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Abstract: In this paper, a parametric method for proving inequalities is described. The method
is based on associating a considered inequality with the corresponding stratified family of func-
tions. Many inequalities from the theory of analytic inequalities can be interpreted using families
of functions that are stratified with respect to some parameter. By discussing the sign of the func-
tions from the family by the parameter according to which the family is stratified, inequalities are
obtained that contain the best possible constants, if they exist. The application of this method is
demonstrated for four inequalities: the Cusa–Huygens inequality, the Wilker-type inequality and the
two Mitrinović–Adamović-type inequalities. Significantly simpler proofs and improvements of all
these inequalities are provided.
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1. Introduction

In the theory of analytic inequalities, authors often give and prove improvements to
some well-known inequalities. It has been shown in previous papers [1–6] that, in many
cases, those inequalities can be considered through the concept of stratified families of
functions [1].

In the following, we will specify the concept of the stratification of a family of functions
over a real subset. We start with a family of functions {φp(x)}p∈P defined for values of the
argument x∈S for some S⊆R (S ̸=∅) and parameter values p∈P for some P⊆R (P ̸=∅).
The family of functions {φp(x)}p∈P is increasingly stratified at a point x0∈S if

(∀p1, p2∈P) p1 < p2 ⇐⇒ φp1(x0) < φp2(x0) ,

and, conversely, the family of functions {φp(x)}p∈P is decreasingly stratified at a point x0∈S if

(∀p1, p2∈P) p1 < p2 ⇐⇒ φp1(x0) > φp2(x0) .

The family of functions {φp(x)}p∈P is increasingly (decreasingly) stratified on a set S if it is
increasingly (decreasingly) stratified at every point in the set S. Note that stratified families
of functions appear in some mathematical problems in engineering [7–10].

The paper is divided into an introduction, three sections and a conclusion. Some new
results are given within each section. In Section 2, we provide a brief overview of one
method for proving mixed trigonometric polynomial inequalities over some interval [11].
This method is used in Section 4. The parametric method, based on the concept of strat-
ification, is the subject of Section 3. Applications of the method in the theory of analytic
inequalities are given in Section 4. In Sections 3 and 4, specific choices of sets S and P for
stratified families of functions are considered in accordance with the observed problems.
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2. On a Sign of Mixed Trigonometric Polynomial Functions

In this section, we outline a method for proving mixed trigonometric polynomial
(MTP) inequalities

f (x) > 0 ,

where f (x) is an MTP function over a non-empty set S⊆R given by

f (x) =
n

∑
i=1

αixpi cosqi x sinri x , (1)

where n ∈N, αi ∈R\{0} and pi, qi, ri ∈N0 = N∪{0}. Note that these MTP functions are
continuous on S. Additionally, if S is a set of the form (a, b), [a, b), (a, b], [a, b], where a < b,
then these MTP functions are differentiable any number of times on S. Regarding MTP
functions and inequalities, see [6,11–17].

In the following, we provide a brief description of the method for proving MTP
inequalities according to [6,11]. As an application of this method, we will present methods
for isolating zeros and extrema of MTP functions that have not been considered before.

2.1. A Positivity of MTP Functions

The MTP function (1), by applying substitutions from Table 1 [6,13] to each addend of
the function f (x), can be transformed into the equivalent form given by

f (x) =
m

∑
i=1

βixsi trigi(k x) , (2)

where m∈N, βi ∈R\{0}, si ∈N0, trigi = cos or trigi = sin, and k∈Z, for x∈S. Notice that
the expression of an MTP function in terms of multiple angles (2) does not contain any
powers or products of trigonometric functions.

For a real function ϕ(x), x∈S, a real polynomial P(x) is an upward polynomial approxi-
mation on A⊆S, if it holds that

(∀x∈A) ϕ(x) ≤ P(x) ,

and, conversely, a real polynomial P(x) is a downward polynomial approximation on A⊆S, if
it holds that

(∀x∈A) ϕ(x) ≥ P(x) .

A method for proving an MTP inequality

f (x) > 0 (3)

on S is described in [11] for S = (a, b), a < b. In that paper, the proof of the positivity of an
MTP function is based on determining a downward polynomial approximation P(x) with
respect to the observed MTP function f (x) such that

f (x) > P(x) > 0 ,

x∈ (a, b), where (a, b) is a bounded interval.
Note that if the MTP inequality (3) is considered on the interval (a, b), an examination

of the positivity of the sign of the MTP function f (x) can also be performed at the endpoints
a and b. In this way, it is potentially possible to extend the inequality (3) to x∈ [a, b), x∈ (a, b]
or x∈ [a, b].

In [11], upper and lower bounds of the MTP functions were considered using Maclau-
rin approximations for the sine and cosine functions. Generally, for analytic functions,
the problem of determining upper and lower bounds and approximation errors can be
approached using some other methods as well (see for example [18–22]).
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To obtain a downward polynomial approximation P(x) of the MTP function f (x),
according to [6,11], we approximate each addend of the function (2) using upward and
downward Maclaurin approximations of the sine and cosine functions that are given in
Lemmas 1.1 and 1.2 from [11]. Therefore, we obtain a real polynomial P(x) such that

f (x) > P(x) ,

x∈ (a, b), holds. If for a such polynomial P(x), it holds that

P(x) > 0 ,

x∈ (a, b), then
f (x) > 0 ,

x∈ (a, b).
Note that in Section 4, we denote the Taylor expansion of order n of some analytic

function ϕ in the neighbourhood of some point a by Tϕ,a
n (x).

It is well known that Sturm’s theorem gives the number of zeros of a real polynomial
function on a real segment, provided that the polynomial has no zeros at the endpoints
of that segment ([23], Theorem 4.2 [24]). From a computational standpoint, the question
arises regarding the effectiveness of the execution of Sturm’s algorithm. In [24], it has been
shown that for a polynomial with rational coefficients on a segment with rational endpoints
such that the polynomial does not have a zero at the endpoints of the segment, Sturm’s
algorithm is executed effectively. In Section 4, the considered MTP functions f (x) and the
corresponding polynomials P(x) have rational coefficients and are examined on a segment
whose endpoints do not have to be rational numbers. If some endpoint is not a rational
number, the proof is performed over an extended segment with rational endpoints.

2.2. Isolation Methods

In [25], a method for isolating intervals on which there are zeros of MTP functions is
described and implemented. However, the computer implementation of this algorithm in
Maple from [25] does not display all the steps that allow users to control and verify the
proof. Therefore, in this subsection, we provide methods for isolating zeros and extrema
of MTP functions based on the method for proving MTP inequalities from Section 2.1.
The use of these methods allows the observation of all the steps in the proof process,
i.e., verification.

2.2.1. A Method for Isolating Zeros of an MTP Function

Let us consider MTP functions f : S −→ R on the segment S = [a, b], a < b. The
following assertion evidently holds:

Theorem 1 (A method for isolating zeros). If there exist points a0, b0 ∈ [a, b] such that a <
a0 < b0 < b, satisfying the conditions:

1. f has a constant sign on [a, a0] and on [b0, b] under the condition that f (a0) f (b0) < 0;
2. f ′ has a constant sign on [a0, b0];

then the MTP function f : [a, b] −→ R has exactly one zero on the interval (a, b), more precisely,
on the subinterval (a0, b0).

Remark 1. The previous theorem holds for any differentiable function f over the segment [a, b]. By
choosing f to be an MTP function, we can verify conditions 1 and 2 using the method for proving
MTP inequalities from Section 2.1.

Note that for the functions f : [a, b] −→ R, we do not provide a selection procedure
for a0 and b0. If concrete values for a0 and b0 are determined that satisfy conditions 1 and 2
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using the method for proving MTP inequalities, then we have proof of the existence of
exactly one zero and the isolation of the subinterval where the zero is located.

This method cannot be applied to isolate double zeros, i.e., zeros of the even multi-
plicity. However, these zeros also represent local extrema of the functions. Therefore, it is
possible to isolate them using the method for isolating extrema (Section 2.2.2).

If an MTP function is a non-zero function, then on a bounded interval, it has finitely
many zeros. Thus, it is possible to consider a method for isolating all zeros on some
bounded interval on which there is more than one zero in a similar manner.

2.2.2. A Method for Isolating Extrema of an MTP Function

Let us consider MTP functions f : S −→ R on the segment S = [a, b], a < b. The
following assertion evidently holds:

Theorem 2 (A method for isolating extrema). If there exist points a0, b0 ∈ [a, b] such that
a < a0 < b0 < b, satisfying the conditions:

1. f ′ has a constant sign on [a, a0] and on [b0, b] under the condition that f ′(a0) f ′(b0) < 0;
2. f ′′ has a constant sign on [a0, b0];

then the MTP function f : [a, b] −→ R has exactly one extremum on the interval [a, b], more
precisely, on the subinterval (a0, b0).

Remark 2. The previous theorem holds for any two times differentiable function f over the segment
[a, b]. By choosing f to be an MTP function, we can verify conditions 1 and 2 using the method for
proving MTP inequalities from Section 2.1.

If f ′′ has a constant sign on [a, b], then, to establish the existence of exactly one
extremum and isolate the subinterval (a0, b0) where it lies, it is sufficient to prove that there
exist points a0, b0∈ [a, b] such that a < a0 < b0 < b and that f ′(a0) f ′(b0) < 0.

If in the condition 2, it holds that f ′′ > 0 on [a0, b0], then the function f (x) has a
minimum, whereas if f ′′ < 0 holds on [a0, b0], the function f (x) has a maximum. For the
functions f : [a, b] −→ R, we do not provide a selection procedure for a0 and b0. If concrete
values for a0 and b0 are determined that satisfy conditions 1 and 2 using the method for
proving MTP inequalities, then we have proof of the existence of exactly one extremum
and the isolation of the subinterval where the extremum is located.

Note that the described method for isolating an extremum of an MTP function f (x) is
identical to the method for isolating a zero of the odd multiplicity of the MTP function f ′(x).

If an MTP function is not constant, then on a bounded interval, it has finitely many
extrema. Thus, it is possible to consider a method for isolating all extrema on some bounded
interval on which there is more than one extremum in a similar manner.

3. On the Parametric Method

In this section, the parametric method for proving inequalities will be described. Let
{φp(x)}p∈P be a family of functions that takes real values for the argument x∈S (∅ ̸=S⊆R)
and the parameter p∈P (∅ ̸=P⊆R). Let us observe for fixed x∈S the equation

φp(x) = 0

with respect to the parameter p. In the general case, this equation may have no solution
with respect to p∈P. For us, it is of particular interest to identify families for which there
exists a solution with respect to p∈P, for each x∈S, especially those where the solution
is unique.

With the following assertion, we provide some sufficient conditions such that for a
family of functions {φp(x)}p∈P, the equation φp(x) = 0 has a solution with respect to p.
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Theorem 3. Let {φp(x)}p∈[c,d] be a family of functions with the argument x∈ [a, b], a < b, such
that φp(a) = 0 for p∈ [c, d], c < d. If:

(a) φc(x)<0 and φd(x)>0 for each x∈ (a, b), φc(b) = 0, φd(b)∈R+;
(b) the functions φp(x) are continuous with respect to p∈ [c, d] for each x∈ [a, b];

then for each x∈ [a, b], the equation φp(x) = 0 has a solution with respect to p∈ [c, d].

Proof. The conditions (a) and (b) ensure that for each x∈ (a, b), there will be at least one
solution to the equation φp(x) = 0 with respect to p ∈ (c, d). If x = a, the assumption
φp(a) = 0 ensures that there is a solution at point a. If x = b, the assumption φc(b) = 0
ensures that there is a solution at point b.

A family of functions {φp(x)}p∈[c,d], x ∈ [a, b], that satisfies the conditions of the
previous theorem, we denote compressed at the point a. For such a family, the following
assertion holds:

Theorem 4. A family of functions {φp(x)}p∈[c,d] with the argument x ∈ [a, b], a < b, that is
compressed at the point a and stratified on (a, b] has the property that the equation φp(x) = 0 has
exactly one solution with respect to p∈ [c, d], c < d, for each x∈ (a, b].

Proof. Theorem 3 ensures the existence of a solution to the equation φp(x) = 0 for each
x ∈ (a, b]. If there were two solutions, the family of functions {φp(x)}p∈P would not be
stratified.

Note that the solvability of the equation φp(x) = 0 with respect to the parameter p,
under proper conditions for the family, is also considered with the well-known Implicit
Function Theorem [26].

We further consider families of functions {φp(x)}p∈P with the argument x∈S = (a, b),
a < b, and the parameter p ∈P (∅ ̸=P⊆R) such that there exists a continuous function
g : (a, b) −→ P for which

g(x) = p ⇐⇒ φp(x) = 0 . (4)

In the theory of analytic inequalities, there exist numerous examples of trigonometric
inequalities that can be connected to families of functions that are compressed at a point
such that for them there exists a continuous function g such that (4) holds over the base
interval S = (0, π/2), for example [1–3,5,6,27–41].

The function g itself, such that (4) holds, may or may not be given by some specific
symbolic expression. In the applications discussed in this paper, cases where g can be
determined symbolically are considered.

In the following, we examine cases of stratified families of functions {φp(x)}p∈P
when g is a monotonic function and when g is not a monotonic function. The function
g determines the values of the parameter p for which the functions φp(x) have zeros on
the observed interval. The stratification of the family {φp(x)}p∈P provides the order of
functions in that family which is used in the following.

We first consider the case when g is a monotonic function. The following asser-
tions hold:

Theorem 5. Let {φp(x)}p∈P be a family of functions for x ∈ S = (a, b) ⊆ R and let P ⊆ R
(P ̸=∅), satisfying the following conditions:

1. the family of functions {φp(x)}p∈P is increasingly (decreasingly) stratified on the interval
(a, b);

2. there exists a continuous monotonically increasing function g : (a, b) −→ P that satisfies (4);
3. there exist limits lim

x→a
g(x) = A and lim

x→b
g(x) = B in R such that (A, B)⊆P.

Then, it holds:
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(i) If p ≤ A, then

(∀x∈ (a, b)) φp(x) ≤ φA(x) < 0
(
(∀x∈ (a, b)) φp(x) ≥ φA(x) > 0

)
.

(ii) If p∈ (A, B), then the equality φp(x) = 0 has a unique solution x(p)
0 ∈ (a, b) and it holds that(

∀x∈
(

a, x(p)
0

))
φp(x) > 0

((
∀x∈

(
a, x(p)

0

))
φp(x) < 0

)
and (

∀x∈
(

x(p)
0 , b

))
φp(x) < 0

((
∀x∈

(
x(p)

0 , b
))

φp(x) > 0
)

.

(iii) If p ≥ B, then

(∀x∈ (a, b)) φp(x) ≥ φB(x) > 0
(
(∀x∈ (a, b)) φp(x) ≤ φB(x) < 0

)
.

Proof. The function g determines the values of the parameter p for which the functions
from the family {φp(x)}p∈P have zeros on the observed interval. Based on the properties
of stratified families of functions, the corresponding inequalities from (i) and (iii) follow.
The assertion (ii) is a direct consequence of the stratification and the monotonicity of the
function g.

Theorem 6. Let {φp(x)}p∈P be a family of functions for x ∈ S = (a, b) ⊆ R and let P ⊆ R
(P ̸=∅), satisfying the following conditions:

1. the family of functions {φp(x)}p∈P is increasingly (decreasingly) stratified on the interval
(a, b);

2. there exists a continuous monotonically decreasing function g : (a, b) −→ P that satisfies (4);
3. there exist limits lim

x→b
g(x) = A and lim

x→a
g(x) = B in R such that (A, B)⊆P.

Then, it holds:

(i) If p ≤ A, then

(∀x∈ (a, b)) φp(x) ≤ φA(x) < 0
(
(∀x∈ (a, b)) φp(x) ≥ φA(x) > 0

)
.

(ii) If p∈ (A, B), then the equality φp(x) = 0 has a unique solution x(p)
0 ∈ (a, b) and it holds that(

∀x∈
(

a, x(p)
0

))
φp(x) < 0

((
∀x∈

(
a, x(p)

0

))
φp(x) > 0

)
and (

∀x∈
(

x(p)
0 , b

))
φp(x) > 0

((
∀x∈

(
x(p)

0 , b
))

φp(x) < 0
)

.

(iii) If p ≥ B, then

(∀x∈ (a, b)) φp(x) ≥ φB(x) > 0
(
(∀x∈ (a, b)) φp(x) ≤ φB(x) < 0

)
.

Proof. It is analogous to the proof of Theorem 5.

Remark 3. In Theorems 5 and 6, if A = −∞, the case (i) is not possible, and if B = +∞, the case
(iii) is not possible.

The previous two theorems can also be considered, with minor modifications, in cases
when the family of functions {φp(x)}p∈P is defined at a or b.

Next, we consider the case when g is not a monotonic function. Let us consider a
function that has exactly one local minimum on the observed interval S⊆R. For such a
function, the following theorem holds:



Axioms 2024, 13, 520 7 of 23

Theorem 7. Let {φp(x)}p∈P be a family of functions for x ∈ S = (a, b) ⊆ R and let P ⊆ R
(P ̸=∅), satisfying the following conditions:

1. the family of functions {φp(x)}p∈P is increasingly (decreasingly) stratified on the interval
(a, b);

2. there exists a continuous function g : (a, b) −→ P that satisfies (4) and that is monotonically
decreasing on (a, xm) and monotonically increasing on (xm, b) for some xm ∈ (a, b);

3. there exist limits lim
x→a

g(x) and lim
x→b

g(x) in R such that for:

A = g(xm) , B = min
{

lim
x→a

g(x), lim
x→b

g(x)
}

and C = max
{

lim
x→a

g(x), lim
x→b

g(x)
}

,

it holds that [A, C)⊆P.

Then, it holds:

(i) If p ≤ A, then

(∀x∈ (a, b)) φp(x) ≤ φA(x) < 0
(
(∀x∈ (a, b)) φp(x) ≥ φA(x) > 0

)
.

(ii) If p∈ (A, B), then the equality φp(x) = 0 has exactly two solutions x(p)
0 , x(p)

1 ∈ (a, b) such

that x(p)
0 < x(p)

1 , and it holds that(
∀x∈

(
a, x(p)

0

)
∪
(

x(p)
1 , b

))
φp(x) < 0

((
∀x∈

(
a, x(p)

0

)
∪
(

x(p)
1 , b

))
φp(x) > 0

)
and (

∀x∈
(

x(p)
0 , x(p)

1

))
φp(x) > 0

((
∀x∈

(
x(p)

0 , x(p)
1

))
φp(x) < 0

)
.

(iii) If p∈ [B, C), then the equality φp(x) = 0 has a unique solution x(p)
0 ∈ (a, b).

If lim
x→a

g(x) < lim
x→b

g(x), then

(
∀x∈

(
a, x(p)

0

))
φp(x) > 0

((
∀x∈

(
a, x(p)

0

))
φp(x) < 0

)
and (

∀x∈
(

x(p)
0 , b

))
φp(x) < 0

((
∀x∈

(
x(p)

0 , b
))

φp(x) > 0
)

.

If lim
x→a

g(x) > lim
x→b

g(x), then

(
∀x∈

(
a, x(p)

0

))
φp(x) < 0

((
∀x∈

(
a, x(p)

0

))
φp(x) > 0

)
and (

∀x∈
(

x(p)
0 , b

))
φp(x) > 0

((
∀x∈

(
x(p)

0 , b
))

φp(x) < 0
)

.

(iv) If p ≥ C, then

(∀x∈ (a, b)) φp(x) ≥ φC(x) > 0
(
(∀x∈ (a, b)) φp(x) ≤ φC(x) < 0

)
.

Proof. It is analogous to the proof of Theorem 5.

Remark 4. In Theorem 7, if C = +∞, the case (iv) is not possible, and if B = +∞, the cases (iii)
and (iv) are not possible.

Theorem 7 considers the case when the continuous function g that satisfies (4) has
exactly one local minimum on the observed interval. Analogously, it is possible to consider
the case when this function has exactly one local maximum. Moreover, it is possible to
analogously consider cases when this function has more than one local extremum.
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4. Applications

In this section, applications of the parametric method in the theory of analytic inequal-
ities will be demonstrated on the examples of the Cusa–Huygens inequality from [1], the
Wilker-type inequality from [39,40], and the two Mitrinović–Adamović-type inequalities
from [41].

All symbolic and numerical calculations in this section were performed in computer
algebra system Maple 2019.

4.1. Application 1 (Cusa–Huygens Inequality)

The Cusa–Huygens inequality is given by:

Theorem 8 ([1]). Let x∈
(

0,
π

2

)
. Then, it holds that

x >
3 sin x

2 + cos x
. (5)

Many authors have studied the Cusa–Huygens inequality and generalized it [1,6,27,42–62].
In [1], this inequality is considered using the stratified family of functions {φp(x)}p∈R+ ,
where

φp(x) = x − (p + 1) sin x
p + cos x

, (6)

for the argument x∈ (0, π/2).
It has been proven that the family of functions {φp(x)}p∈R+ is increasingly strati-

fied on the interval (0, π/2) [1]. Note that the family is defined for x ∈ S = (0, π/2)
and for p∈P1∪P2, where P1 = [0,+∞) and P2 = (−∞,−1]. Moreover, the following
assertion holds:

Lemma 1. The families of functions {φp(x)}p∈P1 and {φp(x)}p∈P2 are increasingly stratified on
the interval S = (0, π/2).

Proof. It holds that
∂φp(x)

∂p
=

sin x(1 − cos x)
(p + cos x)2 > 0 on the interval (0, π/2) for p∈ (−∞,−1]

or p∈ [0,+∞).

Remark 5. Note that the family of functions {φp(x)}p∈P, P = P1∪P2, is not stratified on the
interval S = (0, π/2).

We further consider the families {φp(x)}p∈(−∞,−1] and {φp(x)}p∈[0,+∞) for x∈ (0, π/2).
By applying Theorem 6, as the first application of the parametric method, we provide the
proof of the following statement:

Statement 1. Let:
A =

2
π − 2

= 1.75193 . . . and B = 2 .

Then, it holds:

(i) If p∈ (0, A], then (
∀x∈

(
0,

π

2

))
x <

(A + 1) sin x
A + cos x

≤ (p + 1) sin x
p + cos x

.

(ii) If p∈ (A, B), then the equality

φp(x) = x − (p + 1) sin x
p + cos x

= 0
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has a unique solution x(p)
0 and it holds that(

∀x∈
(

0, x(p)
0

))
x <

(p + 1) sin x
p + cos x

and (
∀x∈

(
x(p)

0 ,
π

2

))
x >

(p + 1) sin x
p + cos x

.

(iii) If p∈ (−∞,−1]∪[B,+∞), then(
∀x∈

(
0,

π

2

))
x >

(B + 1) sin x
B + cos x

≥ (p + 1) sin x
p + cos x

.

Proof. The following equivalence holds:

φp(x) = x − (p + 1) sin x
p + cos x

= 0 ⇐⇒ p = g(x) =
x cos x − sin x

sin x − x
, (7)

through which we introduce the continuous function g(x) on the interval (0, π/2). Let us
examine the monotonicity of the function g(x) on that domain. The first derivative of the
function g(x) is

g′(x) =
x cos x + cos x sin x + x2 sin x − sin x − x

(sin x − x)2 .

For the MTP function

f (x) = x cos x + cos x sin x + x2 sin x − sin x − x ,

we prove that f (x) < 0 on the interval (0, π/2) by applying the method for proving
MTP inequalities.

The MTP function f (x) in terms of multiple angles is given by

f (x) = x cos x + 1
2 sin 2x + x2 sin x − sin x − x .

By approximating the functions cos x and sin 2x with the Maclaurin polynomials of
degrees 4 and 9, respectively, and the function sin x with the Maclaurin polynomial of
degree 5 in the addend x2 sin x and of degree 7 in the addend − sin x, we obtain the
upward polynomial approximation

P(x) = xT cos,0
4 (x) + 1

2 T sin,0
9 (2x) + x2T sin,0

5 (x)− T sin,0
7 (x)− x = 2

2835 x9 − 1
240 x7

of the function f (x) on the interval (0, π/2). It is evident that

f (x) < P(x) < 0

on the interval (0, π/2). Hence, g′(x) < 0 on (0, π/2); thus, the function g(x) is decreasing
on the observed interval.

Based on Lemma 1, the family of functions {φp(x)}p∈[0,+∞) is increasingly stratified
on the interval (0, π/2).

Notice that

lim
x→0

g(x) = 2 = B and lim
x→π/2

g(x) =
2

π − 2
= A .
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Note that A, B∈ [0,+∞). Hence, the family of functions {φp(x)}p∈[0,+∞) satisfies all the
conditions of Theorem 6. Therefore, for the considered family, everything stated in (i), (ii),
and (iii) for p∈ [0,+∞) of this statement holds. Let us note that

lim
p→−∞

φp(x) = lim
p→+∞

φp(x) = x − sin x > 0

for each x∈ (0, π/2). Considering that the family of functions {φp(x)}p∈(−∞,−1] is increas-
ingly stratified on the interval (0, π/2) based on Lemma 1, the assertion stated in (iii) is
proven for parameter values p∈ (−∞,−1] as well.

Note that for the families of functions {φp(x)}p∈(−∞,−1] and {φp(x)}p∈[0,+∞), there

exist values at the endpoints φp(0) = 0 and φp(π/2) = π
2 − p+1

p . These families are com-
pressed at the point 0. Figure 1 illustrates these families of functions and the corresponding
g function for the family of functions {φp(x)}p∈[0,+∞).

Figure 1. Stratified families of functions from Lemma 1 with the corresponding g function; see (7).

Let us emphasize that the value A = 2
π−2 was determined for the first time in [62],

while the value B = 2 is given by the Cusa–Huygens inequality (5). By utilizing the
stratification, cases for other values of the parameter p∈ (−∞,−1]∪[0,+∞) were examined
and are visually depicted in Figure 1.

4.2. Application 2 (Wilker-Type Inequality)

In this paper, by the Wilker inequality, we consider the inequality from the following theo-
rem:

Theorem 9 ([63]). Let x∈
(

0,
π

2

)
. Then, it holds that

(
sin x

x

)2
+

tan x
x

> 2 . (8)

Extensions and refinements of the Wilker inequalities have been considered in many
papers [6,27,39,40,52–57,64–84]. In [39], the author L. Zhu proved the following statement:

Theorem 10. Let x∈
(

0,
π

2

)
. Then, it holds that

(
sin x

x

)2
+

tan x
x

− 2 >
8

45
x4
(

tan x
x

)6/7
. (9)
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A new proof of Theorem 10 was given by R. Shinde, C. Chesneau, N. Darkunde, S.
Ghodechor and A. Lagad in [40]. In this paper, we provide a significantly simpler proof of
the previous theorem using the parametric method.

In order to provide a new proof and refine the previous theorem, we will introduce
the family of functions {φp(x)}p∈P, P = R, where

φp(x) =
(

sin x
x

)2
+

tan x
x

− 2 − px4
(

tan x
x

)6/7
, (10)

for the argument x∈S = (0, π/2).
The following assertion holds:

Lemma 2. The family of functions {φp(x)}p∈P is decreasingly stratified on the interval
S = (0, π/2).

Proof. It holds that
∂φp(x)

∂p
= −x4

(
tan x

x

)6/7
< 0 on the interval (0, π/2) for p∈R.

By applying Theorem 5, we provide the proof of the following statement:

Statement 2. Let:
A =

8
45

= 0.17 .

Then, it holds:

(i) If p∈ (−∞, A], then

(
∀x∈

(
0,

π

2

)) (
sin x

x

)2
+

tan x
x

− 2 > Ax4
(

tan x
x

)6/7
≥ px4

(
tan x

x

)6/7
.

(ii) If p∈ (A,+∞), then the equality

φp(x) =
(

sin x
x

)2
+

tan x
x

− 2 − px4
(

tan x
x

)6/7
= 0

has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0, x(p)

0

)) (
sin x

x

)2
+

tan x
x

− 2 < px4
(

tan x
x

)6/7

and (
∀x∈

(
x(p)

0 ,
π

2

)) (
sin x

x

)2
+

tan x
x

− 2 > px4
(

tan x
x

)6/7
.

Proof. The following equivalence holds:

φp(x) =
(

sin x
x

)2
+

tan x
x

− 2 − px4
(

tan x
x

)6/7
= 0

⇐⇒ p = g(x) =
sin2 x cos x − 2x2 cos x + x sin x

x6
(

tan x
x

)6/7
cos x

,
(11)
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through which we introduce the continuous function g(x) on the interval (0, π/2). Let us
examine the monotonicity of the function g(x) on that domain. The first derivative of the
function g(x) is

g′(x) =
f (x)

7
(

tan x
x

)6/7
x7 cos2 x sin x

,

where f (x) is the MTP function given by

f (x) = −14x cos5 x + 36 cos4 x sin x + 49x cos3 x + 44x2 cos2 x sin x

−36 cos2 x sin x + 12x3 cos x − 35x cos x + x2 sin x .

Let us prove that f (x) > 0 on the interval (0, π/2) by applying the method for proving
MTP inequalities.

The MTP function f (x) in terms of multiple angles is given by

f (x) = − 7
8 x cos 5x + 63

8 x cos 3x + 12x3 cos x − 7x cos x

+ 9
4 sin 5x + 11x2 sin 3x − 9

4 sin 3x + 12x2 sin x − 9
2 sin x .

By approximating cosine functions with the Maclaurin polynomials of degree 20 in nega-
tive addends and degree 18 in positive addends, and sine functions with the Maclaurin
polynomials of degree 21 in negative addends and degree 19 in positive addends, we obtain
the downward polynomial approximation

P(x) = − 7
8 xT cos,0

20 (5x) + 63
8 xT cos,0

18 (3x) + 12x3T cos,0
18 (x)− 7xT cos,0

20 (x)

+ 9
4 T sin,0

19 (5x) + 11x2T sin,0
19 (3x)− 9

4 T sin,0
21 (3x) + 12x2T sin,0

19 (x)− 9
2 T sin,0

21 (x)

= − 1562461991350829
45414170819297280000 x21 + 1868039

10854718875 x19

− 4712
2837835 x17 + 791792

70945875 x15 − 2368
51975 x13 + 128

1575 x11

of the function f (x) on the interval (0, π/2). By applying Sturm’s theorem to the poly-
nomial P(x) over the extended segment with rational endpoints [−0.001, 1.571], it can
be concluded that the polynomial P(x) has exactly one zero on that segment, which is
evidently attained at the point x = 0. On the interval (0, π/2), the polynomial P(x) is
positive since P(1.571) = 2.16927 . . . > 0. Thus, it holds that

f (x) > P(x) > 0

on the interval (0, π/2). Hence, g′(x) > 0 on (0, π/2); thus, the function g(x) is increasing
on the observed interval.

Based on Lemma 2, the family of functions {φp(x)}p∈R is decreasingly stratified on
the interval (0, π/2).

Notice that

lim
x→0+

g(x) =
8
45

= A and lim
x→π/2−

g(x) = +∞ = B .

Note that A∈R. Hence, the family of functions {φp(x)}p∈R satisfies all the conditions for
the application of Theorem 5, which concludes the proof.

Figure 2 illustrates the stratified family of functions from Lemma 2. Cases for some
values of the real parameter p are shown, and the known constant (A = 8/45), obtained in
Theorem 10, is highlighted.
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Figure 2. Stratified family of functions from Lemma 2 with the corresponding g function; see (11).

4.3. Applications 3 and 4 (Mitrinović–Adamović-Type Inequalities)

The Mitrinović–Adamović inequality is given by:

Theorem 11 ([85]). Let x∈
(

0,
π

2

)
. Then, it holds that

(
sin x

x

)3
> cos x . (12)

Extensions and refinements of the Mitrinović–Adamović inequality have been consid-
ered in many papers [35,41,56–61,82–84,86–91]. In [41], the authors L. Zhu and R. Zhang
gave the two following extensions:

Theorem 12. Let x∈
(

0,
π

2

)
. Then, it holds that

0.06593 . . . x3 sin x <

(
sin x

x

)3
− cos x <

1
15

x3 sin x (13)

and the constants 0.06593 . . . and 1
15 are the best possible.

Theorem 13. Let x∈
(

0,
π

2

)
. Then, it holds that

1
15

x4
(

sin x
x

)23/21
<

(
sin x

x

)3
− cos x <

(
2
π

)124/21
x4
(

sin x
x

)23/21
(14)

and the constants 1
15 and

( 2
π

)124/21 are the best possible.

Theorems 12 and 13 were proved in [41] in a manner similar to the parametric method
described in this paper. However, the authors did not introduce stratified families of
functions, nor did they use the method for proving MTP inequalities. In the following, we
will prove Theorems 12 and 13 using the parametric method and show that this proof is
simpler than the original proof from [41]. Additionally, by applying this method, we will
obtain further refinements of Theorems 12 and 13 for parameter values for which these
inequalities have not been previously considered.
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4.3.1. Application 3

In this part, we provide new proof and refinement of Theorem 12. For this purpose,
we will introduce the family of functions {φp(x)}p∈P, P = R, where

φp(x) =
(

sin x
x

)3
− cos x − px3 sin x , (15)

for the argument x∈S = (0, π/2).
The following assertion holds:

Lemma 3. The family of functions {φp(x)}p∈P is decreasingly stratified on the interval
S = (0, π/2).

Proof. It holds that
∂φp(x)

∂p
= −x3 sin x < 0 on the interval (0, π/2) for p∈R.

By applying Theorem 7, we provide the proof of the following statement:

Statement 3. Let:

A = 0.065931 . . . , B =
64
π6 = 0.066570 . . . and C =

1
15

= 0.06 .

The value 0.06593 . . . is the unique minimum of the function g(x) = (sin3 x− x3 cos x)/(x6 sin x)
on the interval (0, π/2).
Then, it holds:

(i) If p∈ (−∞, A], then

(
∀x∈

(
0,

π

2

)) (
sin x

x

)3
− cos x > Ax3 sin x ≥ px3 sin x .

(ii) If p∈ (A, B), then the equality

φp(x) =
(

sin x
x

)3
− cos x − px3 sin x = 0

has exactly two solutions x(p)
0 and x(p)

1 , and it holds that

(
∀x∈

(
0, x(p)

0

)
∪
(

x(p)
1 ,

π

2

)) (
sin x

x

)3
− cos x > px3 sin x

and (
∀x∈

(
x(p)

0 , x(p)
1

)) (
sin x

x

)3
− cos x < px3 sin x .

(iii) If p∈ [B, C), then the equality

φp(x) =
(

sin x
x

)3
− cos x − px3 sin x = 0

has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0, x(p)

0

)) (
sin x

x

)3
− cos x > px3 sin x
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and (
∀x∈

(
x(p)

0 ,
π

2

)) (
sin x

x

)3
− cos x < px3 sin x .

(iv) If p∈ [C,+∞), then

(
∀x∈

(
0,

π

2

)) (
sin x

x

)3
− cos x < Cx3 sin x ≤ px3 sin x .

Proof. The following equivalence holds:

φp(x) =
(

sin x
x

)3
− cos x − px3 sin x = 0 ⇐⇒ p = g(x) =

sin3 x − x3 cos x
x6 sin x

, (16)

through which we introduce the continuous function g(x) on the interval (0, π/2). We will
show that the function g has exactly one minimum on that domain. For this purpose, let us
consider the first derivative of the function g(x)

g′(x) =
f (x)

x7 sin2 x
, (17)

where f (x) is the MTP function given by

f (x) = −6 cos4 x − 2x cos3 x sin x + 12 cos2 x + 3x3 cos x sin x + 2x cos x sin x + x4 − 6 .

The MTP function f (x) in terms of multiple angles is given by

f (x) = − 3
4 cos 4x + 3 cos 2x − 1

4 x sin 4x +
(

3
2 x3 + 1

2 x
)

sin 2x + x4 − 9
4 .

Let us apply the method for isolating the zeros of the MTP function f (x) by selecting the
points a0 = 1.1 and b0 = 1.2 on the interval (a, b) = (0, π/2) such that Theorem 1 can
be applied.

1. We prove that f (x) < 0 for x ∈ (a, a0] = (0, 1.1] and that f (x) > 0 for x ∈ [b0, b) =
[1.2, π/2) by applying the method for proving MTP inequalities.

1.1. x∈ (0, 1.1]
By approximating the functions cos 4x, cos 2x, sin 4x and sin 2x with the Maclaurin polyno-
mials of degrees 18, 16, 15 and 13, respectively, we obtain the downward polynomial ap-
proximation

P1(x) = − 3
4 T cos,0

18 (4x) + 3T cos,0
16 (2x)− 1

4 xT sin,0
15 (4x) +

(
3
2 x3 + 1

2 x
)

T sin,0
13 (2x) + x4 − 9

4

= 262144
32564156625 x18 + 34

637875 x16 − 8
17325 x14 + 2

945 x12 − 2
945 x10

of the function f (x) on the interval (0, 1.1]. By applying Sturm’s theorem to the polynomial
P1(x) over the extended segment with rational endpoints [−0.001, 1.1], it can be concluded
that the polynomial P1(x) has exactly one zero on that segment, which is evidently attained
at the point x = 0. On the interval (0, 1.1], the polynomial P1(x) is negative since P1(1.1) =
−0.00031108 . . . < 0. Thus, it holds that

f (x) < P1(x) < 0

on the interval (0, 1.1].
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1.2. x∈ [1.2, π/2)
By approximating the functions cos 4x, cos 2x, sin 4x and sin 2x with the Maclaurin polynomials
of degrees 16, 14, 17 and 15, respectively, we obtain the downward polynomial approximation

P2(x) = − 3
4 T cos,0

16 (4x) + 3T cos,0
14 (2x)− 1

4 xT sin,0
17 (4x) +

(
3
2 x3 + 1

2 x
)

T sin,0
15 (2x) + x4 − 9

4

= − 26296
2170943775 x18 + 4

75075 x16 − 8
17325 x14 + 2

945 x12 − 2
945 x10

of the function f (x) on the interval [1.2, π/2). By applying Sturm’s theorem to the poly-
nomial P2(x) over the extended segment with rational endpoints [1.2, 1.571], it can be con-
cluded that the polynomial P2(x) has no zeros on that segment. On the interval [1.2, π/2),
the polynomial P2(x) is positive since P2(1.571) = 0.059140 . . . > 0. Thus, it holds that

f (x) > P2(x) > 0

on the interval [1.2, π/2).

2. We prove that f ′(x) > 0 for x∈ [1.1, 1.2].
It holds that

f ′(x) = −8x cos4 x + 22 cos3 x sin x + 6x3 cos2 x + 10x cos2

+9x2 cos x sin x − 22 cos x sin x + x3 − 2x .

Let us apply the method for proving MTP inequalities. The MTP function f ′(x) in terms of
multiple angles is given by

f ′(x) = −x cos 4x +
(

3x3 + x
)

cos 2x + 11
4 sin 4x + 9

2 x2 sin 2x − 11
2 sin 2x + 4x3 .

By approximating the functions cos 4x, cos 2x and sin 4x with the Maclaurin polynomials of
degrees 16, 14 and 15, respectively, and the function sin 2x with the Maclaurin polynomial
of degree 15 in the addend 9

2 x2 sin 2x and with the Maclaurin polynomial of degree 17 in
the addend − 11

2 sin 2x, we obtain the downward polynomial approximation

P3(x) = −xT cos,0
16 (4x) +

(
3x3 + x

)
T cos,0

14 (2x) + 11
4 T sin,0

15 (4x)

+ 9
2 x2T sin,0

15 (2x)− 11
2 T sin,0

17 (2x) + 4x3

= − 63874
310134825 x17 + 181472

212837625 x15 − 16
2475 x13 + 8

315 x11 − 4
189 x9

of the function f ′(x) on the interval [1.1, 1.2]. By applying Sturm’s theorem to the polyno-
mial P3(x) over the segment with rational endpoints [1.1, 1.2], it can be concluded that the
polynomial P3(x) has no zeros on that segment. On the interval [1.1, 1.2], the polynomial
P3(x) is positive since P3(1.2) = 0.018898 . . . > 0. Thus, it holds that

f ′(x) > P3(x) > 0

on the interval [1.1, 1.2].
According to Theorem 1, there exists exactly one zero of the function f (x). Given that

f (1.15510) = −0.67427 . . . 10−7 < 0 and f (1.15511) = 0.43311 . . . 10−7 > 0, the zero of the
function f (x) is numerically determined as

x∗ = 1.15510 . . .∈ [1.1, 1.2] .

Considering that f (x) < 0 on the interval (0, 1.1] and that f (x) > 0 on the interval
[1.2, π/2), it also holds that g′(x) = f (x)/x7 sin2 x < 0 on the interval (0, 1.1] and g′(x) > 0
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on the interval [1.2, π/2). Based on this, we conclude that at the point x∗ = 1.15510 . . ., the
function g has a minimum

g(x∗) = 0.065931 . . . = A .

Based on Lemma 3, the family of functions {φp(x)}p∈R is decreasingly stratified on
the interval (0, π/2).

Notice that

lim
x→0

g(x) =
1

15
= C and lim

x→π/2
g(x) =

64
π6 = B .

Note that B, C∈R. Hence, the family of functions {φp(x)}p∈R satisfies all the conditions
for the application of Theorem 7, which concludes the proof.

Remark 6. It was also possible to localize the zero x∗ using the method from [25]. By using the
Maple library implemented within the scope of [25], we obtain x∗∈ [1.15437 . . . , 1.15669 . . .] when
choosing δ = 0.1, where δ represents the maximal length of isolating intervals, without displaying
all steps in the proof.

Figure 3 illustrates the stratified family of functions from Lemma 3. Cases for some
values of the real parameter p are shown, and the known constants (A = 0.065931 . . .,
B = 64/π6 and C = 1/15), obtained in Theorem 12 and Statement 3, are highlighted.

Figure 3. Stratified family of functions from Lemma 3 with the corresponding g function; see (16).

4.3.2. Application 4

In this part, we provide new proof and refinement of Theorem 13. For this purpose,
we will introduce the family of functions {φp(x)}p∈P, P = R, where

φp(x) =
(

sin x
x

)3
− cos x − px4

(
sin x

x

)23/21
, (18)

for the argument x∈S = (0, π/2).
The following assertion holds:

Lemma 4. The family of functions {φp(x)}p∈P is decreasingly stratified on the interval
S = (0, π/2).

Proof. It holds that
∂φp(x)

∂p
= −x4

(
sin x

x

)23/21
< 0 on the interval (0, π/2) for p∈R.

By applying Theorem 5, we provide the proof of the following statement:
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Statement 4. Let:

A =
1
15

= 0.06 and B =

(
2
π

)124/21
= 0.069495 . . . .

Then, it holds:

(i) If p∈ (−∞, A], then

(
∀x∈

(
0,

π

2

)) (
sin x

x

)3
− cos x > Ax4

(
sin x

x

)23/21
≥ px4

(
sin x

x

)23/21
.

(ii) If p∈ (A, B), then the equality

φp(x) =
(

sin x
x

)3
− cos x − px4

(
sin x

x

)23/21
= 0

has a unique solution x(p)
0 and it holds that

(
∀x∈

(
0, x(p)

0

)) (
sin x

x

)3
− cos x < px4

(
sin x

x

)23/21

and (
∀x∈

(
x(p)

0 ,
π

2

)) (
sin x

x

)3
− cos x > px4

(
sin x

x

)23/21
.

(iii) If p∈ [B,+∞), then

(
∀x∈

(
0,

π

2

)) (
sin x

x

)3
− cos x < Bx4

(
sin x

x

)23/21
≤ px4

(
sin x

x

)23/21
.

Proof. The following equivalence holds:

φp(x) =
(

sin x
x

)3
− cos x − px4

(
sin x

x

)23/21
= 0

⇐⇒ p = g(x) =
sin3 x − x3 cos x

x7
(

sin x
x

)23/21 ,
(19)

through which we introduce the continuous function g(x) on the interval (0, π/2). Let us
examine the monotonicity of the function g(x) on that domain. The first derivative of the
function g(x) is

g′(x) =
f (x)

21
(

sin x
x

)2/21
x7 sin2 x

,

where f (x) is the MTP function given by

f (x) = −124 cos4 x − 40x cos3 x sin x + 2x4 cos2 x + 248 cos2 x

+61x3 cos x sin x + 40x cos x sin x + 21x4 .

Let us prove that f (x) > 0 on the interval (0, π/2). The MTP function f (x) in terms of
multiple angles is given by

f (x) = − 31
2 cos 4x + (x4 + 62) cos 2x − 5x sin 4x + ( 61

2 x3 + 10x) sin 2x + 22x4 + 155
2 .
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Based on the evaluation of individual addends, it is evident that

f (x) > 0

on the interval (0, π/2). Hence, g′(x) > 0 on (0, π/2); thus, the function g(x) is increasing
on the observed interval.

Based on Lemma 4, the family of functions {φp(x)}p∈R is decreasingly stratified on
the interval (0, π/2).

Notice that

lim
x→0+

g(x) =
1

15
= A and lim

x→π/2−
g(x) =

(
2
π

)124/21
= B .

Note that A, B∈R. Hence, the family of functions {φp(x)}p∈R satisfies all the conditions
for the application of Theorem 5, which concludes the proof.

Figure 4 illustrates the stratified family of functions from Lemma 4. Cases for some
values of the real parameter p are shown, and the known constants (A = 1/15 and
B = (2/π)124/21), obtained in Theorem 13, are highlighted.

Figure 4. Stratified family of functions from Lemma 4 with the corresponding g function; see (19).

5. Conclusions

In this paper, a method for proving inequalities via a function g, when the equivalence (4)
holds and when the function g is continuous, is described. The cases when the function g is
not explicitly given or when g is discontinuous will be discussed in following papers.

Let us especially emphasize that, in this paper, the concept of stratification is specified
compared to [1], where it was originally introduced. With the aim of examining the
monotonicity of the function g, methods for isolating zeros and extrema of MTP functions,
which are based on a method for proving MTP inequalities from [11], have been described.
These methods allow verification of steps as given in the proofs of the statements in this
paper. The described method from [11] is also computer-implemented [92]. Therefore,
it can be said that proof of inequality, in cases where examining the monotonicity of the
function g is reduced to examining the positivity of MTP functions, is an algorithmically
solvable problem using the parametric method as described in this paper.

Connecting inequalities with the corresponding stratified family of functions and then
obtaining the corresponding g function is applicable to an exceptionally large number of
inequalities in the theory of analytic inequalities [93–100]. It is particularly noteworthy to
emphasize that by applying this method, additional refinements of inequalities for various
parameter values can be obtained.
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44. Bagul, Y.J.; Chesneau, C.; Kostić, M. On the Cusa-Huygens inequality. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM

2021, 115, 29. [CrossRef]
45. Chouikha, A.R.; Chesneau, C.; Bagul, Y.J. Some refinements of well-known inequalities involving trigonometric functions.

J. Ramanujan Math. Soc. 2021, 36, 193–202.
46. Bagul, Y.J.; Chesneau, C.; Refined forms of Oppenheim and Cusa-Huygens type inequalities. Acta Comment. Univ. Tartu. Math.

2020, 24, 183–194. [CrossRef]
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2009, 75, 447–458. [CrossRef]
91. Zhu, L. Sharp inequalities of Mitrinovic-Adamovic type. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, 113,

957–968. [CrossRef]
92. Banjac, B. System for Automatic Proving of Some Classes of Analytic Inequalities. Ph.D. Thesis, School of Electrical Engineering,

University of Belgrade, Belgrade, Serbia, 2019. (In Serbian)

http://dx.doi.org/10.2298/FIL2319319C
http://dx.doi.org/10.30538/oms2023.0213
http://dx.doi.org/10.1007/s13398-019-00706-4
http://dx.doi.org/10.1155/2014/364076
http://dx.doi.org/10.7153/jmi-07-57
http://dx.doi.org/10.7153/jmi-2021-15-06
http://dx.doi.org/10.2298/AADM200403004B
http://dx.doi.org/10.1016/j.amc.2016.02.035
http://dx.doi.org/10.30538/oms2023.0196
http://dx.doi.org/10.7153/jmi-2020-14-43
http://dx.doi.org/10.7153/jmi-2020-14-44
http://dx.doi.org/10.12691/tjant-2-4-6
http://dx.doi.org/10.3390/sym13081323
http://dx.doi.org/10.3934/math.2020191
http://dx.doi.org/10.7153/mia-06-02
http://dx.doi.org/10.1155/2009/485842
http://dx.doi.org/10.5402/2011/681702
http://dx.doi.org/10.1007/s13398-020-00973-6
http://dx.doi.org/10.1016/j.amc.2014.01.017
http://dx.doi.org/10.1080/10652460701284164
http://dx.doi.org/10.1080/10652460802340931
http://dx.doi.org/10.22436/jnsa.011.07.02
http://dx.doi.org/10.22436/jnsa.009.04.31
http://dx.doi.org/10.22436/jnsa.009.05.65
http://dx.doi.org/10.1186/s13660-018-1910-9
http://www.ncbi.nlm.nih.gov/pubmed/30839836
http://dx.doi.org/10.1007/s13398-020-00848-w
http://dx.doi.org/10.1186/s13660-023-02940-2
http://dx.doi.org/10.5486/PMD.2009.4530
http://dx.doi.org/10.1007/s13398-018-0521-0


Axioms 2024, 13, 520 23 of 23
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