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Abstract: Virtual colonoscopy plays an important role in polyp detection of colorectal cancer. Noise
in the colon data acquisition process can result in topological errors during surface reconstruction.
Topological denoising can be employed to remove these errors on surfaces for subsequent geometry
processing, such as surface simplification and parameterization. Many methods have been proposed
for this task. However, many existing methods suffer from failure in computation of all the non-trivial
loops, due to high genus or complex topological structures. In this paper, we propose a novel robust
topological denoising method for surfaces based on homotopy theory. The proposed method was
evaluated on two datasets of colon meshes. We compared our method with the State-of-the-Art
persistent-homology-based method. Our method can successfully compute the loops on all colon
data for topological denoising, whereas the persistent homology method fails on some colon data.
Moreover, our method detects all loops with shorter lengths than those detected by the persistent
homology method. Our experimental results show that the proposed method is effective and robust
in topological denoising, and that it has the potential for practical application to virtual colonoscopy.

Keywords: geometry; topology; topological denoising; homotopy theory; colon flattening; virtual
colonoscopy; polyps

MSC: 68U05; 65D18; 55P10

1. Introduction

In the medical imaging field, virtual colonoscopy (VC) plays an important role in
detecting polyps for colorectal cancer. Studies use CT images and various computerized
methods to assist in the detection of polyps. Methods based on topographical height
map [1], polyp-specific volumetric feature [2], ensemble learning [3], morphological fea-
tures [4], and integration with optical colonoscopy [5] have been explored in the field. Some
other studies have focused on the improvement of VC by using an immersive analytics
system [6] and a deep learning framework [7,8]. A recent study also investigated the
feasibility of the automated detection of clinically significant polyps from photon-counting
CT data [9]. One of the representative forms of colon data is based on colon surface mesh,
which is reconstructed from computed tomography (CT) scans. Such surface-based colon
data processing methods highly depend on the quality of the reconstructed colon surface,
such that it is without topological noises or errors. With the rapid advances in data acqui-
sition techniques in recent decades, high resolution of three-dimensional data has been
produced for various applications, including real-time vision processing [10], industrial
application [11], textured 3D mesh generation [12], blood flow simulation [13], cardiac
structure reconstruction [14], robotic 3D reconstruction of an object [15], ceramics analysis
and reconstruction [16], and unmanned-aerial-vehicles-based 3D reconstruction [17], etc.
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However, many existing surface reconstruction methods introduce topological noises or
errors into the resulting reconstructed surfaces, which makes it intractable to perform
subsequent computation tasks, such as surface simplification and parameterization.

As one important geometry processing technique, topological denoising aims to
decrease or remove topological noises, usually in the form of small handle loops, so that a
lower-genus or genus-zero resulting model can be generated. Success in the topological
denoising process significantly rests on the efficient computation of those non-trivial
loops, followed by robust genus reduction, such as cutting along the loops. In regard to
computation of non-trivial loops on surfaces, we have witnessed a variety of methods in
recent decades. Some of these methods are based on homotopy and homology [18–20], and
some are based on graph structures, such as curve skeletons [21], core graph [22,23], and
Reeb graph [24].

Chen et al. [19] proposed a method to compute loops using persistent homology.
The method employed the greedy algorithm, to compute the optimal homology basis.
Dey et al. [20] presented a geometry-aware method, to compute handle and tunnel loops,
which aimed to balance computation between topological correct loops and geometrically
relevant loops. They applied the proposed method to topology simplification and to handle
and tunnels feature identification. In addition to these methods based on homology, re-
searchers have proposed graph-based methods. Zhou et al. [21] introduced a loop detection
algorithm, using skeletons based on the medial axis for topological denoising or repair. The
advantages of this method are: (1) it will not introduce additional invalid handles; (2) it
can process large surface models with high resolutions, efficiently. However, this method
cannot be used in models whose medial axis forms closed surfaces. Dey et al. [22,23]
designed a handle and tunnel loop computation method on graph retractable surfaces,
which employed a linking condition with the core graphs. They demonstrated the effec-
tiveness of their method by applying it to feature detection and topology simplification.
Later, Dey et al. [24] utilized Reeb graphs to compute handle and tunnel loops. Their
method is computationally efficient, without requiring any 3D tessellation. More recently,
Weinrauch et al. [25] proposed a variational abstraction to the loop shrinking property for
detection of handle and tunnel loops. Their method utilizes a succinct diffuse interface
model for loop detection and a fully parallel algorithmic realization. However, some
limitations exist in these methods, which lie in either non-guaranteed computation of
non-trivial loops, in terms of some geometrically meaningful requirements, or even fail-
ure in the computation of all the non-trivial loops, due to very high genus or complex
topological structures.

In recent decades, topological denoising has attracted wide attention from the med-
ical community. In cardiac image analysis, where the trabeculae structure is naturally a
topological handle, Gao et al. [26] used persistent homology to localize the trabeculae.
Wu et al. [27] formulated the computation of the optimal cycles of persistent homology
classes for trabeculae detection. These methods can be applied for better understanding
the functionality of the human heart and for diagnosing cardiac diseases. In biotechnology,
Brezovsky et al. [28] reviewed some tools for identification of the protein tunnels and
channels, as it is important to understand the relationship between structure and func-
tion and to design potential proteins that have improved functional properties. A tool
named CHUNNEL can be used to identify the loop running around the narrowest part
of the protein channel. Topologically denoised 3D data can be flattened to a 2D domain
for supplementary information or views [29–38]. In virtual colonoscopy, flattening the
3D colon wall surface into a 2D domain, via surface parameterization, not only benefits
visualization—which assists in detection of abnormality, such as colorectal polyps—but
also enables the computation of supplementary geometric and texture features in the 2D
flattened colon wall, for improved computer-aided detection of polyps. One important
pre-processing step is to perform topological denoising on the original 3D colon wall sur-
face, so that the small handle loops on the surface are removed, to obtain a genus-zero
surface for subsequent colon wall flattening. To this end, some existing works [35,37,39]
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have employed the homotopy-based topological denoising method for genus reduction,
followed by surface flattening using conformal parameterization. Although the existing
methods are capable of computing the small handle loops in the colon wall and performing
topological denoising to reduce the genus of the surface, it is still challenging, but desirable,
to obtain a robust topological denoising method.

In this work, we propose a novel robust topological denoising method for virtual
colonoscopy. The algorithm is detailed in some steps involving computations of cut graph,
shortest loops, and topological surgery. Experiments on two datasets were carried out, for
evaluation of the proposed method. The main contributions in this paper are as follows:

(1) Mathematical rigor. Our proposed method is based on rigorous mathematical theory
in homotopy, which guarantees the computation of the non-trivial loops.

(2) Novel framework. The proposed algorithm is novel and has been first applied to colon
surface denoising in virtual colonoscopy.

(3) Robust computation. Compared to the State-of-the-Art topological denoising method,
our method is more robust, based on the experimental results.

2. Materials and Methods
2.1. Theoretic Background

This section briefly explains the basic concepts and theorems in algebraic topology.
For more thorough treatments, we refer readers to a classical algebraic textbook [40].

Suppose S is a topological surface, and a path is a continuous map γ : [0, 1]→ S; if the
starting point coincides with the ending point, γ(0) = γ(1), then γ is a closed curve (loop).

Definition 1 (Homotopy). Let γ1, γ2 : [0, 1]→ S be two curves. A homotopy connecting γ1 and
γ2 is a continuous mapping F : [0, 1]× [0, 1]→ S, such that

F(0, t) = γ1(t), F(1, t) = γ2(t). (1)

We say γ1 is homotopic to γ2 if there exists a homotopy between them, and we denote it as
γ1 ∼ γ2.

Homotopy relation is an equivalence relation. We fix a base point p on the surface.
In the following, we consider all the loops through the base point, denoted as Γ. All the
loops in Γ can be classified by the homotopy equivalence relation, and the homotopy class
of γ ∈ Γ is denoted as [γ].

Given two loops γ1, γ2 ∈ Γ through the base point p, we can concatenate them to
form a bigger loop, which is the product of the two loops, denoted as γ1 · γ2. There is a
special loop e for all t ∈ [0, 1], e(t) = p, which is called the trivial loop. It is evident that
e · γ = γ · γ = γ for any loop γ. Suppose γ ∈ Γ is a loop on S, then its inverse is obtained
by reversing the orientation γ−1 ∈ Γ, γ−1(t) = γ(1− t). It is easy to verify that γ · γ−1 ∼ e
and γ−1 · γ ∼ e. All the homotopy classes of Γ under the product operator form a group.

Definition 2 (Fundamental Group). Given a topological space S, fix a base point p ∈ S; the
set of all the loops through p is Γ, and the set of all the homotopy classes is Γ/ ∼. The product is
defined as

[γ1] · [γ2] := [γ1 · γ2], (2)

the unit element is defined as [e], and the inverse element is defined as

[γ]−1 := [γ−1]; (3)

then, Γ/ ∼ forms a group, the fundamental group of S, and is denoted as π1(S, p).

In the following, we show the generators and relators of the fundamental group
π1(S, p). Suppose S is an oriented closed surface, then the number of handles of S is
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called the genus of the surface. Suppose γ1(t), γ2(τ) ⊂ S intersect at q ∈ S, the tangent
vectors satisfy

dγ1(t)
dt

× dγ2(τ)

dτ
· n(q) > 0; (4)

then, the index of the intersection point q of γ1 and γ2 is +1, denoted as Ind(γ1, γ2, q) = +1.
If the mixed product is zero or negative, then the index is 0 or −1.

Definition 3 (Algebraic Intersection Number). The algebraic intersection number of
γ1(t), γ2(τ) ⊂ S is defined as

γ1 � γ2 := ∑
qi∈γ1∩γ2

Ind(γ1, γ2, qi). (5)

Definition 4 (Canonical Basis). Suppose S is a compact and oriented surface, then there exists a
set of generators of the fundamental group π1(S, p),

G = {[a1], [b1], [a2], [b2], . . . , [ag], [bg]}, (6)

such that

ai � bj = δ
j
i , ai � aj = 0, bi � bj = 0, (7)

where ai � bj represents the algebraic intersection number of loops ai and bj, and where δij is the
Kronecker symbol; then, G is called a set of the canonical basis of π1(S, p).

Figure 1 shows a genus-2-oriented compact surface S, through the base point q ∈ S.
On each handle, there are two loops, ai and bi, such that the algebraic intersection number
of ai and bi is +1, that of ai and aj is 0, that of bi and bj is 0, and that of ai and bj on different
handles is 0. By deforming each ai and bj, we can slice the surface to get a topological
octagon, and its boundary is

a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 . (8)

q

b1

b2

a2

a1

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2

Figure 1. Canonical fundamental group representation.

The set of loops {a1, b1, a2, b2} is called a canonical basis of π1(S, q). The number of
handles of a surface is called the genus of the surface. The above observation can be directly
generalized to high-genus surfaces.

Theorem 1 (Surface Fundamental Group Canonical Representation). Suppose S is a compact
and oriented surface with genus g, that q ∈ S is the base point, and that the fundamental group has
a canonical representation,

π1(S, p) = 〈a1, b1, a2, b2, . . . , ag, bg|Πg
i=1[ai, bi]〉, (9)
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where the ai values and the bj values form a set of canonical basis through q; furthermore,

[ai, bi] = aibia−1
i b−1

i . (10)

Suppose a compact surface S is embedded in the three-dimensional Euclidean space
E3, and it has the induced Euclidean metric g. Suppose p and q are two points close enough
to each other, then there is a unique shortest path γ connecting them, which is called the
geodesic between them. Given a path γ, if for any point γ(t) there is a small neighborhood
[t− ε, t + ε], the restriction of γ on it is geodesic, and then γ is called a (global) geodesic.

Definition 5 (Exponential Map). Let v ∈ TpS be a tangent vector to the surface at p; there is a
unique geodesic γv satisfying γv(0) = p with initial tangent vector γ′v = v. The corresponding
exponential map is defined by

expp(v) = γv(1). (11)

Definition 6 (Cut Locus). Fix a point p in a complete Riemannian surface (S, g), and consider
the tangent plane TpS. The cut locus of p in the tangent space is defined to be the set of all vectors v
in Tp M, such that γ(t) = expp(tv) is a minimizing geodesic for t ∈ [0, 1] but fails to minimize
for t = 1 + ε for any ε > 0. The cut locus of p in S is defined to be the image of the cut locus of p in
the tangent space under the exponential map at p.

Namely, the cut locus of p in S is the point in the surface where the geodesics starting
at p stop being minimized.

Our proposed method is based on the following theorem:

Theorem 2 (Main). Suppose a smooth surface (S, g) is oriented and compact, p ∈ S is an
arbitrarily chosen base point, and the cut locus of p in S is denoted as C. Suppose γ : [0, 1]→ S is a
non-trivial loop on S, then γ intersects with the cut locus C.

Proof. Suppose the cut locus of p in the tangent plane is c, then c is a loop on TpS and
the interior of c is a planar simply connected open set, denoted as Ω. The exponential
map expp : TpS → S restricted on Ω maps Ω to S \ C. Because the exponential map is
diffeomorphic in Ω, S \ C is also simply connected.

If a loop γ ⊂ S has no intersection with the cut locus C, then γ ⊂ S \ C. But π1(S \
C, p) = 〈e〉, therefore γ is trivial, which contradicts the assumption that γ is non-trivial.
Hence, γ must intersect the cut locus.

2.2. Overview

The pipeline of the proposed topological denoising method is illustrated in Figure 2.
We use a simple genus-2 mesh model for illustration purpose, to show the detected loops
using our iterative method in two iterations. For higher-genus colon mesh data where the
number of genus n > 2, the proposed method operates in a similar fashion for n iterations.
The algorithm of each step is detailed in the following section.

Figure 2. Overview of the proposed topological denoising method.
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2.3. Algorithms

In this section, we explain our computational algorithm for topological denoising.
The volumetric CT images are segmented using the GraphCut method; then, the colon
surface is reconstructed, using the MarchingCube algorithm. Hence, the input surface is
represented as a simplicial complex (triangle mesh).

Definition 7 (Simplex). An n-dimensional simplex σ = [v0, v1, . . . , vn] is defined as the convex
hull of its vertices, namely,

[v0, v1, . . . , vn] =

{
λ0v0 + λ1v1 + . . . + λnvn|

n

∑
i=0

λi = 1, λi ≥ 0

}
. (12)

The boundary of a simplex σ is a set of lower-dimensional simplices, ∂σ = ∂[v0, v1, . . . , vn]
= ∑n

i=0(−1)i[v0, . . . , vi−1, vi+1, . . . , vn], where the sign represents the parity of the permu-
tation of the vertices of the simplex, and each lower dimensional simplex is called a face
of σ.

Definition 8 (Simplicial Complex). A simplicial complex K is a set of simplices that satisfies the
following conditions:

1. Every face of a simplex from K is also in K.
2. The non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2.

The algorithm has three major stages: (1) compute the cut locus (cut graph); (2) com-
pute the shortest non-trivial loop; (3) topological surgery, to remove a handle.

2.3.1. Cut Graph

The cut graph is the analogy of a cut locus on a smooth surface. The computation of
the cut graph depends on the construction of the Poincaré dual of the input triangle mesh
(as shown in Figure 3), which is the generalization of the duality between the Delaunay
triangulation and the Voronoi diagram from plane to manifolds.

σ ∆

σ̄ ∩∆

Figure 3. Poincaré Duality: (right) a triangulated mesh M, indicated by the black triangles, cor-
responds to a dual mesh M̄, as shown in the green cells; (left) a 2D simplex ∆ of M containing
vertex σ.

In a 2-dimensional (2D) plane setting, as shown in Figure 3, let T be a triangulation of
the 2D surface S (i.e., a set of black triangles in the right subfigure), and let σ be a simplex
of T. A 2D simplex of T containing σ is denoted by ∆ (as shown in the left subfigure), and
σ can be regarded as a subset of the vertices of ∆. The dual cell σ̄ corresponding to σ is
defined, such that ∆ ∩ σ̄ (i.e., the gray region in the left subfigure) is the convex hull in ∆ of
the barycentres of all subsets of the vertices of ∆ that contain σ. It can be checked that if
σ is k-dimensional, then σ̄ is a (2− k)-dimensional cell. Moreover, the dual cells to T (as
indicated by the green cells in the right subfigure) form a CW-decomposition of S, and the
only (2− k)-dimensional dual cell that intersects a k-cell σ is σ̄.

Figure 4 shows an initial cut graph and a pruned cut graph on a genus-2 surface. In
detail, given a triangle M, we first construct its Poincaré dual mesh M̄, such that each vertex
v ∈ M is dual to a 2D cell v̄ ∈ M̄, each edge e ∈ M is dual to an edge ē ∈ M̄, and each
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face f ∈ M is dual to a vertex f̄ ∈ M̄. Second, we take the dual mesh M̄ as a graph, where
each vertex f̄ is a node and each edge ē is a link, and we then compute a spanning tree
T̄ ⊂ M̄, which links all the nodes without any loop. The dual of the tree T̄ consists of all the
original faces of M, glued along some edges. Because the Poincaré preserves topology and
the spanning tree T̄ is simply connected, the dual of T̄ is also simply connected; therefore,
it is a topological disk consisting of all the faces. Third, for each link ē ∈ M̄, it may be in or
not in the tree. We collect all the links outside the tree, and their dual form is the initial cut
graph C, as shown in Figure 4a. Namely, the original mesh is sliced along C and becomes
a topological disk. Finally, we simplify the cut graph C, by pruning all the leaves (nodes
with only one link in C) recursively, and we obtain the pruned cut graph, which is shown
in Figure 4b. The algorithm pipeline can be found in Algorithm 1. The computational
complexity is linear to the number of faces of the input mesh.

(a) initial cut graph (b) pruned cut graph

Figure 4. A cut graph of a genus-2 surface, using Algorithm 1: (a) the computed initial cut graph
represented by the red tree structure; (b) the pruned cut graph is obtained by removing all leaf nodes
with only one link in the initial cut graph in (a).

Algorithm 1 Algorithm for Cut Graph

Require: A closed triangle mesh M
Ensure: C is a cut graph of M

1: Compute the dual mesh M̄ of the input mesh M;
2: Compute a spanning tree T̄ of M̄;
3: The cut graph is given by C := {e ∈ M|ē 6∈ T̄};
4: Prune all the leaves of C recursively.

2.3.2. Shortest Loop

According to our main Theorem 2, the shortest non-trivial geodesic loop γ must
intersect the cut locus C. If we slice the surface along C, then the shortest loop γ becomes
the shortest path connecting two boundary points. In discrete cases, we use the shortest
path on the triangle mesh to approximate the shortest geodesic, and we use the cut graph
to approximate the cut locus.

First, we slice the mesh along the cut graph C, to obtain a topological disk M̃, with its
boundary denoted as ∂M̃. For each vertex v ∈ C, we call the number of links in the graph C
adjacent to v as the degree of v. After the pruning in Algorithm 1, all the vertex degrees
are greater than or equal to 2. Suppose vi ∈ C with degree deg(vi) = k, then the slicing
procedure along C will split vi to k boundary vertices of M̃, denoted as {v1

i , v2
i , . . . , vk

i }.
Second, for each vi ∈ C for each pair of (vj

i , vk
i ), we can compute the shortest path on M̃,

using the Dijkstra’s algorithm. Then, we sort the shortest paths according to their total
lengths in ascending order. Figure 5 shows the top two shortest loops on the genus-2
surface. The algorithmic pipeline can be found in Algorithm 2.

Figure 5. The top two shortest loops of a genus-2 surface, computed using Algorithm 2.



Axioms 2023, 12, 942 8 of 14

Algorithm 2 Algorithm for Shortest Loop

Require: A closed triangle mesh M
Ensure: The shortest non-trivial loop γ of M

1: Compute the cut graph C of M, using Algorithm 1;
2: Slice M along C, to obtain a simply connected mesh M̃;
3: for all vertex vi ∈ C with deg(vi) = k do
4: Find all {v1

i , v2
i , . . . , vk

i } ⊂ ∂M̃;

5: for all pair (vj
i , vk

i ) on the boundary ∂M̃ do

6: Compute the shortest path γ̃
jk
i , using Dijkstra’s algorithm;

7: Find the loop γ
jk
i ⊂ M corresponding to γ̃

jk
i ⊂ M̃;

8: end for
9: end for

10: Sort all the shortest loops γ
jk
i in ascending order by their total lengths;

11: Return the shortest loop γ.

2.3.3. Topological Surgery

Once we have found the shortest loop γ on the current mesh M, we can slice M along
γ to produce a mesh Mγ, where γ corresponds to two boundary components of Mγ, namely,
γ0 and γ1. For the boundary component γk, k = 0, 1, we compute the mass center of all its
vertices, denoted as wk. For each edge e ∈ γk, we connect e with wk, to form a triangle. All
such triangles form a topological disk Dk. In this way, we fill the boundary component γk
with the topological disk Dk. After the hole filling, the genus of the resulting mesh Mγ is
reduced by one. The details are formulated in Algorithm 3.

Algorithm 3 Algorithm for Topological Surgery

Require: A closed triangle mesh M, a non-trivial loop γ
Ensure: A mesh N with one handle removed from M

1: Slice M along γ to obtain a mesh Mγ, ∂Mγ = γ0 − γ1;
2: for all boundary component γk, k = 0, 1 do
3: wk ← 0;
4: for all vertex vi ∈ γk do
5: wk ← wk + vi;
6: end for
7: wk ← wk/|γk|;
8: for all edge ej ∈ γk do
9: ej and wk form a triangle face f k

j ;

10: Mγ ← Mγ ∪ f k
j ;

11: end for
12: end for
13: N ← Mγ.

We combine the above algorithms, to form the topological denoising algorithm in
Algorithm 4. First, we compute the Euler number of the mesh (M) = |V|+ |F| − |E|, and
we find the genus of the surface by (S) = 2− 2g, where g is the genus of the surface. Second,
we find the shortest loop γ on the current mesh. Third, we perform topological surgery
along γ, to remove one handle. We repeat this procedure until the genus equals zero.
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Algorithm 4 Topological Denoising Algorithm

Require: A high-genus closed triangle mesh M
Ensure: The mesh N with all handles removed from M

1: Compute the Euler number (M) and the genus g of M;
2: Set M1 ← M;
3: for k = 1, 2, . . . , g do
4: Compute the shortest loop γk on Mk, using Algorithm 2;
5: Perform topological surgery on Mk along γk, to obtain Mk+1, using Algorithm 3;
6: end for
7: Set N ← Mg+1.

3. Results

All the experiments in this work were carried out on a Ubuntu 20.04 operating system
with an AMD Ryzen 7 2700X Eight-Core Processor at 3.7 GHz and 64 GB RAM. The mesh
models used in the experiments included general test models for visual illustration and
two datasets of colon meshes. The first colon dataset included 10 colon meshes with an
average of 100K faces (or triangles). The second colon dataset had a total number of 20 colon
meshes with an average of 1000K faces (or triangles). We compared our proposed method
to the State-of-the-Art persistent-homology-based method in [24].

3.1. Visual Evaluation on General Test Models

To evaluate the proposed method, we first show the visual evaluation results of
the general test models, as they have small numbers of genuses and are easy for visual
recognition. Figure 6 shows the general test models, with detected loops highlighted in
color. Their topological information is reported in Table 1. The number of faces (or triangles)
varies from 2 K to 120 K, and the genuses span from 2 to 6. Given a genus n closed surface,
there are n handle loops. As observed from the results in Figure 6, the number of the
detected loops in the highlighted color is the same as the numbers of genuses reported in
Table 1. Thus, our method can compute all loops correctly.

Figure 6. Results of our method for visual illustration on general test models: double torus, genus-3
model, amphora, genus-6 model, deco-cube, knotty, LoveMe model, and TwoKids model.
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Table 1. Topological information of general test models, for visual illustration.

Mesh #Faces #Genus

Genus-6 model 2 K 6
Double torus 7 K 2

Knotty 10 K 2
Genus-3 model 12 K 3

Amphora 20 K 2
LoveMe 50 K 3
TwoKids 80 K 3

Deco-cube 120 K 5

In the next subsection, we will show the capability of our proposed method for
detecting the loops on medical colon datasets and for performing topological denoising for
further colon wall flattening in virtual colonoscopy.

3.2. Topological Denoising for Two Colon Datasets

We further evaluated our method on two datasets of colon meshes, which had more
complex shapes and high genuses. The colon meshes were reconstructed from CT images
in virtual colonoscopy. Figure 7 (left) shows a colon wall mesh with topological noises
denoted by green loops. Figure 7 (middle, right) shows the zoom-in views of two regions
in the colon wall mesh marked with red boxes. It can be seen that various non-trivial loops
in the colon wall surface in different locations can be detected correctly.

Figure 7. Results of our method on a colon wall surface: (left) a colon wall mesh with topological
noises denoted by the green loops; (middle, right) zoom-in views of the two regions marked with
red boxes in the left figure.

The experimental results for the two colon datasets are reported in Tables 2 and 3,
respectively. For the first colon dataset, as shown in Table 2, our method was successfully
run on all 10 colon data, and it detected all the loops in the noisy colon data. By comparison,
the persistent homology method could only be executed on 8 colon data, and it failed on
2 colon data. This demonstrates that our method is more robust than the persistent homol-
ogy method. Moreover, the lengths (number of vertices) of detected loops in all 10 colon
data were much shorter by our method than by the persistent homology method, indicating
the advantage of our method for computing and obtaining shorter detected loops.

According to the experimental results shown in Table 3 for the second colon dataset,
our method outperforms the persistent homology method, in terms of robustness and
computation of shorter loops. It can be seen that among the 20 colon data, our method
successfully computed the loops on all 20 colon data, whereas the persistent homology
method failed on 2 colon data. Also, our method was able to detect all loops with shorter
lengths than those of the persistent homology method. Therefore, the experimental results
on both colon datasets demonstrate the effectiveness and robustness of our method.
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Table 2. Comparison, on the first colon dataset with 10 colon meshes, of persistent homology method
(denoted by PHM) to our method.

Success? All Loops Found? #Vertices of All Loops

Mesh (#Faces, #Genus) PHM Our PHM Our PHM Our

Colon1 (127 K, 67) No Yes No Yes NA 311
Colon2 (44 K, 13) Yes Yes Yes Yes 65 61
Colon3 (158 K, 31) No Yes No Yes NA 141
Colon4 (152 K, 8) Yes Yes Yes Yes 56 28
Colon5 (140 K, 38) Yes Yes Yes Yes 660 170
Colon6 (133 K, 30) Yes Yes Yes Yes 177 141
Colon7 (167 K, 14) Yes Yes Yes Yes 161 66
Colon8 (176 K, 13) Yes Yes Yes Yes 131 67
Colon9 (236 K, 7) Yes Yes Yes Yes 24 23

Colon10 (147 K, 19) Yes Yes Yes Yes 118 74

Table 3. Comparison, on the second colon dataset with 20 colon meshes, of persistent homology
method (denoted by PHM) to our method.

Success? All Loops Found? #Vertices of All Loops

Mesh (#Faces, #Genus) PHM Our PHM Our PHM Our

Colon1 (1091 K, 4) Yes Yes Yes Yes 77 24
Colon2 (1679 K, 6) Yes Yes Yes Yes 115 65
Colon3 (1679 K, 6) Yes Yes Yes Yes 118 65

Colon4 (1528 K, 26) Yes Yes Yes Yes 1104 492
Colon5 (1181 K, 17) Yes Yes Yes Yes 231 119
Colon6 (1350 K, 12) Yes Yes Yes Yes 321 124
Colon7 (1185 K, 3) Yes Yes Yes Yes 60 36
Colon8 (1144 K, 9) Yes Yes Yes Yes 158 107

Colon9 (1389 K, 17) Yes Yes Yes Yes 675 436
Colon10 (1259 K, 2) Yes Yes Yes Yes 11 11
Colon11 (1204 K, 4) Yes Yes Yes Yes 116 58
Colon12 (1692 K, 2) Yes Yes Yes Yes 122 36

Colon13 (1236 K, 11) Yes Yes Yes Yes 206 129
Colon14 (1300 K, 11) Yes Yes Yes Yes 298 250
Colon15 (1428 K, 17) Yes Yes Yes Yes 326 213
Colon16 (1631 K, 22) No Yes No Yes NA 410
Colon17 (1531 K, 8) Yes Yes Yes Yes 409 277

Colon18 (1774 K, 11) Yes Yes Yes Yes 210 83
Colon19 (1482 K, 18) Yes Yes Yes Yes 483 454
Colon20 (1202 K, 19) No Yes No Yes NA 177

3.3. Colon Flattening in Virtual Colonoscopy

To evaluate the full efficacy of the proposed method, we applied the method to the
flattening of a 3D colon wall surface to a 2D plane in virtual colonoscopy. The top row in
Figure 8 shows the original 3D colon surface without denoising and the corresponding colon
surface after denoising, respectively. The 3D colon wall surface after topological denoising,
using our method, was then flattened to the 2D plane via surface parameterization, which
is shown in the bottom row in Figure 8. A 2D visualization of the flattened colon wall
surface provides physicians with a good alternative for the detection of colorectal polyps,
in comparison to a traditional 3D endoscopic view. Also, the supplementary geometric and
texture features in the 2D flattened colon wall can be used in practice, to improve polyp
detection rates.

We also applied our method to colon data containing a clinically detected polyp of
size ≥ 10 mm. Figure 9a shows the result of the colon surface by our topological denoising
method, where the blue curve indicates the curve along which the 3D colon surface is
cut, for colon wall flattening to a 2D plane. Figure 9b gives a different view of a 3D colon
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surface, and the yellow arrow indicates the location of the polyp, which is highlighted by
the red points. Endoscopic views of the polyp on the colon wall are shown in Figure 9c,d,
where the red points are used to represent the polyp area. After the 3D colon wall surface
was flattened to a 2D plane, we obtained a 2D visualization of the polyp on the flattened
colon surface, as seen in Figure 9e. This alternative view of the polyp was conducive to
detecting and locating the polyp.

Figure 8. Result of flattening the 3D colon wall surface to a 2D plane after topological denoising using
the proposed algorithm: (top) the original 3D colon surface before denoising, with green highlighted
loops, and the corresponding colon surface after denoising; (bottom) the 2D flattened colon mesh.

(a) (b)

(c) (d)

(e)

Figure 9. Result of applying the proposed topological denoising method to colon data with a clinically
detected polyp: (a,b) two different views of the 3D colon surface, with a yellow arrow pointing to the
location of the polyp highlighted by the red points; (c,d) endoscopic views of the polyp on the colon
wall; (e) a 2D visualization of the polyp on the flattened colon surface.
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4. Conclusions

In this work, we have proposed a novel topological denoising method based on
homotopy theory. We applied the method to colon surface denoising in virtual colonoscopy.
The method is, in essence, computed in an iterative fashion. In terms of computational
steps, the algorithm mainly includes computations of cut graph and shortest loops, as
well as performing topological surgery. The method is not only mathematically rigorous
but also computationally robust. We evaluated the proposed method on two datasets of
colon meshes, and we conducted comparative experiments, to validate the method. In
comparison to the State-of-the-Art topological denoising method, our method outperforms
the existing method, in terms of robustness and effectiveness.

From the perspective of applications, the proposed method has the potential to be
applied in topological denoising tasks for other organs of interest in the medical imaging
field. In future work, we will explore in this direction, and we will apply the proposed
method to more medical imaging tasks.
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