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Abstract: The existence of the advance parameter in a scalar differential equation prevents the
application of the well-known standard methods used for solving classical ordinary differential
equations. A simple procedure is introduced in this paper to remove the advance parameter from a
special kind of first-order scalar differential equation. The suggested approach transforms the given
first-order scalar differential equation to an equivalent second-order ordinary differential equation
(ODE) without the advance parameter. Using this method, we are able to construct the exact solution
of both the transformed model and the given original model. The exact solution is obtained in a
wave form with specified amplitude and phase. Furthermore, several special cases are investigated
at certain values/relationships of the involved parameters. It is shown that the exact solution in the
absence of the advance parameter reduces to the corresponding solution in the literature. In addition,
it is declared that the current model enjoys various kinds of solutions, such as constant solutions,
polynomial solutions, and periodic solutions under certain constraints of the included parameters.
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1. Introduction

As far as we know, there are no standard methods to directly solve delay differential
equations (DDEs). A fundamental DDE is well-known as the pantograph delay differential
equation (PDDE, ϕ′(t) = αy(t) + βϕ(γt)) which has a particular application in electric
trains. The standard PDDE has been extensively investigated in the literature utilizing
several analytical and numerical methods [1–8]. Additional application of the PDDE arises
in astronomy at specific values of α, β, and γ. For declaration, the PDDE model becomes the
Ambartsumian model [9–13] when α = −1 and β = γ = 1/q (q > 1). The Ambartsumian
model studies the surface brightness in the Milky Way. In addition, several types of exact
solutions including the periodic were recently derived in Ref. [14] for the PDDE when
γ = −1, i.e., ϕ′(t) = αy(t) + βϕ(−t). An extension of the PDDE can be expressed as
ϕ′(t) = αy(t) + βϕ(γt + τ), where τ is called the advance parameter. The present work
focuses on the scalar differential equation (SDE):

ϕ′(t) = αϕ(t) + βϕ(−t + τ), ϕ(t) = 0 ∀ t < 0, ϕ(0) = λ, α, β, λ ∈ R, τ ≥ 0. (1)

The main notice here is that if −t + τ > t, Equation (1) is, in fact, an advanced equation
(0 < t < τ/2, where τ > 0), while at t > τ/2, it is a different type (delay model). This
paper proposes two simple approaches to solve the advanced equation in the domain
of 0 < t < τ/2. The first approach is based on transforming the model to a classical
two-point boundary value problem (BVP), while the second approach uses the series
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method. It will be shown that the two approaches lead to the same solution in the interval
of 0 < t < τ/2. For t > τ/2, the solution of the delay model is to be obtained by applying
a direct series method.

There are various analytical methods to solve the model (1), such as the Adomian
decomposition method (ADM) [15–20], the regular perturbation method (which requires
α or β to be small enough, i.e., less than unity) [21], and the homotopy perturbation
method [22,23]. However, these methods express the solution as infinite series; hence,
we may face some difficulties when calculating their components. On the other hand,
Laplace transform (LT) is an effective tool to solve initial value problems (IVPs). It has been
implemented to solve numerous problems [24], although its application in such a field is
rare. Therefore, the search for a simple but effective approach is still a demand.

The main objective of this paper is to determine all possible exact solutions of the
current model. This target will be achieved by developing a straightforward approach.
The proposed method transforms the model (1) into an equivalent ordinary differential
equation (ODE) such that the advance parameter (τ) disappears. First, the exact solution of
the transformed ODE is established in a direct manner using basic rules in calculus; then,
the exact solution of the current model is constructed.

It will be shown that the present model enjoys several kinds of solutions, e.g., constant
solutions, polynomial solutions, and periodic solutions. These types of solutions are
governed by certain relationships for the α, β, and τ parameters. The analytic solution
in the relevant literature is recovered as a special case of our solution at τ = 0. Various
interesting properties with respect to the nature of the obtained solutions are discussed in
detail. The current analysis begins with solving the reduced delay model (when α = 0)
to explain the main steps of the proposed method. Later, the full model (when α ̸= 0) is
solved exactly in terms of a wave solution with specified formulas for the amplitude and
the phase.

2. The Advanced Equation: 0 ≤ t ≤ τ/2

Here, a direct approach is applied to solve the model (1) in the domain of 0 ≤ t ≤ τ/2
(advanced equation). Two cases are considered: the first is the special case of α = 0, while
the second one considers the complete form of the present model, i.e., α ̸= 0. Then, it will
be shown that the solution of the second case reduces to the corresponding solution of the
first case when α = 0.

2.1. Reduced Model: α = 0

At α = 0, the current model becomes

ϕ′(t) = βϕ(−t + τ), ϕ(t) = 0 ∀ t < 0, ϕ(0) = λ, 0 ≤ t ≤ τ/2. (2)

A well-known method for solving scalar equations is the method of steps. Unfortunately,
this method is not applicable to solve the problem (2). This is simply because for 0 ≤ t ≤
τ/2, we have τ/2 ≤ −t + τ ≤ τ, and accordingly, we have no a value for ϕ(−t + τ) in this
case. Our idea is to transform this advanced model to a classical boundary value problem
(BVP) be means of the advance parameter (τ), along with the characteristics of the equation
itself in the corresponding domain.

This can be achieved by differentiating Equation (2) once with respect to t to give

ϕ′′(t) = −βϕ′(−t + τ), (3)

where the term ϕ′(−t + τ) can be directly obtained from Equation (2) by replacing t with
−t + τ; thus,

ϕ′(−t + τ) = βϕ(t). (4)

Substituting (4) into (3) yields
ϕ′′(t) + β2ϕ(t) = 0, (5)
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which is a classical ODE of the second order to be solved in the domain of 0 ≤ t ≤ τ/2.
Hence, two conditions are required in order to solve the ODE (5). The first condition is
already available, which is ϕ(0) = λ, while the another condition can be deduced from
Equation (2) at the end point of t = τ/2 as

ϕ′(τ/2) = βϕ(τ/2). (6)

It is now our objective to solve Equation (5) subject to

ϕ(0) = λ, ϕ′(τ/2) = βϕ(τ/2). (7)

The solution of Equation (5) is well known as

ϕ(t) = c1 sin(βt) + c2 cos(βt), (8)

where c1 and c2, are unknown constants. These constants are determined by applying
conditions (7) and (8); therefore,

c1 = λ

[
cos(βτ/2) + sin(βτ/2)
cos(βτ/2)− sin(βτ/2)

]
, c2 = λ. (9)

Accordingly,

ϕ(t) = λ

[
cos(βτ/2) + sin(βτ/2)
cos(βτ/2)− sin(βτ/2)

]
sin(βt) + λ cos(βt), (10)

which can be compacted in the following form:

ϕ(t) = λ sec(βτ)[sin(βt) + cos(β(t − τ))]. (11)

It can be easily verified by direct substitution that the solution given by Equation (11)
satisfies the model (2) and the conditions (7). The procedure above is also valid to determine
the exact solution of the full model (1) when α ̸= 0, and this is the issue of focus of the
next section.

2.2. Full Model: α ̸= 0

Following the same analysis as above and differentiating Equation (1) once with
respect to t, we obtain

ϕ′′(t) = αϕ′(t)− βϕ′(−t + τ), ϕ(t) = 0 ∀ t < 0, ϕ(0) = λ, 0 ≤ t ≤ τ/2. (12)

Equation (12) can be rewritten as

ϕ′′(t) = α[αϕ(t) + βϕ(−t + τ)]− β[αϕ(−t + τ) + βϕ(t)], (13)

which reduces to the classical second-order ODE, as follows:

ϕ′′(t) +
(

β2 − α2
)

ϕ(t) = 0. (14)

Here, Equation (14) should be solved subject to the following conditions:

ϕ(0) = λ, ϕ′(τ/2) = (α + β)ϕ(τ/2). (15)

For α2 < β2, i.e.,
∣∣∣ α

β

∣∣∣ < 1, the solution of Equation (14) is periodic and given by

ϕ(t) = c3 sin
(√

β2 − α2t
)
+ c4 cos

(√
β2 − α2t

)
, (16)
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or
ϕ(t) = c3 sin(Ωt) + c4 cos(Ωt), (17)

where Ω is defined by

Ω =
√

β2 − α2,
∣∣∣∣ αβ
∣∣∣∣ < 1, (18)

and c3 and c4, are unknown constants. Applying the first conditions in (15) to the solution
(17) gives c4 = λ; hence,

ϕ(t) = c3 sin(Ωt) + λ cos(Ωt). (19)

In order to apply the second conditions, i.e., ϕ′(τ/2) = (α + β)ϕ(τ/2), according to
Equation (19),

ϕ(τ/2) = c3 sin(Ωτ/2) + λ cos(Ωτ/2), (20)

ϕ′(t) = Ωc3 cos(Ωt)− Ωλ sin(Ωt), (21)

ϕ′(τ/2) = Ωc3 cos(Ωτ/2)− Ωλ sin(Ωτ/2). (22)

Implementing (20) and (22) in the second condition and solving the resulting algebraic
equation for c3 yields

c3 = λ

[
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

]
. (23)

Inserting this constant into Equation (19), we obtain

ϕ(t) = λ

[(
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

)
sin(Ωt) + cos(Ωt)

]
. (24)

The solution can also be expressed in the following form:

ϕ(t) = λ

[
Ω cos(Ω(t − τ/2)) + (α + β) sin(Ω(t − τ/2))

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

]
. (25)

It is observed from Equation (24) that the solution reduces to the corresponding solution
presented in the previous section by setting α = 0. In this case, i.e., at α = 0, the parameter
Ω in Equation (18) is equal to β. Hence, solution (25) reduces to solution (10) when α = 0
and Ω = β. In subsequent sections, we will examine the influence of the τ parameter on
the behavior of solution (25) at various values of α and β. Moreover, some existing results
reported in the literature will be determined and recovered as special cases for comparison
with the current cases.

3. Existence and Uniqueness

Although we are not able to provide a theorem for existence and uniqueness for the
current model (which is proposed and investigated for the first time), we can show that
the solution in the interval of 0 < t < τ/2 obtained by other methods is identical to the
obtained solution reported in the previous section. This gives a sense that the solution of
the reduced model or the full model is actually unique. To declare this point, let us consider
another method to solve the full model in the interval of 0 < t < τ/2 using the series
approach as follows:

ϕ(t) =
∞

∑
i=0

ai

(
t − τ

2

)i
.

Substituting this series into Equation (1), we obtain

ai+1 =
α + (−1)iβ

i + 1
ai, i ≥ 0,
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which gives

a2i =
(−1)ia0

(2i)!

(
β2 − α2

)i
, a2i+1 =

(−1)ia0

(2i + 1)!
(β + α)

(
β2 − α2

)i
,
∣∣∣∣ αβ
∣∣∣∣ < 1, i ≥ 0,

or

a2i =
(−1)ia0

(2i)!

(√
β2 − α2

)2i
, a2i+1 =

(−1)ia0

(2i + 1)!
(β + α)

(√
β2 − α2

)2i
, i ≥ 0,

i.e.,

a2i =
(−1)ia0

(2i)!
Ω2i, a2i+1 =

(−1)ia0

(2i + 1)!

(
β + α

Ω

)
Ω2i+1, i ≥ 0.

Thus,

ϕ(t) =
∞

∑
i=0

a2i

(
t − τ

2

)2i
+

∞

∑
i=0

a2i+1

(
t − τ

2

)2i+1
,

= a0

[
cos
(

Ω
(

t − τ

2

))
+

β + α

Ω
sin
(

Ω
(

t − τ

2

))]
.

Upon applying the given condition, ϕ(0) = λ we obtain

a0 =
λ

cos(Ωτ/2)− β+α
Ω sin(Ωτ/2)

.

Hence, the same solution (25) is obtained. This may give the impression that the
solution is unique but, of course, not sufficient. Future works are necessary in this area.

From Equation (5) and the two boundary conditions (7), it can be seen that if
tan(βτ/2) = 1, then either the solution does not exist (if λ is not zero) or, with λ = 0, the
solution is the c sin(betat) function for each constant (c).

In addition, it can be shown that the solution (11) does not exist if βτ = 2mπ + π/2,
m = 0, 1, 2, . . . , while solution (11) reduces to ϕ(t) = λ cos(βτ) if βτ = 2mπ + 3π/2 (this
case requires calculation of the limit of Equation (11)). Similar analysis can be followed for
solution (25) if tan(Ωτ/2) = α+β

Ω , where Ω is defined in Equation (18).

4. Compact Form for the Periodic Solution of the Advanced Equation

The objective of this section is to provide a compact formula for the solution of the
advanced equation. It will be shown that the compact formula is useful for the purposes of
comparisons between the present results and the corresponding results in the literature.

Theorem 1. The periodic solution of the advanced equation is given by the following compact form:

ϕ(t) = λ

√
1 +

(
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

)2

sin
(

Ωt + tan−1
(

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)

))
, (26)

such that
∣∣∣ α

β

∣∣∣ < 1.

Proof. Let us assume the solution in the following form:

ϕ(t) = µ sin(Ωt + θ), (27)

i.e.,
ϕ(t) = µ cos θ sin(Ωt) + µ sin θ cos(Ωt), (28)
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where Ω is defined in Equation (18). In view of the right-hand side of Equations (28) and (24),
we have the following system:

µ cos θ = λ

[
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

]
, (29)

µ sin θ = λ. (30)

Solving this system for µ and θ, we obtain

µ = λ

√
1 +

(
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

)2

, (31)

and

θ = tan−1
(

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)

)
. (32)

Substituting (31) and (32) into (27) completes the proof.

5. Special Cases of the Advanced Equation

This section aims to provide some lemmas to determine the exact solutions of special
cases for the included parameters, i.e., α and β, and the advance parameter (τ). Some
of the obtained results agree with the corresponding results in the relevant literature (in
the absence of the advance parameter (τ)), while the rest of results are reported for the
first time.

Lemma 1. If the advance parameter (τ) vanishes, the solution given in Equation (24) or its
equivalent form in Equation (25) reduces to the corresponding form in the literature [14].

ϕ(t) = λ

[√
β + α

β − α
sin
(√

β2 − α2t
)
+ cos

(√
β2 − α2t

)]
,
∣∣∣∣ αβ
∣∣∣∣ < 1. (33)

Proof. Setting τ = 0 in Equation (24) gives

ϕ(t) = λ

[(
α + β

Ω

)
sin(Ωt) + cos(Ωt)

]
. (34)

Substituting Ω =
√

β2 − α2 into the last equation yields

ϕ(t) = λ

[(
α + β√
β2 − α2

)
sin(

√
β2 − α2t) + cos(

√
β2 − α2t)

]
. (35)

Simplifying the first term on the right-hand side leads to the result of this lemma.

Lemma 2. The solution given by Lemma 1 is equivalent to

ϕ(t) = λ

√
2β

β − α
sin

(√
β2 − α2 t + tan−1

√
β − α

β + α

)
,
∣∣∣∣ αβ
∣∣∣∣ < 1. (36)

Proof. The proof follows immediately according to the same analysis/procedure used for
Theorem 1.

Lemma 3. If α and τ vanish, the solution takes the following form:

ϕ(t) =
√

2λ sin
(

βt +
π

4

)
, (37)
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which is equivalent to
ϕ(t) = λ(sin βt + cos βt). (38)

Proof. The proof follows immediately from Equations (26) and (33) by setting α = 0 and
τ = 0.

Lemma 4. If β = α, the solution reduces to the following polynomial of the first degree in t:

ϕ(t) =
λ

1 − ατ
(2αt + 1 − ατ), (39)

such that ατ ̸= 1.

Proof. In this case, we observe from Equation (18) that Ω → 0; accordingly, the solution
can be evaluated by calculating the limit of Equation (24) or Equation (25) as Ω → 0. Upon
using Equation (25), we find that

ϕ(t) = λ lim
Ω→0

[
Ω cos(Ω(t − τ/2)) + (α + β) sin(Ω(t − τ/2))

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

]
=

0
0

. (40)

Thus,

ϕ(t) = λ lim
Ω→0

[
d

dΩ (Ω cos(Ω(t − τ/2)) + (α + β) sin(Ω(t − τ/2)))
d

dΩ (Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2))

]
, (41)

i.e.,

ϕ(t) = λ lim
Ω→0

[
cos(Ω(t − τ/2))− Ω(t − τ/2) sin(Ω(t − τ/2)) + (α + β)(t − τ/2) cos(Ω(t − τ/2))

cos(Ωτ/2)− Ωτ/2 sin(Ωτ/2)− (α + β)τ/2 cos(Ωτ/2)

]
, (42)

and this gives

ϕ(t) = λ

[
1 + (α + β)(t − τ/2)

1 − (α + β)τ/2

]
. (43)

Since β = α, Equation (43) becomes

ϕ(t) =
λ

1 − ατ
(2αt + 1 − ατ), (44)

which completes the proof.

Lemma 5. If β = α and τ = 0, the solution reduces to

ϕ(t) = λ(2αt + 1), (45)

which agrees with the corresponding solution in the literature [20].

Proof. Substituting τ = 0 into Equation (44) completes the proof.

Lemma 6. If β = −α, the solution is the constant function (ϕ(t) = λ) such that βτ ̸= 1 or
ατ ̸= −1.

Proof. Substituting β = −α into Equation (18), we get Ω = 0. Hence, the analysis presented
in Lemma 4 should also be followed here but replacing β with −α in Equation (43). In this
case, the term (α + β)t disappears from the right-hand side of Equation (43). Hence, the
solution becomes the constant λ such that βτ ̸= 1, which completes the proof.
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6. Characteristics of the Solution of the Advanced Equation

This section discusses some characteristics of the obtained periodic wave solution,
such as the behavior, the amplitude, the phase, and the concept of critical values of the
advance parameter (τ).

6.1. Behavior of the Periodic Solution

The result derived by Theorem 1 shows that the solution of the present model is
periodic with the periodicity (P), as follows:

P =
2π

Ω
, (46)

where Ω =
√

β2 − α2 under the constraint
∣∣∣ α

β

∣∣∣ < 1. In view of Equation (46), the periodicity
(P) is independent of the advance parameter (τ). The chosen values of α and β cover all
possible cases regarding the signs of α and β such that

∣∣∣ α
β

∣∣∣ < 1. Figures 1–4 show the curves
of the solution in the interval of 0 ≤ t ≤ τ/2 (which is the domain of the solution of the
present scalar model) at λ = 1, α = 1, and β = 2 when τ = 6 (Figure 1), τ = 8 (Figure 2),
τ = 10 (Figure 3), and τ = 12 (Figure 4). Figures 1 and 2 indicate that the curves represent
portions of the periodic solution, i.e., not a complete period, while the curves depicted
in Figures 3 and 4 exceed a complete period in the domain of the solution. Moreover, the
behavior of the solution at different values of α and β is displayed in Figure 5 when λ = 1
and τ = 4.

0.5 1.0 1.5 2.0 2.5 3.0
t

-1.0

-0.5

0.5

1.0

ΦHtL

Figure 1. Plot of the solution at λ = 1, α = 1, and β = 2 when τ = 6.

1 2 3 4
t

-5

5

ΦHtL

Figure 2. Plot of the solution at λ = 1, α = 1, and β = 2 when τ = 8.
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1 2 3 4 5
t

-1.0

-0.5

0.5

1.0

ΦHtL

Figure 3. Plot of the solution at λ = 1, α = 1, and β = 2 when τ = 10.

1 2 3 4 5 6
t

-2

-1

1

2

ΦHtL

Figure 4. Plot of the solution at λ = 1, α = 1, and β = 2 when τ = 12.

0.5 1.0 1.5 2.0
t

-2

2

4

ΦHtL

Α=-1, Β=-2

Α=+1, Β=-2

Α=-1, Β=+2

Α=+1, Β=+2

Figure 5. Behavior of the solution at different values of α and β when λ = 1 and τ = 4.

At a certain relation between the advance parameter (τ) and the parameters α and
β, one can obtain a solution with one complete period in the domain of [0, τ/2]. Such a
relation can be easily found, as τ/2 = 2π/Ω which implies τ = 4π/

√
β2 − α2. In such a

case, the exact periodic solution takes the following form:
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ϕ(t) = λ

√
2β

β − α
sin
(√

β2 − α2 t + tan−1
(

β − α

β + α

))
, 0 ≤ t ≤ 2π/

√
β2 − α2. (47)

This form can be directly derived from Equation (26) (Theorem 1) by substituting
Ωτ/2 = 2π. In addition, the solution in the form of (47) is invested to declare the curves
in Figure 6. This figure shows four periodic solutions at four different selected values
for the parameters α and β ((α, β) = (±1,±2)) when λ = 1 in the domain of one period
(0 ≤ t ≤ 2π/

√
3). Figure 7 shows four other periodic solutions at (α, β) = (±

√
2,±

√
3) in

the domain of 0 ≤ t ≤ 2π.
It is important to refer to the fact that Equation (47) is a solution for scalar (1) when

τ = 4π/
√

β2 − α2, i.e.,

ϕ′(t) = αϕ(t) + βϕ

(
−t + 4π/

√
β2 − α2

)
, ϕ(0) = λ, (48)

which consists of only one period in the range of 0 ≤ t ≤ 2π/
√

β2 − α2.
One can find a solution with two periods if the advance parameter (τ) is chosen such

that τ = 8π/
√

β2 − α2. In this case, the curves of the solution consist of two complete
periods, as indicated in Figure 8.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t

-2

-1

1

2

ΦHtL

Α=-1, Β=-2

Α=+1, Β=-2

Α=-1, Β=+2

Α=+1, Β=+2

Figure 6. The periodic solution (47) for the scalar model (1) at λ = 1 and some selected values of α

and β ((α, β) = (±1,±2)) in the domain of one period (0 ≤ t ≤ 2π/
√

3).

1 2 3 4 5 6
t

-3

-2

-1

1

2

3

ΦHtL

Α=- 2 , Β=- 3

Α=+ 2 , Β=- 3

Α=- 2 , Β=+ 3

Α=+ 2 , Β=+ 3

Figure 7. The periodic solution (47) for the scalar model (1) at λ = 1 and some selected values of α

and β ((α, β) = (±
√

2,±
√

3)) in the domain of one period (0 ≤ t ≤ 2π).
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1 2 3 4 5
t

-2

-1

1

2

ΦHtL

Α=-2, Β=-3

Α=+2, Β=-3

Α=-2, Β=+3

Α=+2, Β=+3

Figure 8. The periodic solution (47) for the scalar model (1) at λ = 1 and some selected values of α

and β ((α, β) = (±2,±5)) in the domain of two periods (0 ≤ t ≤ 4π/
√

5).

6.2. The Amplitude, Phase, and Critical Values of the Advance Parameter τ: τc

The amplitude (Amplitude(ϕ(t))) and the phase (Phase(ϕ(t))) of the wave/periodic
solution (ϕ(t)) are mainly dependent on τ, where

Amplitude(ϕ) = λ

√
1 +

(
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)
Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)

)2

,

Phase(ϕ) = tan−1
(

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2)

)
.

(49)

It is noticed from (49) that the amplitude of the wave is always greater than λ, i.e.,
Amplitude(ϕ) > λ. However, we will show that Amplitude(ϕ) = λ at certain val-
ues of the advance parameter (τ) (called the critical values, denoted as τc). Setting
Ω sin(Ωτ/2) + (α + β) cos(Ωτ/2) = 0, we obtain

τ = τc =
2
Ω

tan−1
(
−α + β

Ω

)
. (50)

Inserting (50) into (49), one can obtain Amplitude(ϕ) = λ.

6.3. Behavior of the Polynomial Solution

In Section 4, it was shown that model (1) has polynomial solution (39) when α = β. In
view of Equation (39), it can be deduced that ϕ(t) is an increasing function in the whole
domain of the independent variable (t) when α > 0 such that τ < 1/α. However, ϕ(t)
decreases in the whole domain under two conditions/situations: the first occurs when α > 0
and τ > 1/α, while the second condition requires α < 0 without any restrictions on the
advance parameter (τ). Such characteristics of the polynomial solution are demonstrated
in Figures 9 and 10.
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Figure 9. Behavior of the polynomial solution at different values of α > 0 when τ = 4 and λ = 1.
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Figure 10. Behavior of the polynomial solution at different values of α < 0 when τ = 4 and λ = 1.

7. The Delay Equation: t ≥ τ/2

The domain of the delay equation should be divided into two intervals (τ/2 ≤ t ≤ τ
and t > τ) because the properties of ϕ(t) in one of these intervals are different than the
properties in the other interval. The solution of the delay model is obtained by applying
the method of steps in the intervals of τ/2 ≤ t ≤ τ and t > τ; this is the issue of focus of
the next subsections.

7.1. The Solution in the Interval: τ/2 ≤ t ≤ τ

For τ/2 ≤ t ≤ τ, we have 0 ≤ −t + τ ≤ τ/2; accordingly, the value of ϕ(−t + τ) can
be evaluated from the solution in the interval of [0, τ/2]. Let ϕ1(t) denote the solution in
this interval; then, the delay model is described by

ϕ′(t) = αϕ(t) + βϕ1(−t + τ), ϕ(t) = ϕ1(t) ∀ t ∈ [0, τ/2], τ/2 ≤ t ≤ τ, (51)

with the following initial condition:

ϕ(τ/2) = ϕ1(τ/2) = γ1 =
λΩ

Ω cos(Ωτ/2)− (α + β) sin(Ωτ/2)
, (52)

where γ1 is obtained from Equation (25), and Ω is already defined in (18). Since ϕ1(t) is the
solution for t ∈ [0, τ/2], according to (17), we can write

ϕ1(−t + τ) = −c3 sin(Ω(t − τ)) + c4 cos(Ω(t − τ)), (53)
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where c3 and c4 were already obtained in Section 2.2. Inserting (53) into (51) and solving
the IVP ((51) and (52)), we obtain the following exact solution:

ϕ(t) = γ1eα(t− τ
2 ) +

1
β

[
σ1 sin(Ωt)− σ2 cos(Ωt)− eα(t− τ

2 )(σ1 sin(Ωτ/2)− σ2 cos(Ωτ/2))
]
, (54)

where
σ1 = Ωµ1 − αµ2, σ2 = αµ1 + Ωµ2,

µ1 = c4 cos(Ωτ) + c3 sin(Ωτ), µ2 = c4 sin(Ωτ)− c3 cos(Ωτ). (55)

7.2. The Solution in the Interval of t > τ

For t > τ, we have −t + τ < 0; thus, the value of ϕ(−t + τ) vanishes in this case.
Accordingly, the delay model reduces to the IVP, as follows:

ϕ′(t) = αϕ(t), ϕ(t) = ϕ2(t) ∀ t ∈ [τ/2, τ], t > τ, (56)

where ϕ2(t) represents the solution (ϕ(t)) of Equation (54) in the interval of [τ/2, τ].
Equation (56) is subjected to the following initial condition:

ϕ(τ) = ϕ2(τ) = γ2 = γ1e
ατ
2 +

1
β

[
σ1 sin(Ωτ)− σ2 cos(Ωτ)− e

ατ
2 (σ1 sin(Ωτ/2)− σ2 cos(Ωτ/2))

]
, (57)

where γ2 is obtained from Equation (54). The solution of the present IVP reads

ϕ(t) = γ2eα(t−τ), t > τ. (58)

8. Properties and Behavior of the Solution in the Full Domain

Figures 11–14 show the curves of the solutions in the interval of [0, τ/2] for the
advanced equation (blue curve) and in the intervals of [τ/2, τ] (red curve) and (τ, ∞)
(green curve) for the delay model. The black dots in these figures represent the connection
points between the three solutions in the above three intervals. It is clear from Figures 11–14
that ϕ(t) is continuous. The oscillation of the solution is also obvious in the domain of [0, τ],
while another behavior occurs in the (τ, ∞) domain.

2 4 6 8
t

-4

-3

-2

-1

1

ΦHtL

Figure 11. Plot of the solution in the interval of [0, τ/2] for the advanced equation (blue curve) and in
the intervals of [τ/2, τ] (red curve) and (τ, ∞) (green curve) for the delay equation. The black dots
represent the connection points between the solutions at λ = 1, α = 1, and β = 2 when τ = 6.
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ΦHtL

Figure 12. Plot of the solution in the interval of [0, τ/2] for the advanced equation (blue curve) and in
the intervals of [τ/2, τ] (red curve) and (τ, ∞) (green curve) for the delay equation. The black dots
represent the connection points between the solutions at λ = 1, α = 1, and β = 2 when τ = 12.
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-0.5

0.5

1.0
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Figure 13. Plot of the solution in the interval of [0, τ/2] for the advanced equation (blue curve) and in
the intervals of [τ/2, τ] (red curve) and (τ, ∞) (green curve) for the delay equation. The black dots
represent the connection points between the solutions at λ = 1, α = −2, and β = 3 when τ = 6.
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Figure 14. Plot of the solution in the interval of [0, τ/2] for the advanced equation (blue curve) and in
the intervals of [τ/2, τ] (red curve) and (τ, ∞) (green curve) for the delay equation. The black dots
represent the connection points between the solutions at λ = 1, α = −2, and β = 3 when τ = 12.
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Figures 15–18 display ϕ′(t) in the intervals of [0, τ/2] (blue curve), [τ/2, τ] (red curve),
and (τ, ∞) (green curve) at various values of the model’s parameters. It can be observed
from these figures that ϕ′(t) is discontinuous at t = τ, which is one of the main properties
of the solution in the domain of the delay equation.

2 4 6 8
t

-4

-3

-2

-1

1

Φ'HtL

Figure 15. Plot of ϕ′(t) in the intervals of [0, τ/2] (blue curve), [τ/2, τ] (red curve), and (τ, ∞) (green
curve) at λ = 1, α = 1, and β = 2 when τ = 6.
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Figure 16. Plot of ϕ′(t) in the intervals of [0, τ/2] (blue curve), [τ/2, τ] (red curve), and (τ, ∞) (green
curve) at λ = 1, α = 1, and β = 2 when τ = 12.
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Figure 17. Plot of ϕ′(t) in the intervals of [0, τ/2] (blue curve), [τ/2, τ] (red curve), and (τ, ∞) (green
curve) at λ = 1, α = −2, and β = 3 when τ = 6.
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Figure 18. Plot of ϕ′(t) in the intervals of [0, τ/2] (blue curve), [τ/2, τ] (red curve), and (τ, ∞) (green
curve) at λ = 1, α = −2, and β = 3 when τ = 12.

9. Conclusions

In this paper, a simple approach was presented to solve scalar equation
ϕ′(t) = αϕ(t) + βϕ(−t + τ). An exact periodic solution was obtained under the con-
dition of

∣∣∣ α
β

∣∣∣ < 1. A solution in the relevant literature at τ = 0 was recovered as a special
case of the current case. In addition, a polynomial solution was deduced in terms of the
advance parameter (τ) when β = α. It was demonstrated that the case of β = −α leads to
a trivial/constant solution. The characteristics of the periodic and polynomial solutions
were discussed in detail. Moreover, the behaviors of the periodic and polynomial solutions
were introduced by means of several plots. The obtained results reveal the simplicity and
the efficiency of the present analysis, which can be further extended to include other types
of equations.
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