PEER REVIEW 20 of 25 
 

 
Figure 12. The dependence of the readiness coefficient 

AK  on the relative operating tolerances for 

the controlled parameters: (a) on )1(δ  and )2(δ ; (b) on )2(δ  and )3(δ . 

The study of the joint dependence 
AK  on the TIBV and tolerances showed that the 

maximum of the function of six variables is achieved at a single internal point of a set of 
parameters, )3()2()1()3()2()1( δδδ ××××× KKK ТТТ . The optimal values of the arguments were: 

59.81)1( =KT , 46.50)2( =KT , 55.32)3( =KT , 072.0)1( =δ , 0872.0)2( =δ  and 128.0)3( =δ . At the 
same time, the optimal values of the probabilities of false and undetected failures were: 

227.0)1( =α , 267.0)2( =α , 347.0)3( =α , 171.0)1( =β , 222.0)2( =β  and 323.0)3( =β . The cal-
culations have shown that with an increase in the number of the degradation group, the 
TIBV decreases, the tolerances for controlled parameters and the probabilities of false and 
undetected failures increase. The probabilities of false failures slightly exceed the corre-
sponding probabilities of undetected failures for each degradation group. 

We describe the results of a study on the stationary distribution of the CTS samples 
in different degradation groups, depending on the rate of degradation processes. The rate 
of degradation is determined using transition probabilities )(iχ , )(iη . The lower the cor-
responding probability, the slower the degradation processes proceed. Four variants 
differing in the rate of degradation were investigated: 25.0)1( =η , 2.0)1( =χ , 35.0)2( =η , 

3.0)2( =χ  (option 1); 025.0)1( =η , 02.0)1( =χ , 35.0)2( =η , 3.0)2( =χ  (option 2); 025.0)1( =η
, 02.0)1( =χ , 035.0)2( =η , 03.0)2( =χ  (option 3); and 025.0)1( =η , 02.0)1( =χ ; 035.0)2( =η , 

003.0)2( =χ  (option 4). Note that the variants are arranged in order of decreasing degra-
dation rate. The distribution of the proportion of working samples of the CTS by degra-
dation groups at different values of these parameters is shown in Figure 13. 

 
Figure 13. Distribution of workable CTS samples by degradation levels at different values of pa-
rameters determining the rate of degradation. 
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The probability of the CTS staying in the first degradation group for option 2 is about
5.5 times higher compared to option 1. At the same time, the ratio of the probability of
being in the third group compared to the probability of being in the first group remains
approximately the same.

The probability of the CTS staying in the first degradation group monotonically
decreases, and the probability of being in the second group monotonically increases with
sequential consideration of options from 2 to 4.

Next, we investigate the dependence KA on the total production capacity of the
metrological units in which the MI and CTS are verified and checked. The production
capacity of a metrological unit may be temporarily limited for one reason or another. The
specified restriction was set in the form of an inequality, ∑

j
π(j)ψ(j) ≤ C(π)∗, where C(π)∗ is

the conditional production capacity of the metrological unit, and the problem of conditional
optimization was solved. In Figure 14 the dependences of the TIBV on the total conditional
production capacity ζ of the metrological units and the readiness coefficient corresponding
to these intervals (in percent) are presented.
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If the production capacities of the metrological division do not allow for the checking
of the required number of CTS, then it is possible to operate a fleet of CTS with increased
TIBV. With a decrease in the production capacity of the metrological unit from 100% to 75%,
the readiness coefficient KA decreases from 0.9514 to 0.8402.

5. Results

A set of interrelated mathematical models of the processes of operation, renewal and
degradation of a fleet of CTS with metrological support was developed. The basis of the
developed set of models consists of:

− A basic model of the CTS operation;
− A set of CTS operation models, having different levels of degradation (for different

levels of CTS degradation a different number of system states and different variants
of system maintenance are used);

− A model of false failures and undetected failures;
− A model of CTS fleet renewal, including such renewal methods as the purchase of

new CTS samples, the modernization of existing CTS samples and the development
of new promising CTS samples;

− A functional dependence model of the CTS availability factor on a number of technical
parameters, organizational and technical parameters, and technological parameters
of the CTS belonging to different degradation groups and different methods of CTS
stock renewal.

On the basis of the set of interrelated mathematical models presented in the article,
the software for modeling the processes of operation, renewal and degradation of the fleet
of CTS with metrological support was developed.

6. Discussions

The models developed and implemented as software allow for the parametrical opti-
mization of the processes of CTS fleet functioning for a number of parameters, including
metrological parameters, organizational and technical parameters, and technical parameters.

If in practice it is impossible to provide the optimal TIBV values or tolerances for the
controlled parameters for some degradation groups, then for these groups the “possible”
values of the TIBV and tolerances for the controlled parameters should be established, and
the developed models should be used for calculation.

The developed set of models include a model for calculating the probabilities of
false failures and undetected failures, for use in cases where the measured parameter
and measurement error have a normal distribution law. The set of models developed
in the article can also be used for different distribution laws of the measured parameter
and measurement error: analytical defined laws, statistical defined laws or analytical and
statistical distribution laws.

The constructed functional dependences of the availability factor on metrological,
technical, organizational, technical and technological parameters have a smooth character,
which makes it possible to effectively investigate the extreme properties of the availability
factor using standard gradient methods.

7. Conclusions

Thus, the research goal has been achieved: a set of interrelated models has been
developed, which solves the current need for end-to-end modeling of all the main stages
of the life cycle of the CTS fleet. The developed set of models makes it possible to ade-
quately simulate large CTS fleets, including those incorporating up to several hundreds of
thousands of CTS samples.
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The developed set of interrelated models allows:

− Management of the process of development of CTS fleets;
− Optimization of the processes of CTS fleet functioning;
− Identification of problematic issues in the development of CTS fleet and the formation

of strategies for CTS fleet development in the presence of various constraints;
− The solving of the problem of conditional optimization in the presence of constraints

on the technological parameters of the CTS fleet development (with constraints on
part of the arguments of the availability factor function);

− Calculation of the technological and technical–economic parameters of the CTS fleet
functioning and development;

− Evaluation of the risks associated with false and undetected failures, as well as the
risks associated with CTS degradation;

A set of models is used in the Main Scientific Metrology Center:

− To classify the designed CTS in order to establish the requirements for their metrologi-
cal support;

− When developing plans for medium-term and long-term development of the
CTS fleet.

A set of models and software can be used by design organizations involved in the
development of modern and advanced CTS with metrological support.

8. Future Works

At present, a set of models continues to develop in the direction of development
and replenishment with models of CTS fleet maintenance; namely, models of work-
places for the verification of MI, taking into account the priorities of the MI samples
coming for verification [27,28], as well as models of CTS fleet functioning under such
modes of functioning as the mode of high readiness for use, the mode of use in extreme
conditions, etc.
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