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Abstract: Electro-optical detection systems face numerous challenges due to the complexity and
difficulty of targeting controls for “low, slow and tiny” moving targets. In this paper, we present an
optimal model of an advanced n-step adaptive Kalman filter and gyroscope short-term integration
weighting fusion (nKF-Gyro) method with targeting control. A method is put forward to improve the
model by adding a spherical coordinate system to design an adaptive Kalman filter to estimate target
movements. The targeting error formation is analyzed in detail to reveal the relationship between
tracking controller feedback and line-of-sight position correction. Based on the establishment of
a targeting control coordinate system for tracking moving targets, a dual closed-loop composite
optimization control model is proposed. The outer loop is used for estimating the motion parameters
and predicting the future encounter point, while the inner loop is used for compensating the targeting
error of various elements in the firing trajectory. Finally, the modeling method is substituted into the
disturbance simulation verification, which can monitor and compensate for the targeting error of
moving targets in real time. The results show that in the optimal model incorporating the nKF-Gyro
method with targeting control, the error suppression was increased by up to 36.8% compared to that
of traditional KF method and was 25% better than that of the traditional nKF method.

Keywords: electro-optical system; targeting control; adaptive filter; moving target; predicting
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1. Introduction

Aerial threats have become an important aspect of defense technology and will
present major challenges to security and counter-terrorism over the course of the next
few years [1–3]. The aerial threat facing urban security is so-called “low, slow and tiny”
unmanned drones that cannot easily be detected by radar [4,5]. In this case, unmanned
light weapon stations (ULWSs) are the last line of defense. However, it is difficult to adapt
the traditional optical sighting of general-purpose ULWSs to this latest security concern [6].
Electro-optical detection systems (EODSs), which are intelligent precision targeting devices
with specific functions of target imaging and tracking [7–12], are playing an important role
in tracking moving targets.

Liu X.Y. et al. [13] proposed a firing control method using an anti-aircraft gun based
on a variable-step Runge–Kutta model. Zhang X.J. et al. [14] proposed a differential tar-
geting model using a high-pressure water jet based on Newton’s second law. In order
to improve the efficiency of firing data for shipboard guns, Yao Z. et al. [15] proposed a
new targeting control model based on a gravitational search algorithm and secant method.
Liu H. et al. [16] proposed a mathematical targeting model and mechanism that is imbed-
ded in the rifle grip to counter the disturbance to line-of-sight and low action speed
caused by manual firing. In order to improve targeting accuracy by controlling firing time,
Geng Q. et al. [17] proposed a filter weighted fusion algorithm and linear predicting firing
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criterion. According to the characteristics of the controllable muzzle velocity of the new
shipboard guns, Wu W. et al. [18] proposed a maximum targeting probability equation
based on the dichotomy model and golden section. However, these methods based on the
assumption of stationary targets produce unacceptably high errors when tracking moving
targets such as “low, slow and tiny” unmanned drones.

Zhang Z.Y. et al. [19] proposed a firing model using an electromagnetic railgun against
aerial targets within a line-of-sight range based on a 6-DOF exterior ballistic equation and a
targeting probability model for single-shot and whole-route continuous-shot firing. Qiu
X.B. et al. [20] used the current statistical model as an example to combine a moving target
with pseudo-acceleration in polar coordinate systems using a Kalman filtering algorithm
in the design. This solved the problem of targeting and firing control for tanks facing
moving targets. Based on the exterior ballistics equation, Liu R. et al. [21] proposed a
dynamic gunnery problem solution model. The angle and flight time of projectile are
calculated iteratively synchronously, so as to improve the efficiency of the targeting control.
Lyu M.M. et al. [22–25] proposed a series of miss-distance time-delay control methods
for remotely operated weapon station platforms. The tests showed that the overshoot
decreased to 2.5%. However, these models for tracking moving targets are only suitable for
applications such as in artillery, tanks and missiles with long distances, high firing rates
and large damage areas. In contrast, an EODS needs to control the targeting error within
10 pixels (about <1 mrad) in a lens of 1280 × 720 pixels to achieve precision shooting against
“low, slow and tiny” unmanned drones. This highlights the higher accuracy requirements
for predicting and targeting control methods in EODSs.

Moreover, a light weapon station equipped with an EODS needs to quickly track
and aim at unmanned drone moving targets to achieve high-precision targeting control.
There are still only a few types of targeting control methods for “low, slow and tiny (LST)”
moving targets in EODS firing, and an adaptive filtering prediction model with high
tracking precision is still in the exploratory stage.

In this paper, we present an optimal model of an advanced n-step adaptive Kalman
filter and gyroscope short-term integration weighting fusion (nKF-Gyro) method with
targeting control. A method is put forward to improve the model by adding a spherical
coordinate system to design an adaptive Kalman filter and using a mathematical model
to track moving targets. The targeting error formation is analyzed in detail to reveal the
relationship between tracking controller feedback and line-of-sight position correction.
Based on the establishment of a targeting control coordinate system for tracking moving
targets, a dual closed-loop composite optimization control model is proposed. The outer
loop is used for estimating the motion parameters and predicting the future encounter point,
while the inner loop is used for compensating the targeting error of various elements in the
firing trajectory. Finally, simulation experiments prove the effectiveness of the optimized
model, which can monitor and compensate for the targeting error of moving targets in
real time. The results show that the error suppression of the nKF-Gyro optimal method
increased by up to 36.8% compared to that of the traditional KF method and was 25% better
than that of the traditional nKF method.

This manuscript is valuable for all researchers who are interested in electro-optical
detection systems, targeting controls, adaptive filters and moving targets.

2. Coordinate System for Targeting

Launching the bullet to the center of the target area is what an EODS aims to do.
However, due to systematic errors and the factors that are simplified and ignored during
modeling, the bullet always deviates from the target center. We define this deviation as the
bullet–target error E(k) and Ω(k) as the target area.

ET(k) =

{
0 E(k) ∈ Ω(k)
E(k) E(k) /∈ Ω(k)

(1)
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In Equation (1), ET(k) is the miss-distance. As shown in Figure 1, the target center
Mq is the origin and the bullet–target encounter time tf. Point O represents the position
where the EODS begins to target. The velocity of the bullet flying to point Mq is Vs(tf).
The velocity of the target moving to point Mq is Vm(tf). Then, the parameter Vre(tf) can be
represented by the following equation.

Vre(tf) = Vs(tf)− Vm(tf) (2)
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Figure 1. Bullet–target error coordinate system.

In Figure 1, we set point N in the coordinate system Mq − XYZ as the actual targeting
point. Then, the relationship of targeting error E can be obtained.

E =
−−→
ON = (XE , ZE)

T (3)

In Equation (3), XE is the bullet–target error in the azimuth direction, ZE is the bullet–
target error in the pitch direction. We set the targeting data when the bullet hits the target
Mq as

(
αq , βq

)
, and the targeting data correspond to the point N (αN , βN). Then, the

relationship of targeting error is Θ, where

Θ =

[
∆αq
∆βq

]
=

[
αq
βq

]
−
[

αN
βN

]
(4)

In Equation (4), ∆αq and ∆βq are the azimuth and pitch errors of the targeting data in
point Mq. As shown in Figure 1b, OpMp approximates the vertical axis direction MqY in
the coordinate system Mq − XYZ.{

XE = Dq tan ∆αE
ZE = Dq tan ∆βE

(5)

Then, the relationship between the (∆αE , ∆βE) and Θ can be obtained.{
∆αE ≈ ∆αq
∆βE ≈ ∆βq

(6)

Therefore, the targeting error Θ can be obtained by reducing the bullet–target error E.
As shown in Figure 2, we take O − XYZ as the geography coordinate system and

Op − XpYpZp is the EODS targeting coordinate system. K1K2 is the target trajectory; k1k2 is
the projection of the target trajectory on the horizontal plane.
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Figure 2. Targeting error coordinate system for a “low, slow and tiny” moving target.

(1) At the moment of firing, the EODS moves to the point Op(xp, yp, 0). Vp(vpx, vpy, vpz)
is the movement speed of EODS; cp is the movement direction.

(2) At the moment of firing, the Cartesian coordinate of the target in system O − XYZ
is the current encounter point M(xm, ym, zm); the spherical coordinate of the target in
system Op − XpYpZp is M(D, α, β). d and h are the horizontal and vertical distance. α and
β are the azimuth and pitch angle. Vm(vmx, vmy, vmz) is the movement speed of the target.
The movement direction is consistent with the target trajectory K1K2.

(3) Suppose that the future encounter point is Mq: the Cartesian coordinate of the
point Mq in system O − XYZ is Mq(xq, yq, zq); the spherical coordinate of the point Mq in
system Op − XpYpZp is Mq

(
Dq, αq, βq) . dq and hq are the horizontal and vertical distance.

αq and βq are the azimuth and pitch angle. Vq(vqx, vqy, vqz) is the movement speed of the
target. The movement direction is consistent with the target trajectory K1K2.

(4) The OY axis intercept of the target trajectory projection in system O − XYZ is ydd.
Vw(vwx, vwy, vwz) is the movement speed of the wind. cw is the movement direction.

Figure 3a shows how we predict the future encounter point Mq through the moving
target motion of the current encounter point M. Then, we solve the targeting data (α , β) of
the future encounter point Mq.

(
α
′
q (t), β

′
q(t)

)
is the targeting data of the forward solution.
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Figure 3. Target control of current-future encounter point.

In Figure 3b, we use a certain moment in the moving target motion as the future
encounter point Mq to solve the targeting data (α , β) of the current encounter point M,

which is called the inverse solution targeting equation.
(

α
′′
q (t − tf), β

′′
q(t − tf)

)
are the

targeting data of the inverse solution.
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By analyzing the source of targeting error through forward solutions, the following
quantitative relationship can be obtained.

ErrorA =

[
αN
βN

]
−
[

α
′
q

β
′
q

]
(7)

In Equation (7), (αN , βN) are the actual targeting data in point N.
(

α
′
q , β

′
q

)
is the

forward solution targeting error. ErrorA is the error generated during the forward solu-
tion process.

By analyzing the source of targeting error through inverse solutions, the following
quantitative relationship can be obtained.[

αq
βq

]
=

[
α
′′
q

β
′′
q

]
+ ErrorB (8)

In Equation (8),
(
αq , βq

)
are the actual targeting data in point Mq.

(
α
′′
q , β

′′
q

)
is the

inverse solution targeting error. ErrorB is the error generated during the inverse solution
process. Combining Equations (4), (7) and (8), it can be concluded that,

Θ =

[
αq
βq

]
−
[

αN
βN

]
=

[
α
′′
q

β
′′
q

]
−
[

α
′
q

β
′′
q

]
+ ErrorB − ErrorA (9)

Simplify the Equation (9) with ErrorA = ErrorB = 0,

Θ =

[
∆αq
∆βq

]
=

[
α
′′
q

β
′′
q

]
−
[

α
′
q

β
′
q

]
(10)

Therefore, the targeting error Θ can be seen as the difference between the inverse
solution data

(
α
′′
q , β

′′
q

)
and the forward solution data

(
α
′
q , β

′
q

)
.

3. Design of Targeting Control

As shown in Figure 4, the outer loop is used for estimating the motion parameters and
predicting the future encounter point, while the inner loop is used for compensating the
targeting error of various elements in the firing trajectory. Targeting control is the core of
the dual closed loop.
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3.1. Adaptive nKF Kalman Filtering Prediction

We designed an adaptive angular rate prediction algorithm in the spherical coordinate
system of the LST moving target constructed in Figure 2 for targeting control.

Treating the random disturbance received by the target in motion as system noise, as
shown in Figure 5, we established a moving target motion model with an adaptive Kalman
filtering equation. The expression of the target state vector was then obtained.

Xs(k) = [α , β,
.
α,

.
β,

..
α,

..
β
]T

(11)
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In Equation (11), (α , β) are the azimuth and pitch angle of the moving target.
( .
α ,

.
β
)

is the angular rate.
( ..
α ,

..
β
)

is the angular acceleration rate.
^
Xs( k + 1|k) is the target state

vector at time kT and Xs(k) is estimated at time (k + 1)T.

Then, the expression
^
Ys( k + 1|k) of the target angular state vector estimated at time

(k + 1)T can be obtained.

^
Ys( k + 1|k) = gs

(
^
Xs( k + 1|k)

)
=
( .̂

α( k + 1|k) ,
.̂
β( k + 1|k)

)T
(12)

In Equation (12),
( .̂

α( k + 1|k) ,
.̂
β( k + 1|k)

)T
is the vector expression for the estimated

targeting error of the moving target at time (k + 1)T. gs(x) is the kinematic function of the
target. Then, the angular rate discrete time state equation of spherical coordinate is,

Zs(k) = Hs(k)Xs(k) + Vs(k) (13)
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In Equation (13), the observation matrix is,

Hs(k) =
[

0 0 1 0 0 0
0 0 0 1 0 0

]
(14)

The measurement noise is,

Vs(k) =
[

η1k
η2k

]
(15)

In Equation (15), suppose that η1k and η2k are not correlated: then, the variance matrix
of Vs(k) is,

Rs(k) =
[

λ2
1k 0
0 λ2

2k

]
(16)

Combining Equations (11)–(16), the KF standard Kalman filtering equation group is,{
X(k) = Φ( k + 1|k)X(k) + Γ( k + 1|k)W(k)
Z(k) = H(k)X(k) + V(k)

(17)

Then, the quantitative relationship equation in spherical coordinates can be obtained.
The one-step predictive filtering equation is,

^
Xs( k + 1|k) = Φ( k + 1|k)

^
Xs(k) (18)

The one-step prediction mean square error estimation equation is,

P( k + 1|k) = Φ( k + 1|k)P(k)ΦT( k + 1|k) + Q(k) (19)

The gain matrix equation is,

K(k + 1) = P( k + 1|k)HT
s (k + 1)

(
Hs(k + 1)P( k + 1|k)HT

s (k + 1) + Rs(k + 1)
)−1

(20)

The predictive estimation equation is,

^
Xs(k + 1) =

^
Xs( k + 1|k) + K(k + 1)

(
Z(k + 1)− Hs(k + 1)

^
Xs( k + 1|k)

)
(21)

Update the mean square error equation to,

P(k + 1) = (I − K(k + 1)Hs(k + 1))P( k + 1|k) (22)

The one-step angular rate optimal prediction equation is,

^
Ys( k + 1|k) = gs

(
^
Xs( k + 1|k)

)
(23)

In Equations (17)–(23), Xs(t) is the n dimension state vector at time k. Φ( k + 1|k)
is the n × n dimension state transition matrix. Γ( k + 1|k) is the n × p dimension noise
input matrix. W(k + 1) is a p dimension state noise sequence. Zs(k + 1) is an m dimension
observation sequence. Hs(k + 1) is the m × n dimension observation matrix. V(k + 1) is
the m dimension observation noise sequence, assuming the flight time of bullet is tf.{

X( kf + 1|kf) = Φf
^
X(kf|kf )

P( kf + 1|kf) = ΦfP(kf|kf )Φ
T
f + Q

(24)
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Then, the filtering equation group is,
^
X( kf|kf) =

^
X(k)

^
P( kf|kf) =

^
P(k)

(25)

Combining Equations (17)–(24) and (25), the adaptive filtering equation can be obtained.

^
Ys( k + f |k) = gs

(
^
Xs( k + f |k)

)
=
( .̂

α( k + f |k) ,
.̂
β( k + f |k)

)T
(26)

In Equation (26),
^
Ys( k + f |k) is the optimal predicted value of f -step angular rate in

the spherical coordinate system for targeting control.

3.2. Weighted Fusion Inequality Model

Assume that the number of signals detected by n sensors during a certain measurement
stage is X = [x1, x2, · · · , xn]

T. Elements x1, x2, · · · , xn are independent of each other in
vector formulas. Set the variance of each element as σ21, σ22, · · · , σ2n, respectively. Set
the true value to be predicted as parameter x. Introduce the weighted factor vector W =

[w1, w2, · · · , wn]
T into the equation.

n

∑
i=1

wi = 1 (27)

Then, the weighted factor and the fused estimated value x equation can be obtained.

x =
n

∑
i=1

wixi = WTX (28)

In Equation (28), x is an unbiased estimate of x. Then, the total mean square error σ
equation can be obtained.

σ2 = E
[
(x − x)2

]

= E


n
∑

i=1
w2

i (x − xi)
2 + 2

n
∑

i = 1, j = 1
i ̸= j

wiwj(x − xi)
(
x − xj

)


(29)

The core of weighted fusion minimizes the signal variance by determining a set of
weighting factors wi. In Figure 6, we assume that at time j, signal measurement data
x1(j), x2(j), · · · , xi(j) are detected through n sensors. xi(j) = di(j) + bi(j) is the signal
detection value at time j. i refers to the i-th signal. di(j) is the true value of the signal, bi(j)
is the white noise of the i-th signal at time j, and the mean square deviation is σ2

i . Then, the
weighted fusion quantitative relationship of the n-th signal can be obtained.

s(j) =
n

∑
i=1

wixi(j) = WTX(j) (30)



Axioms 2024, 13, 113 9 of 15

Axioms 2024, 13, x FOR PEER REVIEW 9 of 16 
 

( ) ( ) ( )T

1

n

i i

i

s j w x j W X j
=

= =  (30) 

In Equation (30), ( ) ( ) ( )
T

1 , , nX j x j x j=     are the sensor measurement data at 

time j.  
T

1, , nW w w=  is the unknown weight matrix to be estimated. 

Input

Weighted 
factor Output

Mean square 
deviation threshold

Weighted function

 

Figure 6. Minimum mean square variance weighted fusion for multi-sensor data. 

If 
1

1
n

i

i

w
=

= , the unbiased estimation can be obtained. Due to 

( ) ( ) ( )1 2
 , , , 

n
x j x j x j  are independent of each other, and are an unbiased estimate of 

the true value x, so the equation ( )( )p q
E 0x x x x− − =   , 

( ); 1, 2, , ; 1, 2, , p q p n q n = =  can be obtained. 

( )
22 2 2 2

1 1

E
n n

i i i i

i i

w x x w 
= =

 
= − = 

 
   (31) 

Using the Cauchy–Schwarz inequality and the weighted fusion function definition 

of Equation (28), (29) and (31), the mathematical model can be obtained. 

2

2 2 2

2
1 1 1

1
1

n n n

i i i

i i ii

w w
= = =

    
 =    

    
    (32) 

In Equation (32), the corresponding minimum mean square error equation is, 

( ) ( ) ( )
22

min 2
1

1
1

n

i i

V s j E s j E s j
=

  =   = − =       (33) 

3.3. Targeting Error Interpolating Recursive 

Substitute the position estimation ( ) ( )( ( ) ( ))0 0 0
, , , ,x y z x k y k z k= ˆ ˆ ˆ  and velocity 

estimation ( ) ( ) ( ) ( )( ), , , , 
x y z x y z

v v v v k v k v k= ˆ ˆ ˆ  into the following targeting equation 

group, 

( )

0

0

0

2 2 2

 

x

y

z

x x v t

y y v t

z z v t

D D t x y z

= +
 = +
 = +

 = = + +

 (34) 

Equation (35) is,  

Figure 6. Minimum mean square variance weighted fusion for multi-sensor data.

In Equation (30), X(j) = [x1(j), · · · , xn(j)]T are the sensor measurement data at time j.
W = [w1, · · · , wn]

T is the unknown weight matrix to be estimated.

If
n
∑

i=1
wi = 1, the unbiased estimation can be obtained. Due to x1(j), x2(j), · · · , xn(j)

are independent of each other, and are an unbiased estimate of the true value x, so the equa-
tion E

[(
x − xp

)(
x − xq

)]
= 0, (p ̸= q; p = 1, 2, · · · , n; q = 1, 2, · · · , n) can be obtained.

σ2 = E

[
n

∑
i=1

w2
i (x − xi)

2

]
=

n

∑
i=1

w2
i σ2

i (31)

Using the Cauchy–Schwarz inequality and the weighted fusion function definition of
Equations (28), (29) and (31), the mathematical model can be obtained.(

n

∑
i=1

w2
i σ2

i

)(
n

∑
i=1

1
σ2

i

)
≥
(

n

∑
i=1

w2
i

)2

= 1 (32)

In Equation (32), the corresponding minimum mean square error equation is,

σ2
min = V[s(j)] = E

[
s(j)− E

[
s(j)2

]]
= 1

/
n

∑
i=1

1
σ2

i
(33)

3.3. Targeting Error Interpolating Recursive

Substitute the position estimation (x0 , y0, z0) = (x̂(k) , ŷ(k), ẑ(k)) and velocity esti-
mation (vx , vy, vz) =

(
v̂x(k), v̂y(k), v̂z(k)

)
into the following targeting equation group,

x = x0 + vxt
y = y0 + vyt
z = z0 + vzt
D = D(t) =

√
x2 + y2 + z2

(34)

Equation (35) is,
t = g(D, h) = tf(d, h) (35)

Combining Equations (9) and (10), the targeting data equation for point Mq is,{
αq = α(x, y, z) + ∆α(x, y, z)
βq = β(x, y, z) + ∆β(x, y, z)

(36)
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Substitute the estimated position (x̂(k) , ŷ(k), ẑ(k)) into Equation (36). Then, substitute
it into Equations (34) and (35) to solve the equation of the bullet flight time,

t = tf(d, h) = tf

[√
x̂2(k) + ŷ2(k), ĥ(k)

]
(37)

Add the targeting data equation,{
αq = α(x̂(k) , ŷ(k), ẑ(k)) + ∆α(x̂(k) , ŷ(k), ẑ(k))
βq = β(x̂(k) , ŷ(k), ẑ(k)) + ∆β(x̂(k) , ŷ(k), ẑ(k))

(38)

If
(

k∆T − t
′′
f (k)

)
≥ 0, take m =

k∆T−t
′′
f (k)

∆T , and k∆T − t
′′
f (k) is exactly an integer

multiple of ∆T. The following equation can then be derived.

k∆T − t
′′
f (k) = int

(
k∆T − t

′′
f (k)

∆T

)
(39)

The targeting data of inverse solution at time tk−m are, α
′′
q(k − m) = α

′′
q

[
tk − t

′′
f (k)

]
β
′′
q(k − m) = β

′′
q

[
tk − t

′′
f (k)

] (40)

If k∆T − t
′′
f (k) is not an integer multiple of ∆T, it is necessary to calculate the targeting

data of inverse solution at time tk−1, and then obtain the targeting data at time tk−m through
interpolation recursive compensation.

α
′′
q(k − m) =

(k−m)∆T−t
′′
f (k)

∆T+t′′f (k−1)−t′′f (k)
α
′′
q

[
(k − 1)∆T − t

′′
f (k − 1)

]
− (k−m−1)∆T−t

′′
f (k−1)

∆T+t′′f (k−1)−t′′f (k)
α
′′
q

[
k∆T − t

′′
f (k)

]
β
′′
q(k − m) =

(k−m)∆T−t
′′
f (k)

∆T+t′′f (k−1)−t′′f (k)
β
′′
q

[
(k − 1)∆T − t

′′
f (k − 1)

]
− (k−m−1)∆T−t

′′
f (k−1)

∆T+t′′f (k−1)−t′′f (k)
β
′′
q

[
k∆T − t

′′
f (k)

]
(41)

Similarly, as shown in Figure 7, Equation (41) can also be used to obtain the interpola-
tion recursive equation group for targeting data of forward solutions.
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Similarly, as shown in Figure 7, Equation (41) can also be used to obtain the inter-

polation recursive equation group for targeting data of forward solutions. 
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Figure 7. Interpolation compensation for targeting data. Figure 7. Interpolation compensation for targeting data.

4. Verification

To verify the effectiveness of the adaptive line-of-sight (LOS) filtering and targeting
control model, the Matlab/Simulink algorithm (nKF-Gyro) shown in Figure 8 was built
to validate and compare data. Part 1 is the moving target trajectory input and debugging
testing. Part 2 is the adaptive Kalman filtering prediction. Part 3 is the line-of-sight
compensator and targeting control.
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Figure 9 shows a snake-shaped flight trajectory curve of a moving target, assuming
that the target is moving in a constant acceleration (CA) motion. We assume that the X-axis
trajectory of the target satisfies sine equation x = A sin(ω1a + φ1) + b, and the Y-axis
trajectory of the target satisfies cosine equation y = B cos(ω2a + φ2) + b. The target is
moving in space 0→80 m on the Z-axis. Parameters A, B, a, b and ω1, ω2, φ1, φ2 are both
constant values. Taking the targeting data in the azimuth X-direction as an example, the
typical test curve is shown in Figures 10–13.
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Figures 10 and 12 are the comparison of targeting data. The black curve S0 represents
the targeting true value. The red curve S1 represents the actual measured value. The
dark blue curve represents the measured value of the traditional KF method. The green
curve represents the measured value of the traditional nKF method. The light blue curve
represents the measured value of the optimized nKF-Gyro method.

Similarly, Figures 11 and 13 show the comparison of targeting errors for the corre-
sponding methods KF, nKF, nKF-Gyro, and S3 measured value. Figures 12 and 13 show the
data curve in different expansion areas.

The black curve is set as the standard. In Figure 10, the red, dark blue, green and
light blue curves have the same changing trend as the standard black curve. This shows
that these methods can basically reflect the dynamic change in targeting data true values.
As shown in Figure 12 local expanded areas (22~25 s) and (25~28 s), the light blue curve
is closest to the black curve. This shows that the optimized method has the highest test
accuracy compared with the other three groups.

In Figure 11, compared with the four curves, the blue curve has the largest peak value,
the black curve has the smallest peak value, and the red-green curves are in the middle. As
shown in Figure 13 local expansion areas, the S3 measured error is −0.32 mrad (20~25 s),
while the KF method’s error is ±0.19 mrad (20~25 s and 30~35 s). So the traditional KF
method’s error ratio is reduced by 40.6%. The nKF method’s error is 0.16 mrad (30~35 s),
so the traditional nKF method’s error ratio is reduced by 50%. The optimized nKF-Gyro
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method’s error is −0.12 mrad (20~25 s), so the nKF-Gyro method’s error ratio is reduced
by 62.5%.

Detailed data are shown in Table 1. It shows that both the traditional and optimal
methods can reduce the targeting error. However, compared with the traditional method
(KF/nKF), the error correction effect of the optimized method (nKF-Gyro) is improved by
36.8% and 25%. It shows that the adaptive line-of-sight filtering prediction and targeting
control model can effectively correct the targeting error and improving the firing accuracy
of an EODS.

Table 1. Comparison of targeting error.

No. Index Parameter

1 S3 measured error δ1 0.32 mrad
2 Traditional KF method error δ2 0.19 mrad (↑40.6%)
3 Traditional nKF method error δ3 0.16 mrad (↑50%)
4 Optimized nKF-Gyro method error δ4 0.12 mrad (↑62.5%)
5 Traditional KF method error ratio λ1 = 1 − δ2/δ1 ↑40.6%
6 Traditional nKF method error ratio λ2 = 1 − δ3/δ1 ↑50%
7 Optimized nKF-Gyro method error ratio λ3 = 1 − δ4/δ1 ↑62.5%

5. Conclusions

In this paper, we present an optimal model of an advanced n-step adaptive Kalman
filter and gyroscope short-term integration weighting fusion (nKF-Gyro) method with
targeting control. This paper presents a new method for the adaptive line-of-sight Kalman
filtering and targeting control model in an intelligent EODS. We put forward a method
using a spherical coordinate system to design an adaptive Kalman filter and used a motion
model to estimate the target’s path. The targeting error formation was analyzed in detail to
reveal the scientific mechanism of tracking controller feedback and line-of-sight position
correction. Based on the establishment of a targeting control coordinate system to track
moving targets, a dual closed-loop composite optimization control model was proposed.
Our results show that the error suppression of the optimized nKF-Gyro method with
targeting control model is increased by up to 36.8% compared to that of the traditional
KF method and is 25% better than that of the traditional nKF method. In conclusion, this
manuscript is valuable for all researchers who are interested in electro-optical detection
systems, targeting control, adaptive filters and moving targets. The adaptive line-of-sight
filtering and targeting control model can effectively correct targeting errors and improve
the firing accuracy of an EODS.
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