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Abstract: A new fault detection and identification approach is proposed. The kernel principal
component analysis (KPCA) is first applied to the data for reducing dimensionality, and the occurrence
of faults is determined by means of two statistical indices, T2 and Q. The K-means clustering algorithm
is then adopted to analyze the data and perform clustering, according to the type of fault. Finally, the
type of fault is determined using a long short-term memory (LSTM) neural network. The performance
of the proposed technique is compared with the principal component analysis (PCA) method in early
detecting malfunctions on a continuous stirred tank reactor (CSTR) system. Up to 10 sensor faults and
other system degradation conditions are considered. The performance of the LSTM neural network is
compared with three other machine learning techniques, namely the support vector machine (SVM),
K-nearest neighbors (KNN) algorithm, and decision trees, in determining the type of fault. The results
indicate the superior performance of the suggested methodology in both early fault detection and
fault identification.
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1. Introduction

Fault detection and identification play a critical role in various fields, contributing
to the overall safety, reliability, and efficiency of systems and processes. It is crucial
across different domains, such as manufacturing, chemical processing, power generation,
oil and gas distribution, transportation and automotive systems, energy and utilities,
aerospace, defense, smart infrastructures, environmental monitoring, and medical devices
and healthcare.

In modern industrial systems, fault detection and identification is a key requirement.
Because control systems are becoming more complex and data dimensionality is growing, a
fault can result in catastrophic harm. Indeed, in the worst circumstances, system failure may
result in human injuries, as well as damage with significant economic impact, concerning
production items, devices, and equipment. Control engineers are therefore focused on
researching effective fault detection and identification techniques. Improving speed and
efficiency, optimizing the management of systems and their maintenance, increasing the
reliability and health of systems, maximizing production, and minimizing repair time, are
additional reasons to address fault detection and identification.

Ensuring the system’s continuously safe or, at least, acceptable operation requires
appropriate fault detection and isolation mechanisms, which are able to distinguish between
non-faulty and faulty system behavior and find the location and nature of the fault in case
some abnormal condition is signalized. Often, controller reconfiguration is required in
response to the fault [1,2].
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Several methods for detecting faults have been proposed. Finding or creating methods
exhibiting high accuracy and speed for dealing with a system’s faults is the most crucial
issue. Indeed, after a fault occurs, there is not much time to identify it, and thus, immediate
actions are required to minimize the damage. In light of this, if the method chosen for fault
detection and identification is not reliable, then incorrect actions may result, and the fault
may spread to additional layers of the system. Even though the fault’s primary cause may
be unknown, it is crucial that it can be determined through diagnosis. The sort of fault that
occurred must also be identified after the issue has been located. To prevent the fault from
spreading to higher levels, the system’s component where the problem occurred can be
temporarily removed by identifying the type of fault [3].

A fault is defined by the International Federation of Automatic Control (IFAC) Techni-
cal Committee as an unapproved deviation of at least one characteristic or system parameter
from the conditions that are considered acceptable/normal/standard. Such a problem can
affect a single process, set of sensors, or set of actuators [1,2].

In general, three categories of faults have been taken into account in earlier studies [1]:

(1) Process or component fault: Process faults arise when a system’s components behave
negatively, affecting the dynamics of the system.

(2) Actuator fault: An actuator fault is a discrepancy between the actuator’s input com-
mand and its actual output.

(3) Sensor fault: Sensor faults result in discrepancies between the measured and real
values of the system’s variables [1,4].

This article looks at approaches that are currently available for diagnosing and identi-
fying faults in control systems, combining them to provide a new technique for accurate
diagnosis and fault-type identification. In the devised approach, kernel principal com-
ponent analysis (KPCA) is first used to minimize the dimensions of the data collected
from the system. This streamlines computations and expedites the fault-finding procedure.
Then, the presence of a fault in the system is detected using statistical indices, which are
assigned threshold values in such a way that whenever the required statistical indices
surpass some upper limits, a warning is sent, denoting that a fault has occurred. The
K-means algorithm is adopted for data clustering as a step to determine the type of fault.
The data are separated into three groups, and clustering is carried out for each category in
accordance with the variation range of the variables. The type of fault is then determined
using a long short-term memory (LSTM) artificial neural network, meaning a recurrent
neural network with extremely high accuracy. The labeled data in the K-means algorithm
is used to train the LSTM. The proposed technique is tested for detecting malfunctions on a
continuous stirred tank reactor (CSTR) system when considering up to 10 sensor faults and
other system abnormal conditions. The effectiveness of the method is compared with the
principal component analysis (PCA) approach for fault detection, and with the support
vector machine (SVM), K-nearest neighbors (KNN), and decision trees algorithms, for
determining the type of fault. The results show the superior performance of the proposed
methodology in both fault detection and fault identification.

The paper is structured as follows. Section 2 reviews prior studies on fault detection
and identification. Section 3 introduces the proposed approach. Section 4 presents the
CSTR system used as a test bed. Section 5 reports several simulation results to illustrate the
effectiveness of the new method. Finally, Section 6 presents the main conclusions.

2. Literature Review

There are two primary categories of fault detection and identification approaches.
These are statistical methods and machine learning techniques. A statistical method for
fault detection and isolation utilizing inverse dynamic models for robot arms and partial
least squares (PLS) was provided in [5]. The PLS is a linear process control technique
used to locate and monitor industrial processes. The PCA employing a serial model struc-
ture, often known as serial PCA (SPCA), as a new linear-nonlinear statistical method for
nonlinear process monitoring was reported in [6]. A machine learning approach based
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on the SVM for fault detection was employed in [7]. By categorizing the data linked
to the fault and the data connected to the system’s typical operation period, the SVM
could detect faults. This approach was thought to be a simple way to identify sensor
failures. Using convolutional neural networks (CNN), a highly precise modular multilevel
converter (MMC) circuit monitoring system for early failure detection and identification
was proposed in [8]. Reference [9] described a technique using Bayesian networks to
identify sensor and process faults, as well as faults involving several sensors or processes.
A new hybrid system based on the Hilbert–Huang (HH) transform and the adaptive
neuro-fuzzy inference system (ANFIS) with optimal parameters was proposed in [10].
As a detection index for the KNN-based fault detection approach, which could separate
several sensor faults, a new separation index using KNN distance decomposition was
provided in [11]. Reference [12] presented the development of two independent reduced
kernel partial least squares (IRKPLS) regression models for fault detection in large-scale
nonlinear and uncertain systems. The use of a weighted kernel independent component
analysis (WKICA) based Gaussian mixed model (GMM) for monitoring and fault identifi-
cation in nonlinear and non-Gaussian processes was proposed in [13]. The probabilities of
KICA were estimated using GMM for the first time in the WKICA approach. A model for
fault identification using a variational Bayesian Gaussian mixture model with canonical
correlation analysis (VBGMM-CCA) was provided in [14]. In Reference [15], a method for
fault detection and identification was suggested, which combined artificial neural networks
(ANN) and the wavelet transform (WT) multi-loop analysis methodology. A novel method
for fault identification was provided in [16], which was based on KPCA and SVM.

Motivated by the above discussion, the present paper proposes a novel method that
integrates KPCA, K-means, and LSTM neural networks for detecting and identifying faults
in multi-process systems. The method introduces several unique aspects that differentiate it
from existing approaches and offers improved fault detection and identification performance.

The main contributions of this paper are:

1. The KPCA is performed to decrease the dimension of the original data set while
detecting the existence of potential faults. Thus, in subsequent fault identification
steps, computational burden and transmission energy consumption is reduced, which
is very important in wireless sensor networks.

2. In the reduced data space, the K-means is used for clustering data into different groups
and detecting faults using statistics. By using clustering, faults in different processes can
be detected, which is an advantage typically overlooked in traditional approaches.

3. An LSTM network is trained in order to identify faults by reconstruction. The LSTM ex-
cels at capturing temporal dependencies in sequential data, identifying fault patterns
that unfold over time. This temporal modeling capability enhances fault identification
and enables the detection of complex and dynamic fault scenarios.

4. Simulations demonstrate the effectiveness of the method in the detection and iden-
tification of faults. Thus, based on measured data, the method can identify crashed
sensors and actuators and components’ misbehavior.

By combining KPCA for fault detection, K-means for data preparation, and LSTM for
fault identification, the proposed approach offers a unique and comprehensive solution
to fault detection and identification. It surpasses the limitations of individual methods by
integrating nonlinear feature extraction, clustering-based data preparation, and temporal
modeling. This integration leads to improved fault detection and identification perfor-
mance, enabling the system to handle complex fault dynamics, adapt to different fault
types, and achieve accurate fault identification. To the best of the authors’ knowledge, the
work proposed herein is the first to effectively combine those three algorithms together for
the actual detection and identification of faults.

3. The Proposed Method

The new hybrid technique for detecting and identifying faults is illustrated in Figure 1.
The KPCA is initially used for fault diagnosis, which may trigger subsequent fault identi-
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fication. Thus, once a fault is detected, the data are tagged using K-means clustering, as a
preparation for the next stage of fault identification, based on their embedded inter-distances.
Finally, an LSTM neural network determines the type of fault. Thus, the method consists of
three fundamental steps:

• The KPCA for fault detection.
• The K-means clustering for processing faulty data.
• The LSTM neural network for determining the fault type.
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These steps are described in the next subsections.

3.1. Fault Detection by KPCA

This step results in data dimensionality reduction in addition to reliable and fast fault
detection in nonlinear data. The KPCA is a generalization of the PCA method and one
of the most cutting-edge approaches for leveraging kernel functions to monitor nonlinear
systems [17,18]. The rationale of KPCA is to extract the nonlinear principal components
from the PCA decomposition in the feature space after first mapping the original input
data to a high-dimensional defined space using a nonlinear function. In other words, let us
consider that the data consists of N observations, Xk= [u T

k yT
k

]
, k = 1, . . . , N, where u and

y are the input and output of the process, respectively [18]. The data Xk are normalized,
yielding X̂k, so that their mean is zero and their variance is equal to one. In the PCA,
features are extracted only in a linear space. Therefore, we must first use the nonlinear
mapping Φ(·) to represent the data from the original nonlinear input space onto a linear
feature one, F, assuming that ∑N

k=1 Φ
(

X̂k
)
= 0 is used [18].

The PCA seeks to solve the eigenvalue problem in the covariance matrix in the linear
space F as given by [18]:

CF = 1
N ∑N

k=1 Φ
(

X̂k
)
Φ
(

X̂k
)T ,

CFw = λw
(1)

where CF is the sample covariance in the F space, w denotes the eigenvector, and λ is the
eigenvalue. To avoid the explicit use of Φ(·), the kernel functions K are defined in the form [18]:

K
(
Xi, X j

)
, Kij= 〈Φ (Xi), Φ

(
Xj
)
〉 (2)
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〈Φ
(

X̂k
)
, CF w〉 = λ〈Φ

(
X̂k
)
, w 〉, (3)

where w = 〈v, Φ
(

X̂k
)
〉 and:

K̂ v = Nλv (4)

where v is the eigenvector and K̂ is defined as [18]:

K̂ = K−1NK− K1N+1NK1N , (5)

where 1N ∈ RN×N and (1 N)ij =
1
N . Then, using the matrix K̂ obtained from Equation (4),

the SVD decomposition is performed [18]:

K̂
N
= SΛST (6)

where S contains N eigenvectors of v, and Λ contains N eigenvalues of λ. Next, only
r main components that contain 99% of the variances remain and are placed in the matrix
Sr ∈ RN×r such that [18]:

T , [tk] = ST
r K̂ ∈ Rr×N (7)

Each test data Xtest
k is normalized and converted into ˆXtest

k , and then it is mapped to
the F space according to [18]:

Ktest
k = K( ˆXtest

k , X̂ j

)
(8)

where X̂ j is the training data from j = 1, . . . , N and Ktest
k is normalized according to:

ˆXtest
k = Ktest

k − 1test
N K− Ktest

k 1N + 1test
N K1N (9)

and, finally:

ttest
k = ST

r

(
ˆKtest
k

)T
(10)

To identify the fault by KPCA, two statistical indices T2 and Q are generally used [18].
The values of these two parameters are obtained by:

T2= (t test
)T

Λ−1
r ttest,

Q =

∣∣∣∣∣∣∣∣ST
(

ˆKtest
k

)T
∣∣∣∣∣∣∣∣2 − (ttest)Tttest.

(11)

A threshold value is defined for each index. If T2 and Q exceed their threshold values;
then it means that there is a fault in the system.

The threshold values are defined as [18]:

T2
α = r(m−1)

m−r Fr,m−r,α,

Qα= θ1

[
Cαh0

√
2θ2

θ1
+1+ θ2h0(h0−1)

θ2
1

] 1
h0

,
(12)

where r is the number of remaining principal components, Fr,m−r,α is the value of the F
distribution corresponding to a significance level α, with degrees of freedom r and m − r

for numerator and denominator, respectively, θi =
n
∑

j=r+1
λi

j , (i = 1, 2, 3), h0= 1− 2θ1θ3
3θ2

2
and

Cα= 100 (1− α) [17]. In this paper, the two statistical indices T2 and Q are calculated, and
then, by determining T2

α and Qα, the occurrence of a fault is detected [18].
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3.2. Faulty Data Labeling Using the K-Means Technique for Clustering

The faulty data must be labeled in a consistent manner after the fault has been found
in order to enter and train the neural network. The data are labeled using the K-means
clustering algorithm, a subset of machine learning. By giving a label to each sample in the
training dataset, the approach simplifies the data for the neural network and improves
network learning. Following data labeling, the LSTM network performs data classification
among various types of faults by learning about the different types. In order to obtain
insight into the structure of the data, one of the most popular exploratory data analysis
approaches is clustering, which is in charge of identifying subgroups in the data so that
that points can be grouped together. While data points in various clusters are highly
varied, data points within a subgroup (cluster) are very similar. The unsupervised learning
algorithm K-means divides unlabeled datasets into K groups, specifying in advance how
many clusters will be produced. This approach enables the grouping of data into many
categories and can be used to indicate the grouping of a set of unlabeled data. Each cluster
has a center because it is a center-based algorithm. This algorithm’s major objective is to
reduce the overall distance between data points and the clusters that correspond to those
locations. This algorithm separates the input unlabeled dataset into K clusters and then
iterates through the clusters until it finds the best ones. Essentially, the K-means clustering
method does two things:

1. Utilizes an iterative technique to choose the greatest value for K center points.
2. Chooses the closest K center for each data point. A cluster is formed by the data points

that are near the K’s center.

As a result, each cluster is distinct from the others while sharing some characteristics
with the data [19]. K-means clustering is utilized in this paper to prepare the data before it
is fed into the neural network.

3.3. Using an LSTM Neural Network to Identify the Type of Fault

When the KPCA detects a fault, its source must be quickly determined using a highly
accurate procedure. This paper introduces a novel approach to fault detection using an
LSTM neural network. This network has very high accuracy in fault identification because
of its recursive structure. Additionally, compared to other machine learning techniques, the
inclusion of long-term memory makes this network a powerful tool for fault identification.
The K-means approach is used to train the LSTM network with clustered training data,
which represent various kinds of faults. The network then assigns a category to any fault
whenever new data arrives.

The LSTM is an improvement on the recurrent neural network, which is often applied
to time series, such as speech recognition or natural language processing. Gradient vanish-
ing is a problem in long time series, in which the weights of neural networks do not update
well [20]. The LSTM can eliminate this problem by adjusting the amount of information
within a cell through the forget gate, input gate, and output gate. A forget gate specifies
how much information should be forgotten from previous cells. Input gates determine how
much information the current input value will receive, whereas output gates determine
how much information the cell should transmit. The useful information can be stored for a
long time using these three gates, while the useless information can be forgotten [21].

In order to develop good LSTM models, the appropriate parameters must be found.
The LSTM model for fault identification requires parameters such as hidden state dimen-
sion, optimizer type, regularization degree, and dropout rate. Training the LSTM models
requires the first two parameters while avoiding overfitting requires the last two.

The dimensionality of hidden states refers to the size of the shared weight matrix,
which should be determined by considering the training data size. The optimizer finds
the global optimum of the loss function. Among the candidates for the proper opti-
mizer are RMSprop, AdaGrad, and Adam. It is necessary to adjust the learning rate
during the training process and check the trend of error decrease to prevent falling into
a local optimum [22].
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In the meantime, big neural network models often suffer from overfitting. Regulariza-
tion, which gives penalties corresponding to the big weights, is helpful in preventing the
issue. Regularization must be adjusted to the appropriate degree. The dropout method pre-
vents overfitting by ignoring some weights randomly depending on the training dropout
rate. In addition to improving the representation of training data, the method can also
prevent overfitting [22].

In this paper, the LSTM network incorporates a hidden state with a dimension of 100.
This hidden state allows the network to capture and remember relevant information from
previous time steps, enabling it to learn long-term dependencies in the data. The Adam
optimizer is selected to optimize the network’s performance during training, combining the
benefits of adaptive learning rates and momentum-based updates. Additionally, a lambda
value of 0.1 is set for kernel regularization, which helps to prevent overfitting by adding a
penalty term to the loss function. Moreover, a dropout rate of 0.3 is implemented within
the model. Dropout randomly sets a fraction of the LSTM units to zero during training,
reducing the network’s reliance on specific units and improving its ability to generalize
to unseen data. A minimum batch size of 32 is chosen, specifying the number of samples
processed before the weights are updated. These configurations collectively contribute to
the LSTM network’s ability to effectively capture complex temporal patterns and generalize
well to new data.

There are also advanced models of LSTMs, which are briefly mentioned. The bidirec-
tional LSTM (bi-LSTM) refers to a neural network that stores sequence information in both
backward (future to past) and forward (past to present) directions. Thus, a bidirectional
LSTM is characterized by input flowing in both directions. Standard LSTMs can only deal
with input flow in one direction, either backward or forward. By contrast, bi-directional in-
put can preserve past and future information by handling flowing in both directions [23,24].
Another advanced LSTM method is the dual-LSTM, which consists of two parallel LSTM
networks. In the dual channel LSTM model, the loss is minimized with the objective of
obtaining the optimum weights and biases [25].

In this paper, in order to determine the efficacy and accuracy of the proposed method
for identifying faults in a CSTR system, conventional methods of fault identification pro-
vided by other researchers are used for comparison. Typical machine learning techniques,
such as SVM, KNN, and decision trees, are considered.

3.4. SVM-Based Fault Type Identification

The SVM is a supervised machine learning technique that can be applied to problems
involving classification or regression. Each data point is represented as a point in an n-
dimensional space (n being the number of features), where each feature corresponds to a
particular coordinate. After that, classification is carried out by locating a hyperplane that
categorizes the data into various groups. Both linear and nonlinear issues can be resolved
with SVM [26]. The SVM approach is used in this paper to identify the categories of faults
while comparing it with the proposed approach.

3.5. KNN-Based Fault Type Identification

The KNN is a form of supervised learning algorithm that measures the distance
between the test data and all training points in an effort to predict the right class of test
data. The KNN method chooses K points that are relatively close to the test data. The test
data are then assigned to the category with the highest probability out of the many training
data categories that have been chosen after calculating their probabilities [11]. The KNN is
used in this paper to identify faults and for comparison purposes.

3.6. Decision Trees Based Fault Type Identification

The supervised learning algorithm family includes the decision tree algorithm. There
are roots, branches, nodes, and leaves in a decision tree. A batch of test data for prediction
decision trees is started at the tree’s base. A feature whose value the test data is compared
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with is present at the root. The branch associated with that value is followed, and this
branch finishes at a node based on the comparison. Every node has a feature, and the next
branch is chosen by comparing the test data with that feature. The test data eventually
reach a leaf that defines the test data’s category [27]. The decision tree is used in this study
to identify the type of fault and compare its results with those of the proposed approach.

4. Description of the CSTR System

A CSTR is a type of reaction vessel where the products of the reaction simultaneously
exit the vessel as reagents and reactants, and frequently solvents flow into the reactor.
The tank reactor is regarded as a useful tool for continuous chemical processing. The
composition of the material inside the reactor, which depends on residence time and
reaction rate, should ideally match the composition of the exit. Several CSTRs may be
joined together to form a parallel or linear series mode when the reaction is extremely slow
or when there are two immiscible or viscous liquids that need high stirring speed [28].

A basic general model of a tank with a fixed cover, which continuously performs the
first-order heat reaction, is shown in Figure 2 [29].
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The CSTR model when undergoing exothermic first-order reaction is given as [29]:

dC
dt

=
Q
V
(Ci − C) − akC + v1, (13)

dT
dt

=
Q
V
(Ti − T)−a

(∆Hr)kC
ρCp

−b
UA

ρCpV
(T − T c) + v2 (14)

dTc

dt
=

Qc

Vc
(Tci − Tc)+b

UA
ρcCpcVc

(T − T c) + v3, (15)

with inputs u = [C i Ti Tci QC] and outputs y = [C T T C]. Moreover, vi stands for the process

noise, and k = k0 exp(−E
RT

)
is an Arrhenius rate constant. The parameters’ values in Equa-

tions (13)–(15), defined as in reference [29], are inlet flow rate Q = 100.0 L·min−1,tank volume
V = 150.0 L, jacket volume Vc = 10.0 L, heat of reaction ∆Hr =−0.2× 105 cal·mol−1, heat trans-
fer coefficient UA = 7.0 × 105 cal·min−1·K−1, pre-exponential factor to
k k0 = 7.2 × 1010 min−1, activation energy E/R = 104 K, fluid density ρ, ρc = 1000.0 g·L−1, and
fluid heat capacity Cp, Cpc = 1.0 cal·g−1·K−1.

There are seven input and output variables in the system. Each variable is measured by
a sensor properly located. In general, there are three types of variables: C, T, and Q, which
are related to product concentration, reactor temperature, and inlet flow rate, respectively.
For each sensor, there is a type of fault that can be considered. Due to the chemical nature
of the system, it may also be subject to catalyst decay or fouling. As a result, component
faults can also occur. Moreover, it is possible that input variables are noisy.

In this paper, we consider a total of 10 variables, including 7 input and output, as
well as 3 noisy input variables. There is a wide range of data in this system, from very
small to very large, depending on the variables. Considering this issue, besides reducing
dimensions, the data need to be mapped. In order to improve training, 770 datasets from



Axioms 2023, 12, 583 9 of 15

system faulty and regular operation data are used. Based on simulation experiments in
MATLAB software and the lack of outliers, this number was found suitable for use.

A total of 10 categories of faults may exist in this system, where 7 are sensor faults
corresponding to each input (4) and output (3) values, 1 is related to the degradation of the
catalyst, and 1 is due to the buildup of heat transfer. The combination of these two also
constitutes an additional fault. These last 3 faults are related to process faulty conditions
and, thus, are considered the most critical ones. When there is no fault, the values of the
parameters a and b in the CSTR system model (13)–(15) are equal to 1.00. It is feasible to
replicate the deterioration of the catalyst and the deposition of heat transfer by reducing
their values to zero. Table 1 summarizes the fault scenarios, as considered in reference [29].
The subscript 0 stands for nominal values and t is measured in minutes.

Table 1. Scenarios of CSTR primary faults [29].

Number Designation Description Progression Rate γ Type

1 Catalyst decay a = a0exp(− γt) 0.0005 Multiplicative

2 Fouling b = b0exp(− γt) 0.001 Multiplicative

3 Simultaneous faults 1 and 2 - Multiplicative

4 Sensor Ci = Ci,0+γt 0.001 Additive

5 Sensor Ti = Ti,0+γt 0.05 Additive

6 Sensor TCi = TCi,0+γt 0.05 Additive

7 Sensor C = C0+γt 0.001 Additive

8 Sensor T = T0+γt 0.05 Additive

9 Sensor TC = TC,0+γt 0.05 Additive

10 Sensor QC = QC,0+γt −0.1 Additive

5. Simulation Results

The KPCA is used to find faults, as previously described. The method uses both faulty
and normal system data. For this reason, samples from the CSTR were created, each having
both normal and faulty data. The samples were prepared using the MATLAB software
for simulating the CSTR system. For each type of fault, a data set of 300 samples was
generated, which was sufficient for learning and characterizing the faults. To gather data
for each fault, samples of normal operation were collected first in the simulation, followed
by data of faulty operation, until the total number of samples reached 300. For example,
in a dataset related to a particular type of fault, the normal data may be displayed from
sample 1 to sample 120, while the faulty data appear from sample 121 onwards. Arranging
the data in this way is arbitrary. The T2 and Q indicators are used for fault detection. The
simulation’s outcomes demonstrate how the first faulty sample was correctly identified.
The simulation results for the second type of fault, which are present in samples 121 to 300,
are shown in Figure 3.

As seen in Figure 3, sample 121 exhibits the occurrence of the fault. That is, in this kind
of fault, the fault is found at the first occurrence it appears, demonstrating the method’s
high degree of accuracy. Both the statistical indices T2 and Q successfully identify this
issue. Indeed, each of the 10 fault types is in a different range, as shown in Table 2, and is
identified by the two indices. The results with the T2 slightly differ from those with the
Q index in terms of how well they identify the faults.
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Table 2. Fault sample detected by T2 and Q for all fault types.

Fault Faulty Samples Fault Detection Sample by T2 Fault Detection Sample by Q

1 151–210 151 151
2 121–300 122 121
3 71–140 73 71
4 131–300 132 131
5 71–250 75 72
6 61–280 62 61
7 121–270 123 121
8 111–300 111 111
9 151–300 152 151

10 151–300 153 151

For comparison, the PCA approach was utilized for fault detection. Figure 4 depicts
the results of the second kind of fault with PCA. We verify that the PCA approach does not
effectively detect faults in nonlinear data.
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For fault identification, it is necessary to cluster or label the data in order to incorporate
the values of the model variables for usage in the neural network. The initial values of
these variables spread out over wide intervals and are not suited for use in neural networks.
As a result, the K-means method is applied to create 64 initial clusters. In other words,
each sample, which consists of 10 variables, is assigned a label from 1 to 64 and placed in
one of these 64 clusters. The values of the samples are transformed into a label column
using this clustering. The accuracy cannot be increased enough by utilizing these labels, so
the variables are first divided into three groups, and separate clustering is carried out for
each category. Three columns of labels are eventually produced for each sample, greatly
enhancing the accuracy. The proposed approach was evaluated based on the common
quality metrics of accuracy, recall, and precision, which are explained in Equations (16)–(18):

Accuracy =
tp + tn

tp + tn + f p + f n
, (16)

Recall =
tp

tp + f n
, (17)

Precision =
tp

tp + f p
, (18)

where tp, tn, fp, and fn stand for true positives, true negatives, false positives, and false
negatives, respectively. A confusion matrix can be used to obtain these indices directly.
Results obtained for various fault identification modes are shown in Table 3.

The method proposed in this study, which entails clustering data for each category of
variables and then identifying the fault via the LSTM network, improves fault identification
accuracy to nearly 99%, as shown in Table 3. Additionally, in the simulations, the third
mode of the LSTM network, in which the variables are divided into three categories and
clustered, operates at a significantly faster rate than the other two modes.

Table 3. The accuracy, recall, and precision of different fault identification modes.

Various Implementations of the
LSTM Network Fault Type Precision % Recall % Accuracy %

No clustering

1 80.6 79.1

81.5

2 77.3 83.5
3 81.4 76.9
4 75.3 80.1
5 83.2 77.6
6 81.1 82.6
7 79.9 80.8
8 83.2 79.8
9 78.5 79.3
10 82.03 80.6

Clustering all data at once

1 86.6 88.1

89

2 90.5 91.3
3 89.3 87.9
4 90.2 89.1
5 87.4 88.9
6 84.8 87.3
7 91.6 93.2
8 90.6 90.3
9 88.7 89.5
10 89.9 90.5

Data divided into three categories,
with individual clustering for each

category

1 100 100

99.09

2 98.6 99.5
3 99.01 99.3
4 100 100
5 99.3 99.06
6 98.9 99.07
7 99.5 98.8
8 99.1 98.06
9 99.00 99.4
10 99.8 99.2
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Due to its memory and recursion characteristics, the LSTM network appears to be an
appropriate method for fault diagnosis. The sorts of faults have been determined by using
this network and labels that are connected to 10 different types of faults that already exist.
A total of 770 training examples, including 10 different fault types and a normal system
operation, are used to train this network (11 categories in total). Once the network has been
trained, test data from each of the 11 categories are fed into it, and the network then uses
these data to identify which category each sample belongs. This network’s accuracy was
estimated to be 99.09%. As a result, this method’s results for fault identification are highly
accurate, and the method may be used to find many kinds of faults in actual systems.

Table 4 compares the accuracy, recall, and precision of fault identification using the
LSTM, SVM, KNN, and decision tree approaches.

Table 4. Comparing the accuracy, recall, and precision of different machine learning methods for
fault identification.

Various Machine Learning Methods Fault Type Precision % Recall % Accuracy %

SVM

1 21.2 22.0

23

2 22.3 25.8
3 26.5 28.7
4 20.4 21.3
5 24.1 20.1
6 25.3 26.7
7 22.2 23.2
8 24.2 24.6
9 21.1 23.2
10 22.8 21.3

KNN

1 27.1 28.2

27.5

2 28.3 27.3
3 26.5 26.2
4 29.9 25.1
5 28.7 24.6
6 27.3 29.1
7 27.8 23.7
8 27.1 28.2
9 29.0 27.1
10 26.5 24.5

Decision Tree

1 41.3 46.2

45.2

2 42.2 48.6
3 39.8 41.9
4 48.9 44.3
5 45.5 46.1
6 44.3 40.2
7 49.3 41.8
8 51.2 48.1
9 55.1 49.2
10 43.9 40.8

LSTM

1 100 100

99.09

2 98.6 99.5
3 99.01 99.3
4 100 100
5 99.3 99.06
6 98.9 99.07
7 99.5 98.8
8 99.1 98.06
9 99.00 99.4
10 99.8 99.2

We verify that the classification performance of different machine learning methods
for different sorts of faults varies greatly. The SVM approach, with a 23% accuracy rate,
the KNN, with a 27.5% accuracy rate, and the decision tree, with a 45.2% accuracy rate,
are worse than the new method based on the LSTM network, with a 99.09% accuracy
rate. Indeed, the LSTM demonstrates very good performance in identifying the CSTR
system faults. As a result, the fault identification model by the LSTM network can be
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used in practice, as it enables precise identification of the type of fault that has occurred
in the system. Industries place a high value on precision because this helps them to avoid
expensive repairs and damages.

6. Conclusions

In this paper, a novel hybrid approach was used to address fault detection and identi-
fication in an industrial system by employing KPCA, K-means, and LSTM neural networks.
The method was tested in a CSTR system. First, a dataset was created using both non-faulty
and faulty data from the CSTR. Next, a fault detection stage was carried out using the
KPCA method, and faults could be found in the datasets. In the following phase, the data
were processed and labeled using the K-means approach. Finally, an LSTM neural network
was used to identify fault types. The network was taught using the information on the
names of 10 different types of system faults and the normal system condition. Then, the
LSTM network carried out fault identification using testing data.

Apart from being effective and practical, the proposed approach can be applied to
faults that occur across a variety of processes. The method can be used as an easily imple-
mentable generic fault detection procedure. Dimension reduction contributes to energy
savings in data transmission, clustering allows fault detection in different processes, and
ANN-based fault identification permits the isolation of malfunctioning sensors, actuators,
and components. The advantages of this comprehensive method make it useful for indus-
trial processes or other systems that produce large amounts of data and perform a variety
of processes.

The following conclusions can be drawn from the overall findings using the
suggested methodology:

• In the sample where the fault appears, the KPCA fault detection method finds the
existing fault very well and with excellent accuracy.

• The KPCA approach minimizes the data dimensions, sometimes even to half of
the real dimensions, which decreases the number of calculations and speeds up
computer processing.

• Unlike the PCA approach, the KPCA method finds faults in all data and performs well
for nonlinear data.

• When faults are classified using K-means clustering, the identification is substantially
more accurate.

• Due to its recursion, the LSTM network produces relatively significant results when
compared to other machine learning techniques.

• The LSTM network correctly identifies faults, and its accuracy is very high,
reaching 99.09%.

• Naturally, the proposed approach can be applied to detect and identify faults in other
types of equipment.

It is important to note that real-world data are affected by uncertainty, which can be
aleatoric or epistemic. The first occurs due to the inherent randomness and variability
that accompanies the data generation process, such as measurement errors and noise. The
second originates from the incomplete knowledge or understanding of the underlying
system or model parameters [30]. Neglecting these types of uncertainty in the context
of fault detection and identification can limit the reliability and generalizability of the
proposed method. Therefore, it is crucial to highlight that addressing and quantifying
aleatoric and epistemic uncertainties in real-world data is an avenue for further research,
which the author will pursue to improve the robustness and accuracy of fault detection
and identification techniques.
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