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Abstract: Fuzzy sets have been proven to constitute an asset in the evolution of reliability theory
in recent decades. Their contribution in addressing the possibility of errors, insufficiency of data,
randomness, or fuzziness, either in the system or in the accumulation of any data for the respective
system, which is overlooked in the traditional reliability assessment, seems to be quite crucial. The
present work deals with the statistical fuzzy reliability evaluation of a blended system that comprises
two subsystems. One system contains two components aligned in a parallel configuration, and
the other is a 3-out-of-5 system. The reliability of this model is assessed using two approaches to
intuitionistic fuzzy sets (IFS), namely, traditional IFS and interval-valued intuitionistic fuzzy sets
(IVIFS). Three cases are considered in each approach, which are compared individually as well as
with each other. It was established that the IVIFS yield better results than the IFS. The obtained results
are displayed in both tabular and graphical forms for better assessment.

Keywords: interval-valued intuitionistic fuzzy sets (IVIFS); intuitionistic fuzzy reliability (IFR);
intuitionistic fuzzy sets (IFS); k-out-of-n system; statistical fuzzy reliability
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1. Introduction

Technology has advanced tremendously in recent decades, leading to the development
of numerous industrial systems. However, these technological advancements are accom-
panied by complexity in systems. As a result, it is critical that these systems be reliable
and durable, which has led to the concept of reliability. Reliability theory is a field that
helps in assessing the probability of the operative state of a system for a given time under
predetermined conditions. However, reliability computation is a tedious task due to the
possibility of errors in obtaining the data or general human errors leading to impreciseness
or fuzziness of systems in the real world. This obstacle can be overcome using the fuzzy
set theory. The notion of fuzzy sets was first conceptualized by Zadeh [1] to deal with the
fuzziness or randomness in countless situations. Extensive research in the field of fuzzy
sets has led to various extensions, such as intuitionistic fuzzy sets (IFS), Pythagorean fuzzy
sets, hesitant and dual hesitant fuzzy sets, and many more. The different types of sets
help in dealing with various kinds of impreciseness or fuzziness in different situations.
Traditional fuzzy sets, for instance, merely take the measure of acceptance or membership
into account, whereas IFS include both the measures of membership and non-membership
into consideration along with a degree of hesitancy. Various new techniques have emerged
in IFS in the past few decades for formulating new methodologies or helping in ranking,
such as the score (see, e.g., [2]) and accuracy functions (see, e.g., [3]), knowledge distance
(see, e.g., [4]), and various multi-criteria decision-making techniques see, e.g., [5]). These
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techniques have been helpful in reliability estimation. Therefore, since its inception, this
theory has proven to be an asset in reliability engineering, as any system in the real world
possesses errors and imprecision that cannot be tackled by conventional reliability theory.

Based on the existing literature, it is evident that the reliability assessment of real-
world problems cannot be conducted accurately if the fuzziness or possibility of errors,
human or otherwise, are not taken into account. Thus, this particular work deals with
the statistical evaluation of the fuzzy reliability of a blended system with two different
intuitionistic fuzzy approaches. The considered system consists of two subsystems, and
their reliability functions are obtained with the assistance of the universal generating
function (UGF) procedure. Furthermore, two novel methodologies of IFS are proposed
based on the incorporation of intuitionistic fuzzy numbers (IFNs) and interval-valued
intuitionistic fuzzy numbers (IVIFNs) into the UGF method to assess the fuzzy reliability.
IFS and IVIFS are employed in the reliability computation, as they are capable of considering
a higher level of fuzziness than the traditional fuzzy sets, taking into account degrees of
acceptance and non-acceptance, with IVIFS using intervals to represent the measures
instead of crisp values. The study will also help in determining which set gives better
results. Thus, the intuitionistic fuzzy reliability (IFR) and interval-valued intuitionistic
fuzzy reliability (IVIFR) are estimated, and the obtained results are compared to determine
the better methodology using numerical examples.

2. Literature Review

Numerous researchers have made significant contributions to the field of fuzzy reli-
ability, which is an amalgamation of reliability theory and fuzzy set theory. This section
presents some of the work done in the past few years in three subsections based on the
three techniques used: fuzzy sets, IFS, and the UGF method.

2.1. Reliability Evaluation Using Fuzzy Set Theory

Utkin and Gurov [6] assessed fuzzy reliability using systems of functional equations
by considering variables in the possibility context and validating the results using examples.
Bing et al. [7] presented a technique involving the fuzzy linear regression method to analyse
the reliability of a system where fuzzy variables ate involved. Dong et al. [8] proposed a
simulation-based approach to measure fuzzy reliability to reduce the complexity involved
in its calculations. The proposed methodology is useful for situations where the evaluation
of fuzzy reliability is complex. Kumar et al. [9] presented a novel technique using interval-
valued trapezoidal fuzzy sets to estimate the imprecise reliability, and further applied the
methodology to a model of a marine power plant.

Abdelgawad and Fayek [10] utilized fuzzy arithmetic operations to conduct a quan-
titative fault tree analysis (FTA) for reliability determination, where experts could use
linguistic terms instead of exact values. The methodology was demonstrated by the authors
with a case study of horizontal directional drilling (HDD). Chandna and Ram [11] applied
fuzzy logic, linguistic techniques, and multi-criteria decision-making techniques for the
estimation and improvement of fuzzy reliability. Chaube and Singh [12] developed a
technique for the evaluation of fuzzy reliability based on the membership function. Wang
et al. [13] presented an approach based on sequential optimization and fuzzy reliability
for multidisciplinary systems. Furthermore, the authors also proposed a novel collocation
method for the appraisal of the fuzzy reliability of systems. Yang et al. [14] evaluated the
reliability of multi-state systems (MSS) based on multi-valued decision diagrams under
epistemic uncertainty with the help of fuzzy set theory and interval theory. Furthermore,
the technique is validated using a case study of a high-speed train bogie system.

2.2. Reliability Evaluation Using IFS

The concept of fuzzy sets has been further extended to intuitionistic fuzzy sets (IFS)
by Atanassov [15], which has also been instrumental in evaluating the reliability of nu-
merous systems due to its capability of including a non-membership value along with
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the membership value for systems having a higher level of hesitancy. Mahapatra and
Roy [16] used triangular intuitionistic fuzzy numbers (TIFN) to evaluate the reliability of
a system and implemented the technique on a model of a dark room. Kumar et al. [17]
introduced trapezoidal intuitionistic fuzzy numbers and their operations to formulate a
method for the estimation of the intuitionistic fuzzy reliability of series and parallel systems
and applied the methodology to the basement flooding model. Garg et al. [18] utilised the
intuitionistic fuzzy concept to optimise the fuzzy reliability by implementing the particle
swarm optimisation and genetic algorithm.

Based on evidence theory and intuitionistic fuzzy sets, Song et al. [19] presented a
novel method for evaluating sensor dynamic reliability. To demonstrate its practicality and
validity, the authors applied the proposed approach to evidence combination and data
fusion. Kumar et al. [20] applied the Weibull distribution along with TIFNs to assess the
reliability of consecutive k-out-of-n systems, where the reliability of the transition state
of the system was computed with the help of the Markov chain method. Akbari and
Hesamian [21] developed a novel procedure to estimate the time-dependent reliability of a
k-out-of-n system using IFS. Kumar et al. [22] applied the UGF technique along with IFS to
compute the system reliability, where the failure rate follows the exponential distribution.
Previous findings have shown that another technique that has contributed tremendously to
the field of reliability theory is UGF method developed by Ushakov [23].

2.3. Reliability Evaluation Using the UGF Method

Many researchers have incorporated the UGF process with fuzzy theory to compute
the reliability of any system more efficiently. Levitin and Lisnianski [24] proposed a novel
method for the reliability estimation of an MSS using the UGF method. Furthermore, the
authors also conducted a sensitivity analysis. Ding and Lisnianski [25] created a novel
technique by implementing the fuzzy concept in the UGF method for the assessment of
the reliability of MSSs where the performance rates and their respective probabilities are
indicated by fuzzy numbers. An et al. [26] estimated reliability by developing a discrete
stress-strength interference model with the assistance of the UGF technique, where the
stress and strength random variables are considered discrete instead of continuous. Li and
Zio [27] developed a novel method using the UGF method to calculate the reliability of
a system of distributed generation. In addition, the authors presented a multiplication
operator for merging the UGFs for mechanical deterioration and renewable generation
source states into the UGF of renewable generator power output.

Mi et al. [28] extended the concept of UGF using the belief function theory to assess the
reliability of MSSs and further extended to the concept of common-cause failures. Meena
and Vasanthi [29] proposed a method to evaluate the reliability of a mobile ad hoc network
(MANET) by introducing two types of UGFs, node UGF and path UGF, for reliability
computation. Jaiswal et al. [30] assessed the fuzzy reliability of a non-reparable weighted
k-out-of-n system comprising aleatory and epistemic uncertainties by applying exponential
distribution and the UGF process. Kumar and Ram [31] calculated the interval-valued
reliability of a sliding window system using the UGF method. Liu et al. [32] produced a
novel procedure that incorporates the Bayesian network and the UGF method to analyse
the reliability of MSSs. The proposed method simplifies the computational complexities.
Li et al. [33] designed a new operator for the simulation of a cold-standby system and
analysed its reliability by implementing the GO-FLOW method and the UGF technique.

The remaining article is organised as follows: Section 3 comprises some essential
definitions that will be required in the study, followed by a description of the model
in Section 4. Section 5 includes the evaluation of the reliability function of the model
considered. Section 6 describes the methodology adopted for the estimation of the reliability
of the assumed model using the two types of intuitionistic fuzzy methods. In Section 7,
the IFR and IVIFR are evaluated based on some examples. Finally, the acquired results are
discussed in Section 8, and some concluding remarks are provided in Section 9.
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3. Essential Definitions
3.1. Fuzzy Sets

The field of mathematics, in general, gained a valuable tool for coping with the
imprecision or fuzziness present in numerous situations with the introduction of fuzzy

sets by Zadeh [1]. In a discourse universe, Ũs′ , a set
_
P

ζ

is considered fuzzy if it can be

depicted as
_
P

ζ

=

{
(p, µ_

P
ζ (p)) : p ∈ Ũs′

}
, which implies that a fuzzy set is a compilation

of ordered pairs, (p, µ_
P

ζ (p)) known as the singleton, where, µ_
P

ζ (p) represents the degree

of membership of the element p to the fuzzy set
_
P

ζ

. This value ranges only from 0 to 1.

3.2. Intuitionistic Fuzzy Sets

As mentioned earlier, the concept of fuzziness has been further expanded to include intu-
itionistic fuzzy sets (IFS) by Atanassov [15] to address further hesitation or vagueness occurring
in several situations. IFS also includes the measure of non-acceptance or non-membership,

along with the measure of acceptance or membership. Considering a set
_
M

ζ

in the uni-

verse, Ũs′ is an IFS if it can be represented as
_
M

ζ

=

{
( p̃i, µ_

M
ζ ( p̃i), υ_

M
ζ ( p̃i)) : p̃i ∈ Ũs′

}
.

Here, the quantities of acceptance and non-acceptance of an intuitionistic fuzzy number

(IFN) p̃i = (µ p̃i
, υp̃i

) in
_
M

ζ

are denoted by µ_
M

ζ ( p̃i) and υ_
M

ζ ( p̃i), respectively, such that

µ_
M

ζ , υ_
M

ζ : Ũs′ → [0, 1] ∀ p̃i and 0 ≤ µ_
M

ζ ( p̃i) + υ_
M

ζ ( p̃i) ≤ 1 for every element. Moreover,

τ_
M

ζ ( p̃i) = 1− µ_
M

ζ ( p̃i)− υ_
M

ζ ( p̃i) represents the hesitancy measure of p̃i.

The IFS can be easily converted to a traditional fuzzy set if the hesitancy measure for
each element is 0. Furthermore, it can be transformed to a crisp set if either µ_

M
ζ or υ_

M
ζ is 0.

The former case signifies that p̃i belongs to the IFS,
_
M

ζ

, whereas the latter case confirms

that the element p̃i is not contained in the IFS,
_
M

ζ

.

3.2.1. Operations on IFS

If ℘ = (µ℘, υ℘), ℘α = (µ℘α , υ℘α), and ℘β = (µ℘β
, υ℘β

) are three different IFNs, then
some important operations based on IFS are described below [34–36]:

• ℘ = (υ℘, µ℘).
• ℘α ∪ ℘β = (max

{
µα, µβ

}
, min

{
υα, υβ

}
).

• ℘α ∩ ℘β = (min
{

µα, µβ

}
, max

{
υα, υβ

}
).

• ℘α ⊕ ℘β = (µα + µβ − µαµβ, υαυβ).
• ℘α ⊗ ℘β = (µαµβ, υα + υβ − υαυβ).
• κ℘ = (1− (1− µ℘)

κ , υκ
℘), κ > 0.

• ℘κ = (µκ
℘, 1− (1− υ℘)

κ), κ > 0.
• The subtraction operator for two IFS was defined by Lei and Xu [2]. The subtraction

operator for two IFNs is defined as follows:

℘α 	 ℘β =


(

µα−µβ

1−µβ
, υα

υβ

)
, µα ≥ µβ and υα ≤ υβ

υβ > 0 and υατβ ≤ ταυβ

(0, 1) otherwise

.

3.2.2. Score Function and Accuracy Function

The score and accuracy functions are primarily used to compare two IFNs. Traneva
and Tranev [36] also presented a new ranking method for intuitionistic fuzzy pairs in
intuitionistic fuzzy logic. In this study, the comparison in IFNs is done using the score and
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accuracy functions. Chen and Tan [37] presented the score function for the ranking of IFNs,
whereas Hong and Choi [38] gave the accuracy function for situations where the score
function fails. The score function of an IFN ℘ = (µ℘, υ℘) is defined as σ(℘) = µ℘ − υ℘,
while the accuracy function is defined as δ(℘) = µ℘ + υ℘. Therefore, if σ(℘α) and σ(℘β)
are score functions, whereas δ(℘α) and δ(℘β) are accuracy functions of ℘α = (µ℘α , υ℘α)
and ℘β = (µ℘β

, υ℘β
), respectively, then:

• ℘α < ℘β if σ(℘α) < σ(℘β).
• If σ(℘α) = σ(℘β) then,

1. If δ(℘α) = δ(℘β), then ℘α = ℘β.
2. If δ(℘α) < δ(℘β), then ℘α < ℘β.

3.3. Interval-Valued Intuitionistic Fuzzy Sets

As mentioned earlier, the IFS were expanded to interval-valued intuitionistic fuzzy sets
(IVIFS) by Atanassov [39], where the measures of membership and non-membership are
described as intervals rather than exact values. As a result, the IVIFS can deal with a higher
level of randomness or fuzziness. In mathematical terms, an IVIFS Ñi in the universal
set Ũs′ can be expressed as Ñi =

{
< pi, }̃Ñi (pi), ˜
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Ñi (pi) ≤ 1 ∀ pi.

3.3.1. Interval-Valued Intuitionistic Fuzzy Numbers
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3.3.2. Operations on IVIFN

If `1 = ([α1, β1], [v1, τ1]) and `2 = ([α2, β2], [v2, τ2]) are two IVIFNs, then some
important operations are defined below [40]:

• `1 ∩ `2 = ([min(α1, α2), min(β1, β2)], [max(v1, v2), max(τ1, τ2)]).
• `1 ∪ `2 = ([max(α1, α2), max(β1, β2)], [min(v1, v2), min(τ1, τ2)]).
• `1 ⊗ `2 = ([α1α2, β1β2], [v1 + v2 −v1v2, τ1 + τ2 − τ1τ2]).
• `1 ⊕ `2 = ([α1 + α2 − α1α2, β1 + β2 − β1β2], [v1v2, τ1τ2]).
• κ`1 = ([1− (1− α1)

κ , 1− (1− β1)
κ ], [vκ

1 , τκ
1 ]), where κ > 0.

• `κ
1 = ([ακ

1, βκ
1], [1− (1−v1)

κ , 1− (1− τ)κ ]), where κ > 0.
• Zhao et al. [41] gave another important operation of subtraction in IVIFN defined below:

`1 	 `2 =


([

α1−α2
1−α2

, β1−β2
1−β2

]
,
[

v1
v2

, τ1
τ2

])
, i f α1 ≥ α2, β1 ≥ β2, v1 ≤ v2, τ1 ≤ τ2

and v2, q2 > 0 , v1(1− α2) ≤ v2(1− α1)
and τ1(1− β2) ≤ τ2(1− β1)

([0, 0], [1, 1]), otherwise

.

3.3.3. Score and Accuracy Function of IVIFNs

For an IVIFN, ` = ([α, β], [v, τ]), its score function, σ̃ is defined as σ̃(`) = 1
2 (α−v + β− τ),

whereas the accuracy function, δ̃ is given by δ̃(`) = 1
2 (α + v + β + τ) [40]. The main

objective of the two functions is to assist in ranking IVIFNs. Thus, if `1 = ([α1, β1], [v1, τ1])
and `2 = ([α2, β2], [v2, τ2]) are two IVIFNs with their respective score functions, σ̃(`1) and
σ̃(`2), and respective accuracy functions, δ̃(`1) and δ̃(`2), then,

• `1 < `2 if σ̃(`1) < σ̃(`2).
• If σ̃(`1) = σ̃(`2), then,

1. `1 = `2 if δ̃(`1) = δ̃(`2).
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2. `1 < `2 if δ̃(`1) < δ̃(`2).

3.4. Universal Generating Function

The UGF method conceptualized by Ushakov [21] has been an asset in numerous
fields, including reliability theory, due to its simplicity and efficiency. The u-function for

any discrete independent random variable C is expressed as u(z) =
Λ
∑

λ=1
p̃λzcλ , where C

contains Λ possible values and p̃λ is the probability that C = cλ.
In reliability theory, the UGF helps in the evaluation of the reliability of series and

parallel systems in a simpler yet more effective manner. For two elements whose respective
UGFs are denoted by uκ(z) and uτ(z), their UGFs for series and parallel configurations are
defined in (1) and (2), respectively:

uκ(z) ⊗
ser

uτ(z) =
Λκ

∑
λ=1

pκλzcκλ ⊗
ser
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4. Model Description 
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τ
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τ

∑
γ=1

pκλ pτγzmax{cκλ ,cτγ}. (2)

3.4.1. Algorithm for Evaluation of Reliability of a k-out-of-n System

The concept of UGF has been extensively expanded in the reliability theory by Lev-
itin [42] by formulating algorithms for different types of systems. The algorithm for a
k-out-of-n system has been described below:

Step 1. Define the u-functions of every component of the system.
Step 2. Initially assume the reliability to be R = 0 and U1(z) = u1(z).
Step 3. For r = 1, 2, . . . , n.

• Attain Ur(z) = Ur−1(z)⊗
+

ur(z).

• If Ur(z) has an expression containing zk, then it should be removed from Ur(z) and
added to R.

The reliability of the system (R) is attained at the termination of the above-
mentioned algorithm.

4. Model Description

In the present section, a blended model comprised of two subsystems, A and B, is
considered. Subsystem A consists of two components, labeled 1 and 2, which are aligned
parallel with each other. Subsystem B consists of five components, labeled I, II, III, IV,
and V, connected in a 3-out-of-5 configuration. This implies that subsystem B will operate
effectively if at least three of its five components are operational. Furthermore, subsystems
A and B are serially aligned with each other, implying that both subsystems A and B are
required to be in an operative condition for the entire system to function. Romeu [43]
used a similar system to evaluate reliability using crisp values. Here, the work has been
extended to a fuzzy system because real-world systems possess impreciseness, inadequacy
of data, randomness, or the possibility of errors. Therefore, the fuzzy reliability is estimated
using intuitionistic fuzzy approaches. The block diagram of the described system is
illustrated in Figure 1.
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The main objective of the study is to determine the reliability of the underlying system.
For this reason, we need first to determine its reliability function, which is accomplished in
the following section.

5. Computation of Reliability Function

The UGF technique has been employed for the evaluation of the reliability function of
the system described in Section 3. Firstly, the u-functions of each individual component
are obtained. If the reliability of a component r is assumed to be p̃r and the probabil-
ity of being in failure state is q̃r = 1− p̃r, then the u-functions of each component are
obtained as follows:

u1(z) = p̃1z1 + q̃1z0, u2(z) = p̃2z1 + q̃2z0, uI(z) = p̃Iz1 + q̃Iz0, uI I(z) = p̃I Iz1 + q̃I Iz0,
uI I I(z) = p̃I I Iz1 + q̃I I Iz0, uIV(z) = p̃IVz1 + q̃IVz0, and uV(z) = p̃Vz1 + q̃Vz0.

The UGF for subsystem A obtained using Equation (2) is as follows:

uA(z) = p̃1 p̃2z1 + p̃1q̃2z1 + p̃2q̃1z1 + q̃1q̃2z0. (3)

Using the algorithm depicted in Section 3.4.1, the final UGF of subsystem B is acquired
as follows:

uB(z) = [ p̃I p̃I I p̃I I I + p̃I p̃I I p̃IV q̃I I I + p̃I p̃I I I p̃IV q̃I I + p̃I I p̃I I I p̃IV q̃I+
p̃I p̃I I p̃V q̃I I I q̃IV + p̃I p̃I I I p̃E q̃I I q̃IV + p̃I I p̃I I I p̃V q̃I q̃IV+
p̃I p̃IV p̃V q̃I I q̃I I I + p̃I I p̃IV p̃V q̃I q̃I I I + p̃I I I p̃I I p̃V q̃I q̃I I ]z3

(4)

The UGF of the complete system can be obtained by the aid of (1) as follows:

U(z) = uA(z) ⊗
ser

uB(z). (5)

The system reliability is denoted as R = u′(1). Furthermore, assuming that p̃1 = p̃2 = ρ
and p̃I = p̃I I = p̃I I I = p̃IV = p̃V = Ω, the final reliability function of the considered system
is given as follows:

R =
(

2ρ− ρ2
)(

6Ω5 − 15Ω4 + 10Ω3
)

. (6)

6. Proposed Methodologies

In this section, two types of methodologies involving the IFS are presented. The
reliability of the system will be evaluated by implementing two different methods. Firstly,
we shall determine the reliability with the aid of IFNs and their operations. Secondly, we
shall proceed to determine the desired reliability using the IVIFNs and their respective
operations. The adopted methodology has also been explained using a flowchart shown
in Figure 2.
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Steps 1 and 2 of the flowchart have already been completed in Sections 4 and 5,
respectively. Steps 3 and 4 are explained in this section. Numerical examples have been
considered in Section 7 for the complete illustration of the two methodologies, along with
steps 5 and 6.

IFN-Based Approach for Fuzzy Reliability Evaluation

The IFNs-based approach for the reliability computation is illustrated as follows.
It is evident from Equation (6) that the reliability function has a polynomial form. For
convenience, it is assumed that the reliability of each component is equal. The general form
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of the reliability function can be expressed as R =
n
∑

j=1
Kj℘̃

j
i , where ℘̃i is the probability of

the operational state of the component. Moreover, assuming that ℘̃i is an IFN defined as
the ordered pair, ℘̃i = (µ℘̃i , υ℘̃i ), then the reliability function can be expressed as:

R =
n

∑
j=1

Kj(µ℘̃i , υ℘̃i )
j.

With the aid of the operations depicted in Section 3.2.1, the above formula takes the
following form:

R =
n

∑
j=1

Kj(µ
j
℘̃i

, 1− (1− υ℘̃i )
j). (7)

By applying the operations presented in Section 3.2.1, the following is readily obtained:

R =
n

∑
j=1

(
1−

(
1− µ

j
℘̃i

)Kj
,
(

1− (1− υ℘̃i )
j
)Kj
)

. (8)

For illustration purposes, let us next assume that R contains only two terms, i.e., n = 2.
Then, R = K1(µ℘̃i , υ℘̃i )

1 + K2(µ℘̃i , υ℘̃i )
2. We consider two distinct cases:

Case (i): If both K1 and K2 are positive, then (8) is simplified as:

R =

(
1−

(
1− µ1

℘̃i

)K1
,
(

1− (1− υ℘̃i )
1
)K1
)
+

(
1−

(
1− µ2

℘̃i

)K2
,
(

1− (1− υ℘̃i )
2
)K2
)

. (9)

We next apply the addition operator mentioned in Section 3.2.1, and the following
expression is easily delivered:

R =

(
1−

(
1− µ1

℘̃i

)K1
+ 1−

(
1− µ2

℘̃i

)K2 −
(

1−
(

1− µ1
℘̃i

)K1
)(

1−
(

1− µ2
℘̃i

)K2
)

,(
1− (1− υ℘̃i )

1
)K1
(

1− (1− υ℘̃i )
2
)K2
) (10)

Case (ii): If K1 is positive while K2 is negative, then (8) reduces to:

R =

(
1−

(
1− µ1

℘̃i

)K1
,
(

1− (1− υ℘̃i )
1
)K1
)
−
(

1−
(

1− µ2
℘̃i

)K2
,
(

1− (1− υ℘̃i )
2
)K2
)

. (11)

If the following conditions are satisfied:

1−
(

1− µ1
℘̃i

)K1 ≥ 1−
(

1− µ2
℘̃i

)K2
and

(
1− (1− υ℘̃i )

1
)K1 ≤

(
1− (1− υ℘̃i )

2
)K2

,

such that (
1− (1− υ℘̃i )

2
)K2

> 0,

and (
1− (1− υ℘̃i )

1
)K1

τB ≤
(

1− (1− υ℘̃i )
2
)K2

τA,

where τA and τB are measures of hesitation of first and second terms of (11), respectively,
then by implementing the subtraction operator of IFNs from Section 3.2.1, we readily
deduce that the following holds true:

R =


(

1− µ2
℘̃i

)K2 −
(

1− µ1
℘̃i

)K1

(
1− µ2

℘̃i

)K2
,

(
1− (1− υ℘̃i )

1
)K1

(
1− (1− υ℘̃i )

2
)K2

. (12)
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Thus, the IFR can be obtained using the methodology described above. Furthermore,
the methodology for IVIFS can also be derived in a similar manner for the evaluation of
IVIFR.

7. Evaluation of IFR and IVIFR

Throughout the following section, examples of IFNs and IVIFNs are presented,
wherein the IFR and IVIFR for the system considered in Section 3 are evaluated by the aid
of the reliability function given in (6).

7.1. IFR Computation

Here, three examples of IFNs are considered, as shown in Table 1, to evaluate the IFR.
It is evident from (6) that the components of subsystems A and B have different reliabilities,
namely, ρ and Ω, respectively. Thus, Table 1 shows three pairs of IFNs representing ρ and Ω
along with their respective score functions, as they help in comparing the IFNs and hence
their respective reliabilities.

Table 1. Component-wise reliabilities in terms of IFNs with respective score functions.

Case ρ Score Function Ω Score Function

I (0.70, 0.30) 0.40 (0.60, 0.30) 0.30
II (0.82, 0.10) 0.72 (0.75, 0.25) 0.50
III (0.90, 0.05) 0.85 (0.83, 0.10) 0.73

The reliability function obtained in (6) is R =
(
2ρ− ρ2)(6Ω5 − 15Ω4 + 10Ω3). For

Case I, the reliability function is given as follows:

R = (2(0.70, 0.30) − (0.70, 0.30)2) × (6(0.60, 0.30)5 − 15(0.60, 0.30)4 + 10(0.60, 0.30)3). (13)

We next apply the Equations (9)–(12), and the IFR is readily obtained as (0.46697958101,
0.42795255934).

Following a parallel argumentation, the IFR for Cases II and III can be also delivered.
The IFR for all the cases and their respective score functions (rounded to five decimal
places) are illustrated in Table 2.

Table 2. IFRs of the system with respective score functions.

Case Intuitionistic Fuzzy
Reliability (IFR) Score Function

I (0.46698, 0.42795) 0.03903
II (0.55251, 0.41912) 0.13338
III (0.79573, 0.17693) 0.61880

7.2. IVIFR Computation

Throughout the following section, three examples of IVIFNs are considered, wherein
the determination of IVIFR is accomplished. As evident from the previous section, two
separate values, ρ and Ω, for components of subsystems A and B, respectively, have been
considered. Additionally, it must be noted that the underlying examples have the same
score function as in the above subsection. Thus, the three pairs of reliabilities of components
in terms of IVIFNs with their respective score functions are displayed in Table 3.
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Table 3. Component-wise reliabilities in terms of IVIFNs with respective score functions.

Case ρ Score Function Ω Score Function

I ([0.60, 0.70],
[0.20, 0.30]) 0.40 ([0.50, 0.60],

[0.20, 0.30]) 0.30

II ([0.77, 0.82],
[0.05, 0.10]) 0.72 ([0.55, 0.60],

[0.05, 0.10]) 0.50

III ([0.88, 0.90],
[0.01, 0.07]) 0.85 ([0.79, 0.86],

[0.08, 0.11]) 0.73

For Case I, the reliability function obtained in (6) as R =
(
2ρ− ρ2)(6Ω5− 15Ω4 + 10Ω3)

becomes:

R = (2([0.60, 0.70], [0.20, 0.30]) − ([0.60, 0.70], [0.20, 0.30])2) × (6([0.50, 0.60],
[0.20, 0.30])5 − 15([0.50, 0.60], [0.20, 0.30])4 + 10([0.50, 0.60], [0.20, 0.30])3),

(14)

Using the operations given in Section 3.3.2, R can be reduced to:

R = ([0.84, 0.91], [0.04, 0.09]) − ([0.36, 0.49], [0.36, 0.51]) × (6([0.03125, 0.07776], [0.67232,
0.83193]) − 15([0.0625, 0.1296], [0.5904, 0.7599]) + 10([0.125, 0.216], [0.488, 0.657])),

(15)

By implementing the methodology described in Section 5, the IVIFR of the pro-
posed model for Case I is attained as ([0.3206188837485, 0.4669795807], [0.281447191387,
0.4279525595]).

The IVIFR for Cases II and III can also be attained similarly. The IVIFR for all three
cases with their respective score functions (rounded to five decimal places) is shown
in Table 4.

Table 4. IVIFR of the system with respective score functions.

Case Interval-Valued Intuitionistic Fuzzy
Reliability (IVIFR) Score Function

I ([0.32062, 0.46698], [0.28145, 0.42795]) 0.03910
II ([0.43368, 0.51097], [0.06861, 0.13840]) 0.36882
III ([0.74669, 0.82461], [0.07631, 0.13277]) 0.68111

8. Results and Discussion

In the present work, the reliability of the model considered in Section 4 has been
evaluated using the two different intuitionistic fuzzy approaches displayed in Figure 2.
The IFR and IVIFR have been obtained and shown in Tables 2 and 4, respectively, of the
present manuscript. The values of score functions have been calculated for the underlying
examples in both cases in order to enable feasible comparisons between them. It is also
noticeable that the score function values in both cases are equal, which will be helpful in
assessing the competence of both IFS and IVIFS. Table 5 illustrates the reliability in terms of
the score function for both of the intuitionistic fuzzy approaches. The same result is also
depicted graphically in Figure 3.

Table 5. System reliability (in terms of score function values).

Case IFR IVIFR

I 0.03903 0.03910
II 0.13338 0.36882
III 0.61880 0.68111
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In all the cases considered, it is evident that the assumed component reliability of Case
I is the lowest, while the highest corresponds to Case III in both IFS and IVIFS. In other
words, the component reliabilities follow the order Case I < Case II < Case III. In addition,
it seems that the resulting system reliabilities follow the same pattern, i.e., Case I < Case
II < Case III for both IFR and IVIFR of the system. This signifies that as the component
reliability increases, the system reliability also increases, which is evident in both Table 5
and Figure 3. From Figure 3, it can also be seen that the IFR increases significantly from
Case II to Case III, whereas the IVIFR increases linearly from Case I to Case III.

When both the IFS and IVIFS approaches are compared, it can be seen that the IVIFS
give comparatively better results than the IFS. It is clearly evident from Figure 3 that for all
three cases, the IVIFR is higher than the IFR. Although for Case I, they are almost equal, but
Cases II and III, the IVIFR is significantly higher than IFR. Therefore, the obtained results
establish that the IVIFNs provide better results in comparison to IFNs, and the system
reliability increases as the individual component reliability increases in both cases.

9. Conclusions

In the present manuscript, the concept of intuitionistic fuzzy theory was implemented
for the statistical computation of the reliability of a blended system constructed in Section 4,
as depicted by the block diagram in Figure 1. Two different approaches were applied,
namely the conventional IFS and the IVIFS-based approaches. The motive for applying
both approaches was to understand the behaviour of reliability when two different types
of IFS are used. The benefit of IVIFS against its competitor appears to be its ability to
take comparatively higher fuzziness or randomness into consideration. This seems to be
true because the acceptance and non-acceptance measures are represented using intervals
instead of exact values. From the numerical investigation carried out, it can be concluded
that the system reliability increases as the reliability of individual components increases in
both cases. Furthermore, the reliability in the case of IVIFS seems to outperform IFS.

This study will be helpful in cases involving higher hesitancy in systems and will help
in obtaining an accurate assessment of the system. Despite this, the study is not free from
limitations. One of the major limitations is computational complexity for highly complex
systems, which needs to be reduced in the future. Additionally, as future potential, both
methods considered here can be applied to numerous models or systems for reliability
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evaluation. Different types of triangular or trapezoidal intuitionistic fuzzy numbers can
also be used. This work may also be extended to multi-state systems with the assistance of
different types of fuzzy sets.
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