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Abstract: This paper investigates the dynamics of non-autonomous cooperative systems of difference
equations with asymptotically constant coefficients. We are mainly interested in global attractivity
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1. Introduction and Preliminaries

In this paper, we give some global attractivity results for a non-autonomous coopera-
tive systems of difference equations

xn+1 = an f (xn, yn)
yn+1 = bng(xn, yn), n = 0, 1, . . .

(1)

where f and g are non-decreasing in both variables. Here, an and bn are sequences which
are assumed to be asymptotically constant. Our results are motivated by some results for
global attractivity for non-autonomous systems of difference equation via linearization
in [1] that has significant applications in mathematical biology of single species [2,3]. Our
techniques are based on difference inequalities and non-standard linearization methods,
which were major tools used in [1,3]. Some other techniques were used in several other
papers and books [4–7].

Here, we extend the applications from single species models in [3] to the case of several
(mainly two) species cooperation models. Then, we apply our results to evolutionary
population cooperation models, which have been considered lately by Cushing, Elaydi and
others, see [8–13]. Some of the results presented here can be extended to multidimensional
cooperative systems. The obtained results hold when the limiting system of difference
equations is in the hyperbolic case and can not be extended to the non-hyperbolic case.

There are many reasons that model parameters can change over time, such as periodic
changes in environment or evolution. We will shortly describe an effect of Darwinian
evolution here, as is given in [14]. A detailed explanation is given in a series of papers
by J. Cushing [9–12] as well as in the book of Vincent and Brown [15]. Suppose v is a
quantified phenotypic trait of an individual that is subject to evolution. If we assume
the per capita contribution to the population made by an individual depends on its trait
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v, then the transition function f = f (x, v) in the population dynamics discrete equation
of Kolmogorov type xn+1 = xn f (xn, v, un), n = 0, 1, . . . depends on both x and v. If this
transition function also depends on the traits of other individuals, we can model this
situation by assuming that f also depends on the mean trait u in the population so that
f = f (x, v, u). A canonical way to model Darwinian evolution is to model the dynamics of
xn and the mean trait un by means of the population dynamic equation of Kolmogorov type

xn+1 = xn f (xn, v, un)|v=un (2)

and another equation that describes the dynamics of the trait:

un+1 = un + σ2 ∂F(xn, v, un)

∂v
|v=un , (3)

where F(x, u, v) = ln f (x, u, v), see [15].
Equation (3) (called Lande’s or Fisher’s or the breeder’s equation) [16,17] prescribes

that the change in the mean trait is proportional to the fitness gradient, where fitness in this
model is denoted by F(x, v, u). An appropriate measure of fitness is often taken to be f or
ln f . The constant of proportionality σ2 ≥ 0 is called the speed of evolution. It is related
to the variance of the trait in the population, which is assumed constant in time. When
evolution occurs, then σ2 > 0 and the model is a two-dimensional system of difference
equations with state variable (xn, un).

The global attractivity result for the first-order autonomous difference equation that
will be used in simulations in this paper is Theorem 1.18 in [18]. Some related results were
proved by Elaydi and Sacker [19] and Singer [20] and are listed in [14].

In this paper, we will use the so-called “north-east” partial ordering of the space R2
+

defined in the following way:

X =

[
x(1)

x(2)

]
≼ne Y =

[
y(1)

y(2)

]
⇐⇒

(
x(1) ≤ y(1) and x(2) ≤ y(2)

)
,

and the so-called “south-east” partial ordering of the space R2
+ defined by

X =

[
x(1)

x(2)

]
≼se Y =

[
y(1)

y(2)

]
⇐⇒

(
x(1) ≤ y(1) and x(2) ≥ y(2)

)
.

The extension of north-east ordering to n-dimensional systems and maps is straightforward.
In this paper, we use two methods to derive the global attractivity results: the method

of difference inequalities and the method of non-standard linearization. The map F :
Rk
+ → Rk

+, F = ( f1, . . . , fk) is called a cooperative map if the functions fi : Rk
+ → R are

nondecreasing functions in all variables. We used the method of difference inequalities
to prove some global attractivity results for two-dimensional competitive systems in [14].
However, the results in [14] are two-dimensional and it is not clear how to extend them to
k-dimensional case for k > 2. As we have shown in [3], the method of difference inequalities
produced excellent global attractivity results in the case of non-autonomous first-order
difference equations of both Kolmogorov type (such as Equation (2)) and non-Kolmogorov
type, which includes higher order equations such as second order equation

xn+1 = an f1(xn) + bn f2(xn−1), n = 0, 1, . . . , (4)

where the functions fi, i = 1, 2 are nondecreasing functions and {an}, {bn} are convergent
sequences. If fi are continuous functions and an → a, bn → b and the limiting equation

yn+1 = a f1(yn) + b f2(yn−1), n = 0, 1, . . . , (5)
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has a globally asymptotically stable equilibrium ȳ, then xn → ȳ for every solution of
non-autonomous Equation (4), provided that Equation (5) is structurally stable. Structural
stability of the limiting equation is necessary to prevent non-hyperbolic dynamics from
emerging, in which case the dynamic of a non-autonomous system could be quite com-
plicated. See [3] for examples of dynamics in non-hyperbolic cases. See also [21–24] for
some other techniques for proving global attractivity. The examples of non-autonomous
Kolmogorov maps are of interest for evolutionary dynamics and global attractivity results
are derived for such maps as well.

Section 2.2 contains some global attractivity results for cooperative systems based
on the method of non-standard linearization used in [3]. This method, which is heuristic,
requires a system of difference equations to be written in linearized form as

xn+1 =
k

∑
i=1−l

gixn−i,

where gi, in general, depends on n and the state variables xk. If ∑k
i=1−l ∥gi∥ ≤ a < 1, then

lim
n→∞

xn = 0.

This method is inapplicable for competitive systems.
Theorems 1 and 2 are based on a well-known method of difference inequalities or

method of upper and lower solutions and give a simple tool to extend global attractivity
results from autonomous cooperative systems to related non-autonomous systems, in the
case of almost constant coefficients, see [19,25,26].

Theorems 3, Corollaries 1 and 2 and Theorem 4 are based on the method of non-
standard linearization from [3] and are applicable to a more general class of systems
than cooperatives. Such systems have potential for applications as all functions are of
Beverton–Holt type.

Theorem 6 is of some importance as it presents the global dynamics of a nontrivial
autonomous cooperative system with great potential for applications since all transition
functions are of Beverton–Holt type. The global dynamics of this autonomous cooperative
system are simple and can be described as an exchange of stability bifurcation. The
technique of the proof is geometric in nature and is innovative. By using Theorem 5 we
extend this result to the related non-autonomous cooperative system.

Finally, we are interested in global attractivity since this is the property of governing
difference equations which is of greatest importance in Darwinian (evolutionary) dynamics.
Another important property is the periodic behavior of solutions when the environment is
periodic, but this case is considered in other papers.

2. Main Results

In this section, we present our main results on the stability of certain non-autonomous
systems.

2.1. Global Attractivity of Some Cooperative Discrete Dynamical Systems via Difference Inequalities

The proof of the following lemma is by simple induction and will be omitted. It can be
found in [25,26] and can be extended to cooperative maps in n-dimensional space, where
north-east partial ordering is defined in a natural way.

Lemma 1. Assume that

(a) F : R2
+ → R2

+ is a cooperative map.
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(b) {Xn}, {Yn}, {Zn} are sequences of the real components in R2
+ such that X0 ≼ne Y0 ≼ne Z0

and
Xn+1 ≼ne F(Xn)

Yn+1 = F(Yn)

Zn+1 ≽ne F(Zn)

, n = 0, 1, ... .

Then,
Xn ≼ne Yn ≼ne Zn, n = 0, 1, ... .

An immediate application of Lemma 1 is the following result.

Theorem 1. Consider the non-autonomous system of difference equations

Xn+1 =

[
an f (xn, yn)

bng(xn, yn)

]
, n = 0, 1, ..., (6)

where F = ( f , g) : R2
+ → R2

+ is a cooperative map and

lim
n→∞

[
an
bn

]
=

[
a
b

]
= A. (7)

Assume that there exists εi
0 > 0, i = 1, 2 such that for every Λ=

[
λ(1)

λ(2)

]
, with

λ(1) ∈ (a − ε
(1)
0 , a + ε

(1)
0 ), λ(2) ∈ (b − ε

(2)
0 , b + ε

(2)
0 ),

all the solutions of the system

Yn+1 =

[
λ(1) f (un, vn)

λ(2)g(un, vn)

]
, n = 0, 1, ... (8)

converges to a constant solution YΛ =

[
xΛ

yΛ

]
. Additionally, suppose that lim

Λ→A
YΛ = YA. Then,

every solution of the system (6) converges to YA.

Proof. According to (7), for any ε =

[
ε1
ε2

]
≻ne

[
0
0

]
, there exists N = N(ε) such that

for n ≥ N the following holds

a − ε1 < an < a + ε1,

b − ε2 < bn < b + ε2.

This implies that[
(a − ε1) f (xn, yn)

(b − ε2)g(xn, yn)

]
≼ne Xn+1 =

[
an f (xn, yn)

bng(xn, yn)

]
≼ne

[
(a + ε1) f (xn, yn)

(b + ε2)g(xn, yn)

]
, n ≥ N.

By Lemma 1 we obtain
Ln ≼ne Xn ≼ne Un, n ≥ N, (9)



Axioms 2024, 13, 730 5 of 21

where {Ln} =

{[
l(1)n

l(2)n

]}
satisfies

Ln+1 =

 (a − ε1) f
(

l(1)n , l(2)n

)
(b − ε2)g

(
l(1)n , l(2)n

)
,

and {Un} =

{[
u(1)

n

u(2)
n

]}
satisfies

Un+1 =

 (a + ε1) f
(

u(1)
n , u(2)

n

)
(b + ε2)g

(
u(1)

n , u(2)
n

)
.

By using (9) we have that

lim
n→∞

Ln ≼ne lim
n→∞

Xn ≼ne lim
n→∞

Xn ≼ne lim
n→∞

Un,

i.e.,
YA−ε ≼ne lim

n→∞
Xn ≼ne lim

n→∞
Xn ≼ne YA+ε, (10)

where A± ε =

[
a ± ε1

b ± ε2

]
. Since lim

ε→0
YA−ε = lim

ε→0
YA+ε = YA, where 0 =

[
0
0

]
, (10)

implies that the sequence {Xn} is convergent and that

lim
n→∞

Xn = YA.

Remark 1. The condition on the system (8) really means that the map associated with system (6) is
structurally stable.

Example 1. The following system of difference equations modeling cooperation was considered
in [27] and in [2]

xn+1 = Axn
yn

1 + yn

yn+1 = Byn
xn

1 + xn

, n = 0, 1, ... , (11)

for all positive values of parameters A, B except A ≤ 1, B > 1 and A > 1, B ≤ 1. When
A ≤ 1, B > 1 then {xn} is a non-increasing sequence and so is convergent to 0, which is
the only limiting point. In that case, the second equation implies that there exists M such that
B xn

1+xn
≤ C < 1 for n ≥ M, which imlies that yn+1 < Cyn, n ≥ M and so limn→∞ yn = 0. Thus

limn→∞(xn, yn) = (0, 0). The case A > 1, B ≤ 1 is similar by symmetry and the conclusion
is same.

System (11) has a unique equilibrium point E0 =

[
0
0

]
for all values of parameters

(A, B) /∈ (1, ∞)2. This equilibrium is globally asymptotically stable. If we consider now the
following non-autonomous system

xn+1 = Anxn
yn

1 + yn

yn+1 = Bnyn
xn

1 + xn

, n = 0, 1, ... , (12)
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where lim
n→∞

An = A and lim
n→∞

Bn = B, then by using Theorem 1, when taking f (xn, yn) = xn
yn

1+yn

and g(xn, yn) = yn
xn

1+xn
, all solutions of System (12) globally asymptotically converge to E0 for all

values of A, B except A > 1 and B > 1, and for all x0 ≥ 0 and y0 ≥ 0.

It is clear that Lemma 1 is valid for a general case of cooperative map F : Rk
+ → Rk

+ ,
F = ( f1 . . . fk), k ≥ 2.

Analogous to the proof of Theorem 1, the proof of the following theorem holds in the
general case.

Theorem 2. Consider the following non-autonomous system of difference equations

Xn+1 =


a(1)n f1

(
x(1)n , . . . , x(k)n

)
...

a(k)n fk

(
x(1)n , . . . , x(k)n

)
, n = 0, 1, ..., (13)

where F = ( f1, . . . , fk) : Rk
+ → Rk

+, k ≥ 2, is a cooperative map and

lim
n→∞

An = lim
n→∞


a(1)n

...
a(k)n

 =

 a(1)
...

a(k)

 = A.

Assume that there exist ε
(i)
0 > 0, i = 1, . . . , k such that for every Λ=

 λ(1)

...
λ(k)

 with

λ(i) ∈
(

a(i) − ε
(i)
0 , a(i) + ε

(i)
0

)
, i = 1, ..., k,

all the solutions of the system

Yn+1 =


λ(1) f1

(
x(1)n , . . . , x(k)n

)
...

λ(k) fk

(
x(1)n , . . . , x(k)n

)
, n = 0, 1, ...

converges to a constant YΛ =


x(1)Λ

...
x(k)Λ

. Additionally, suppose that

lim
Λ→A

YΛ = YA.

Then, every solution of the system (13) is convergent and satisfies

lim
n→∞

Xn = YA.
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Example 2. Consider the following system of difference equations modeling cooperation

x(i)n+1 = A(i)x(i)n

k
∏

i ̸=j=1
x(j)

n

1 +
k

∏
i ̸=j=1

x(j)
n

, n = 0, 1, ...; i = 1, 2, ..., k. (14)

Obviously System (14) has a unique equilibrium point E0 =

 0
...
0

 if 0 < A(i) ≤ 1, i = 1, 2, ..., k.

We investigate the stability of E0 by using the following Lyapunov function V : Rk
+ → R of the

form V(x(1), . . . , x(k)) =
k
∑

j=1

(
x(j)
)2

of the map

F


 x(1)

...
x(k)


 =

 A(1)x(1)

k
∏
j=2

x(j)

1 +
k

∏
j=2

x(j)
. . . A(k)x(k)

k−1
∏
j=1

x(j)

1 +
k−1
∏
j=1

x(j)


T

.

Then,

∆V = V(F((x(1), . . . , x(k))))− V(x(1), . . . , x(k))

=
k

∑
j=1

(
x(j)
)2


A(j)

k
∏

i ̸=j=1
x(j)

1 +
k

∏
i ̸=j=1

x(j)


2

− 1


≤

k

∑
j=1

(
x(j)
)2
((

A(j)
)2

− 1
)

.

If 0 < A(i) < 1, i = 1, 2, ..., k, then ∆V < 0, which implies that E0 is asymptotically stable.
Furthermore, since V(x(1), . . . , x(k)) → ∞, as

∥∥∥(x(1), . . . , x(k))
∥∥∥→ ∞ , the equilibrium point E0

is globally asymptotically stable.
In the second case, when 0 < A(i) ≤ 1, i = 1, 2, ..., k, we will use the LaSalle’s Invariance

Principle to investigate the asymptotic stability of E0. Then, for the set

L =
{

X ∈ Rk
+ : ∆V(X) = 0

}

the following holds: X has at least one zero coordinate, and F(X) =

 0
...
0

 for all X ∈ L. It

implies that the maximal invariant subset of L under mapping F is M =


 0

...
0


. Since M is a

singleton, E0 is asymptotically stable.
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It remains to prove the global attractivity of the equilibrium point E0, when 0 < A(i) ≤ 1,
i = 1, 2, ..., k. If for several i ∈ {1, 2, ..., k}, Ai < 1, but not for all i, and A(j) = 1, for all
remaining l ∈ {1, 2, ..., k}, then we have

x(i)n+1 = A(i)x(i)n

k
∏

i ̸=j=1
x(j)

n

1 +
k

∏
i ̸=j=1

x(j)
n

≤ A(i)x(i)n =⇒ x(i)n ≤
(

A(i)
)n

x(i)0 , n = 0, 1, ...,

and

x(l)n+1 = x(l)n

k
∏

i ̸=j=1
x(j)

n

1 +
k

∏
i ̸=j=1

x(j)
n

≤ x(l)n , n = 0, 1, ...,

which implies that lim
n→∞

x(i)n = 0 and that the sequences
{

x(l)n

}
are decreasing, and therefore,

convergent. It is clear that lim
n→∞

x(l)n = 0, since otherwise, there would exist another equilibrium

point in Rk
+.

If A(i) = 1, i = 1, 2, ..., k, then the sequences
{

x(i)n

}
are decreasing and so are convergent. It

means that there exist the numbers w(i) ≥ 0 such that

lim
n→∞

x(i)n = w(i).

Clearly, w(i) = 0, since otherwise System (11) would have another equilibrium points in the first
quadrant.

Now, we consider the following non-autonomous system

x(i)n+1 = A(i)
n x(i)n

k
∏

i ̸=j=1
x(j)

n

1 +
k

∏
i ̸=j=1

x(j)
n

, n = 0, 1, ...; i = 1, 2, ..., k, (15)

where lim
n→∞

A(i)
n = A(i), i = 1, 2, ..., k, then by using Theorem 2 and taking

fi


 x(1)

...
x(k)


 = x(i)

k
∏

i ̸=j=1
x(j)

1 +
k

∏
i ̸=j=1

x(j)
,

all solutions of System (14) globally asymptotically converge to E0 for 0 < A(i) ≤ 1, i = 1, 2, ..., k,

and for all


x(1)0

...
x(k)0

 ⪰ne

 0
...
0

.

Remark 2. The method of Lyapunov function is probably the most used method for proving local or
global stability of difference equations and there are many books such as [6,18–20,25,26] and recent
papers such as [28,29] where this method was used. For instance, in [28] the stability of impulsive
logical dynamic systems was studied from two aspects: impulsive disturbance and impulsive control
and some interesting Lyapunov functions have been employed. In this paper, we use the method of
Lyapunov function just as an alternative to the method of difference inequalities.
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2.2. Global Stability of Some Additive Cooperative Discrete Dynamical Systems

In this section, we give some global attractivity results for non-autonomous cooper-
ative systems of difference equations, where no other attractivity results are applicable.
In Theorem 3 we will ask only for boundedness of the coefficient sequences so that the
results from [13] that required the convergence of the coefficient sequences are inappli-
cable. In addition, the main result in [13] Theorem 3.2, which gives the global dynamics
of a non-autonomous system of difference equations in terms of the global dynamics
of the corresponding limiting autonomous system of difference equations, where we as-
sume all coefficient sequences to be convergent is not correct as stated as the following
example shows:

Example 3. Consider the non-autonomous difference equation

xn+1 = gn(xn), n = 1, 2, . . . (16)

where gn(x) = f (x) + 1/n, where

f (x) =

{
(1 − e−2)x + e−2, x ≤ 2
x + e−x, x > 2.

Clearly, gn(x) converges uniformly to f (x) on R+. The limiting equation has a unique equilibrium
1, which is globally asymptotically stable. However, the non-autonomous difference equation has an
ever-increasing solution that starts at the initial value x0 = 2.

Consider the following additive cooperative system

xn+1 = an f1(xn)xn + bn f2(yn)yn

xn+1 = cn f3(xn)xn + dn f4(yn)yn

}
, n = 0, 1, ... . (17)

Note that System (17) can be written in the matrix form as[
xn+1
yn+1

]
=

[
an f1(xn) bn f2(yn)
cn f3(xn) dn f4(yn)

][
xn
yn

]
= g0

[
xn
yn

]
, n = 0, 1, ... .

Theorem 3. Assume that fi are non-negative and bounded functions, i.e., 0 ≤ fi(x) ≤ Mi,
i = 1, 2, 3, 4 for all x ≥ 0. Also, assume that {an}, {bn}, {cn} and {dn} are sequences such that

0 < an ≤ A, 0 < bn ≤ B, 0 < cn ≤ C, 0 < dn ≤ D, n = 0, 1, ... . (18)

Then, every solution of System (17), where initial values x0, y0 are nonnegative, converges to the
zero equilibrium if

max{AM1 + CM3, BM2 + DM4} < 1 or max{AM1 + BM2, CM3 + DM4} < 1.

Proof. Indeed, when ∥·∥1 denotes the L1 norm, we have that

∥g0∥1 =

∥∥∥∥[an f1(xn) bn f2(yn)
cn f3(xn) dn f4(yn)

]∥∥∥∥
1
= max{an f1(xn) + cn f3(xn), bn f2(yn) + dn f4(yn)}

≤ max{AM1 + CM3, BM2 + DM4}
< 1,
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or, when ∥·∥∞ denotes the L∞ norm, we have that

∥g0∥∞ =

∥∥∥∥[an f1(xn) bn f2(yn)
cn f3(xn) dn f4(yn)

]∥∥∥∥
∞
= max{an f1(xn) + bn f2(yn), cn f3(xn) + dn f4(yn)}

≤ max{AM1 + BM2, CM3 + DM4}
< 1.

Now the result follows from Theorem 2 and Corollary 1 in [1].

Consider the following additive cooperative non-autonomous systems

xn+1 = an
xn

1 + xn
+ bn

yn

1 + yn

yn+1 = cn
xn

1 + xn
+ dn

yn

1 + yn

, n = 0, 1, ... , (19)

xn+1 = an
xn

1 + xn
+ bn

y2
n

1 + y2
n

yn+1 = cn
x2

n
1 + x2

n
+ dn

yn

1 + yn

, n = 0, 1, ... , (20)

xn+1 = an
x2

n
1 + x2

n
+ bn

y2
n

1 + y2
n

yn+1 = cn
x2

n
1 + x2

n
+ dn

y2
n

1 + y2
n

, n = 0, 1, ... . (21)

They all are of the form of System (17). Note that in System (19)

fi(u) =
1

1 + u
, Mi = 1 for i = 1, 2, 3, 4,

and in System (20)

f1(u) = f4(u) =
1

1 + u
, f2(u) = f3(u) =

u
1 + u2 , M1 = M4 = 1, M2 = M3 =

1
2

,

and in System (21)

fi(u) =
u

1 + u2 , Mi =
1
2

for i = 1, 2, 3, 4.

Based on Theorem 3, the following three claims are true.

Corollary 1. Assume that the sequences {an}, {bn}, {cn} and {dn} satisfy (18). Then, ev-
ery solution of System (19), where initial values x0, y0 are nonnegative, converge to the zero
equilibrium if

max{A + C, B + D} < 1 or max{A + B, C + D} < 1.

Corollary 2. Assume that {an}, {bn}, {cn} and {dn} satisfy (18). Then, every solution of
System (20), where initial values x0, y0 are nonnegative, converge to the zero equilibrium if

max
{

A +
1
2

C,
1
2

B + D
}

< 1 or max
{

A +
1
2

B,
1
2

C + D
}

< 1.

Corollary 3. Assume that {an}, {bn}, {cn} and {dn} satisfy (18). Then, every solution of
System (21), where initial values x0, y0 are nonnegative, converges to the zero equilibrium if

max
{

1
2
(A + C),

1
2
(B + D)

}
< 1 or max

{
1
2
(A + B),

1
2
(C + D)

}
< 1.
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Remark 3. It is obvious that Theorem 3 is valid for distinct combinations of the functions

u
1 + u

,
u

1 + u2 ,
u2

1 + u2 ,
u2

1 + u
.

Now, consider the following additive non-autonomous system

xn+1 = an f1(xn) + bn f2(yn)

yn+1 = cn f3(xn) + dn f4(yn)

}
, n = 0, 1, ... . (22)

It can be rewritten in the form of System (17) as follows

xn+1 = an
f1(xn)

xn
xn + bn

f2(yn)

yn
yn

yn+1 = cn
f3(xn)

xn
xn + dn

f4(yn)

yn
yn

, n = 0, 1, 2, ... ,

or in matrix form

[
xn+1
yn+1

]
=

an
f1(xn)

xn
bn

f2(yn)

yn

cn
f3(xn)

xn
dn

f4(yn)

yn

[ xn
yn

]
, n = 0, 1, 2, ... .

The proof of the following theorem is the same as the proof of Theorem 3. This system is
not a cooperative system, but it is a sub-linear system.

Theorem 4. Assume that fi are nonnegative and sub-linear functions, i.e., 0 ≤ fi(x)
x ≤ Mi,

i = 1, 2, 3, 4 for all x > 0. Also, assume that {an}, {bn}, {cn} and {dn} satisfy conditions (18).
Then, every solution of System (22), where initial values x0, y0 are positive, converges to the zero
equilibrium if

max{AM1 + CM3, BM2 + DM4} < 1 or max{AM1 + BM2, CM3 + DM4} < 1.

Remark 4. Let us note that Theorem 4 can be applied in the case when functions are of form
fi(x) = |sin(x)| f (x) = ln(1 + x) for x > 0 because 0 ≤

∣∣∣ fi(x)
x

∣∣∣ ≤ 1 for x > 0 and i = 1, 2, 3, 4.

The next results hold for cooperative systems.

Theorem 5. Consider system (22) and assume that fi(x) are non-decreasing functions, for all
x > 0. Also, assume that

lim
n→∞

(an, bn, cn, dn) = (A, B, C, D)

and that
xn+1 = A f1(xn) + B f2(yn)

yn+1 = C f3(xn) + D f4(yn)

}
, n = 0, 1, ... . (23)

is a limiting system.
Also, assume that there exists ε

(i)
0 > 0, i = 1, 2, 3, 4 such that every solution of the system

Yn+1 =

[
λ1 f1(xn) + λ2 f2(yn)

λ3 f3(xn) + λ4 f4(yn)

]
, n = 0, 1, ... (24)
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converges to a constant YΛ =

[
xΛ

yΛ

]
for every Λ=


λ1

λ2

λ3

λ4

, where

λ1 ∈
(

a − ε
(1)
0 , a + ε

(1)
0

)
, λ2 ∈

(
b − ε

(2)
0 , b + ε

(2)
0

)
, λ3 ∈

(
c − ε

(3)
0 , c + ε

(3)
0

)
,

and
λ4 ∈

(
d − ε

(4)
0 , d + ε

(4)
0

)
.

If
lim

Λ→A
YΛ = YA,

then every solution of the system (22) is convergent and satisfies

lim
n→∞

Xn = YA.

Example 4. Consider the following system of equations:

xn+1 =
a xn

δ1 + xn
+

b yn

δ2 + yn

yn+1 =
c xn

δ2 + xn
+

d yn

δ1 + yn
, n = 0, 1, . . .

(25)

where a, b, c, d, δ1, δ2 > 0, x0, y0 ≥ 0. Let T : R2
+ → R2

+ be the map associated with (25), that is

T(x, y) =
(

a x
δ1 + x

+
b y

δ2 + y
,

c x
δ2 + x

+
d y

δ1 + y

)
.

Theorem 6. The following statements are true.

(a) T maps the positive quadrant into the invariant set [0, a + b)× [0, c + d).
(b) For all values of the parameters, the system has the equilibrium point (0, 0).
(c) There is at least one and at most two equilibrium points.
(d) The point (0, 0) is the unique equilibrium if and only if

δ1 > max (a, d) and
(−a + δ1)δ2

b δ1
≥ c δ1

(−d + δ1)δ2
. (26)

In this case, (0, 0) is globally asymptotically stable.
(e) A positive interior fixed point (x+, y+) exists if and only if condition (26) is not satisfied, that

is when

δ1 ≤ max (a, d) or
(a − δ1)(d − δ1)

δ2
1

<
b c
δ2

2
. (27)

In this case, (x+, y+) is globally asymptotically stable on R2
+\(0, 0).

Proof. (a): It is clear that T maps the positive quadrant into [0, a + b)× [0, c + d). For the
proof of (b)–(f) we will consider the following equilibrium curves equation of the system

C1 : axy + bxy − x2y + byδ1 − xyδ1 + axδ2 − x2δ2 − xδ1δ2 = 0,

C2 : cxy + dxy − xy2 + cxδ1 − xyδ1 + dyδ2 − y2δ2 − yδ1δ2 = 0.
(28)

Now, solving for one variable (y and x, respectively) we obtain

y =
x(−a + x + δ1)δ2

ax + bx − x2 + bδ1 − xδ1
and x =

y(−d + y + δ1)δ2

cy + dy − y2 + cδ1 − yδ1
.
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For simplicity, we will set the equilibrium curves as

C1 : y =
x(−a + x + δ1)δ2

ax + bx − x2 + bδ1 − xδ1
and C2 : x =

y(−d + y + δ1)δ2

cy + dy − y2 + cδ1 − yδ1
.

The slopes at the origin of these two curves are as follows

dy
dx

|(C1)
=

(−a + δ1)δ2

bδ1
and

dy
dx

|(C2)
=

1
dx
dy

|(C2)
=

cδ1

(−d + δ1)δ2
.

(c): Monotonicity and concavity intervals for C1 and C2 are obvious. In view of
Lemma 5 from [30] if an interior equilibrium exists, it is unique, and also it must belong to
the set limited by the asymptotes. The asymptotes of C1 are

x =
a + b − δ1 +

√
(a + b − δ1)2 + 4bδ1

2
and x =

a + b − δ1 −
√
(a + b − δ1)2 + 4bδ1

2

while the asymptotes of C2 are

y =
c + d − δ1 +

√
(c + d − δ1)2 + 4cδ1

2
and y =

c + d − δ1 −
√
(c + d − δ1)2 + 4cδ1

2
.

Since

x =
a + b − δ1 −

√
(a + b − δ1)2 + 4bδ1

2
and y =

c + d − δ1 −
√
(c + d − δ1)2 + 4cδ1

2

are not in R2
+, the interior fixed point, if it exists, must belong to the interior of the set

(0, x∗)× (0, y∗), where

x∗ =
a + b − δ1 +

√
(a + b − δ1)2 + 4bδ1

2
, y∗ =

c + d − δ1 +
√
(c + d − δ1)2 + 4cδ1

2
.

Thus, the system will have either only (0, 0) as a fixed point or it will also have this unique
interior fixed point (x+, y+) which belongs to the interior of the set (0, x∗)× (0, y∗).

(d) and (e): Based on the geometry of the equilibrium curves and their slopes at the
origin, we see that there exists an interior equilibrium exactly in the following situations:
(i) at least one slope is negative, 0, or ∞. (ii) both slopes are positive, and slope of C1 < slope
of C2. Thus, a necessary and sufficient condition for the existence of an interior equilibrium
point is that there exists an interior fixed point if and only if one of (i) or (ii) holds,

(i) δ1 ≤ max(a, d) or (ii) δ1 > max(a, d) and
(−a + δ1)δ2

bδ1
<

cδ1

(−d + δ1)δ2
.

The conditions (i), (ii) can be merged into one as follows,

δ1 ≤ max(a, d) or
(a − δ1)(d − δ1)

δ2
1

<
bc
δ2

2
. (29)

Since (29) give conditions for a unique interior fixed point, we also have conditions for
(0, 0) to be the unique fixed point. Namely, whenever the interior fixed point does not exist,
which is given by the following,

δ1 > max(a, d) and
(−a + δ1)δ2

bδ1
≥ cδ1

(−d + δ1)δ2
. (30)

Next, it will be shown that when (0, 0) is the unique equilibrium that it is globally asymp-
totically stable. This is simply the consequence of (a).
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Now we will show conditions for (0, 0) to be unstable, to show (e). The characteristic
polynomial of the Jacobian of the map T at (0, 0) is

p(t) = t2 −
(

a
δ1

+
d
δ1

)
t +

bc
δ2

2
+

ad
δ2

1
. (31)

From geometric considerations with the function p(t), we can obtain a sufficient condition
for (0, 0) to be unstable as: (0, 0) is unstable if (p(1) < 0) or (p(1) ≥ 0 and p′(1) < 0),
which can be rewriten as follows. The point (0, 0) is unstable if

(a − δ1)(d − δ1)

δ2
1

<
bc
δ2

2
or 2δ1 < a + d. (32)

Now we are working under the assumption

δ1 ≤ max(a, d) or
(a − δ1)(d − δ1)

δ2
1

<
bc
δ2

2
, (33)

since these are the conditions for the existence of an interior equilibrium.
Thus, if the interior equilibrium exists, then (0, 0) is unstable. Proceeding by contra-

diction, assume that (32) is false, i.e., assume

(a − δ1)(d − δ1)

δ2
1

≥ bc
δ2

2
and (2δ1 ≥ a + d).

The first inequality in (32) implies (a − δ1)(d − δ1) > 0, so either δ1 > max(a, d) or δ1 ≤
min(a, d). But δ1 ≤ min(a, d) is ruled out because 2δ1 ≥ a + d. Thus, δ1 > max(a, d), which
contradicts (33).

Next, it will be shown that when (x+, y+) exists it is globally asymptotically stable.
Note first T(R2

+\(0, 0)) ⊂ (0, a+ b)× (0, c+ d). If the interior equilibrium exists, then (0, 0)
is unstable. Given any point (x, y) in R2

+\(0, 0), there is a point (x0, y0) ≻ne (0, 0) such that
(x0, y0) ≺ne (x, y) ≺ne (a + b, c + d). Indeed, (x0, y0) may be chosen as a point on the ray
with a direction vector given by an eigenvector of the Jacobian of T at (0, 0) associated
with the spectral radius of such Jacobian. Then, Tn(x0, y0) ≺ne Tn(x, y) ≺ne Tn(a + b, c +
d). Since {Tn(x0, y0)} and {Tn(a + b, c + d)} are monotonic sequences increasing and
decreasing, respectively, the omega limit of the order interval [Tn(x0, y0), Tn(a + b, c +
d)] is a singleton set consisting of the interior equilibrium. Thus, (x+, y+) is globally
asymptotically stable completing the proof.

Applying Theorem 5 to the system

xn+1 =
anxn

δ1 + xn
+

bnyn

δ2 + yn

yn+1 =
cnxn

δ2 + xn
+

dnyn

δ1 + yn
, n = 0, 1, . . .

(34)

we obtain the following result.

Corollary 4. Consider system (34), where an, bn, cn, dn are sequences such that

lim
n→∞

(an, bn, cn, dn) = (a, b, c, d).

If (26) holds, then (0, 0) is global attractor of solutions of (34); if (26) is not satisfied, that is
when (29) holds, the positive equilibrium (x+, y+) is the global attractor of solutions of (34) on
R2
+\(0, 0).
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3. Examples of Cooperative Evolutionary Models

In this section, we consider some cooperative evolutionary models where nonlinear
transition functions are Beverton–Holt functions or Beverton–Holt functions with squares.
See [31,32] for related results with Beverton–Holt transition functions.

Firstly, we investigate the following cooperative evolutionary system

xn+1 = A(u1(n))
yn

1 + yn
xn

yn+1 = B(u2(n))
xn

1 + xn
yn

u1(n + 1) = u1(n) + σ2
1

A′(u1(n))
A(u1(n))

u2(n + 1) = u2(n) + σ2
2

B′(u2(n))
B(u2(n))


, n = 0, 1, ... , (35)

where A(u1) > 0 and B(u2) > 0 are twice differentiable functions on their domains. The
non-evolutionary version of this model was considered in some detail in [2,27]. It exhibits
Allee’s effect even in the case of cooperation if initial populations are too small. The fixed
points of the last two equations in (35) are u∗

1 and u∗
2 , respectively, where u∗

1 and u∗
2 are

critical points of functions A(u1) and B(u2).

Lemma 2. If
−2
σ2

1
<

A′′(u∗
1
)

A
(
u∗

1
) < 0 and

−2
σ2

2
<

B′′(u∗
2)

B
(
u∗

2
) < 0, (36)

then there exist open neighborhoods U1 and U2 of u∗
1 and u∗

2 , respectively, such that

lim
n→∞

u1(n) = u∗
1 and lim

n→∞
u2(n) = u∗

2 . (37)

Proof. The proof follows from the fact that (36) is equivalent to
∣∣∣∣dG1

du1

(
u∗

1
)∣∣∣∣ < 1 and∣∣∣∣dG2

du2
(u∗

2)

∣∣∣∣ < 1 (that is u∗
1 and u∗

2 are locally asymptotically stable), where

G1(u1(n)) = u1(n) + σ2
1

A′(u1(n))
A(u1(n))

,

G2(u1(n)) = u2(n) + σ2
2

B′(u2(n))
B(u2(n))

,

since A′(u∗
1
)
= 0 and B′(u∗

2) = 0.

Lemma 2 implies that the non-autonomous system formed by the first two equations
in (35) are asymptotic to the following limiting system

xn+1 = A
(
u∗

1
) yn

1 + yn
xn

yn+1 = B(u∗
2)

xn

1 + xn
yn

, n = 0, 1, ... . (38)

System (38) has an equilibrium point E∗
0 =

[
0
0

]
, which is locally asymptotically stable

for all values of A
(
u∗

1
)
> 0 and B(u∗

2) > 0, and has one positive equilibrium point

E∗
+ =

 1
B(u∗

2)−1
1

A(u∗
1)−1

, which is a saddle point if A
(
u∗

1
)
> 1 and B(u∗

2) > 1 (see [27]). The

following result is from [27].
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Theorem 7. Assume that (A
(
u∗

1
)
, B(u∗

2)) /∈ (1, ∞)2, then the equilibrium point E∗
0 =

[
0
0

]
is

globally asymptotically stable, i.e., every solution {(xn, yn)} of (38) satisfies

lim
n→∞

xn = lim
n→∞

yn = 0,

for all x0 ≥ 0 and y0 ≥ 0.

Based on Theorem 1 and using Example 1 we obtain the following result.

Theorem 8. If (A
(
u∗

1
)
, B(u∗

2)) /∈ (1, ∞)2 and condition (36) holds, then all solutions of non-
autonomous system (35) globally asymptotically converge to

(E∗
0 , u∗

1 , u∗
2) =


0
0

u∗
1

u∗
2

 ∈ R2
+ ×U1 ×U2,

for all points x0 ≥ 0 and y0 ≥ 0.

Now, we consider the cooperative evolutionary system of the form

xn+1 = A(u1(n))
y2

n
1 + y2

n
xn

yn+1 = B(u2(n))
x2

n
1 + x2

n
yn

u1(n + 1) = u1(n) + σ2
1

A′(u1(n))
A(u1(n))

u2(n + 1) = u2(n) + σ2
2

B′(u2(n))
B(u2(n))


, n = 0, 1, ... , (39)

where A(u1) > 0 and B(u2) > 0 are twice differentiable functions on their domains. As
in the previous example, fixed points u∗

1 and u∗
2 , of the last two equations in (39) are,

respectively, critical points of functions A(u) and B(u). Also, under condition (36), there
exist open neighborhoods U1 and U2 of u∗

1 and u∗
2 , respectively, such that (37) holds. It

implies that the non-autonomous system formed by the first two equations in (39) is
asymptotic to the following limiting system

xn+1 = A
(
u∗

1
) y2

n
1 + y2

n
xn

yn+1 = B(u∗
2)

x2
n

1 + x2
n

yn

, n = 0, 1... . (40)

By an analogous procedure as in the case of the Example 1, considered in [27], it is obtained

that the system (40) has equilibrium point E∗
0 =

[
0
0

]
, which is locally asymptotically

stable for all values of A
(
u∗

1
)
> 0 and B(u∗

2) > 0, and has one positive equilibrium point

E∗
+ =


1√

B(u∗
2)−1

1√
A(u∗

1)−1

, which is a saddle point if A
(
u∗

1
)
> 1 and B(u∗

2) > 1. Also, the

equilibrium point E∗
0 is globally asymptotically stable if (A

(
u∗

1
)
, B(u∗

2)) /∈ (1, ∞)2.
Finally, based on Theorem 1 we obtain the following result.
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Theorem 9. Assume that (A
(
u∗

1
)
, B(u∗

2)) /∈ (1, ∞)2 and condition (36) holds. Then, all solutions
of non-autonomous System (39) globally asymptotically converge to

(
E∗

0 , u∗
1 , u∗

2
)
=
(
0, 0, u∗

1 , u∗
2
)
∈

R2
+ ×U1 ×U2, for all initial values x0 ≥ 0 and y0 ≥ 0.

The following example shows that construction of the model (35) is possible.

Example 5. Consider the following model

xn+1 =

(
A +

u1(n)− 1

(u1(n))
2

)
yn

1 + yn
xn

yn+1 =

(
B +

u2(n)

(u2(n))
2 + 1

)
xn

1 + xn
yn

u1(n + 1) = u1(n) + σ2
1

A′(u1(n))
A(u1(n))

u2(n + 1) = u2(n) + σ2
2

B′(u2(n))
B(u2(n))


, n = 0, 1... , (41)

where A(u1(n)) = A +
u1(n)− 1

(u1(n))
2 , B(u2(n)) = B +

u2(n)

(u2(n))
2 + 1

, and (A, B) /∈ (1, ∞)2.

From A′(u∗
1
)
=

−u∗
1 + 2(

u∗
1
)3 = 0 and B′(u∗

2) =
−(u∗

2)
2 + 1((

u∗
2
)2

+ 1
)2 = 0, we obtain u∗

1 = 2 and

(u∗
2)± = ±1. In the following presentation, we will use u∗

2 = (u∗
2)+ = 1 because for u∗

2 =

(u∗
2)− = −1 the condition

B′′(u∗
2)

B
(
u∗

2
) < 0 from (36) is not satisfied. Since A′′(u∗

1
)
= A′′(2) = − 1

8 ,

B′′(u∗
2) = B′′(1) = − 1

2 , A
(
u∗

1
)
= A + 1

4 , and B(u∗
2) = B + 1

2 , condition (36) is satisfied if

A >
1

16

(
σ2

1 − 4
)

and B >
1
4

(
σ2

2 − 2
)

or
σ2

1 < 16A + 4, σ2
2 < 4B + 2. (42)

Then, there exist open neighborhoods U1 and U2 of u∗
1 and u∗

2 , respectively, such that

lim
n→∞

u1(n) = u∗
1 = 2 and lim

n→∞
u2(n) = u∗

2 = 1.

Also, the non-autonomous system formed by the first two equations in (41) is asymptotic to the
following limiting system

xn+1 =
(

A + 1
4

) yn

1 + yn
xn

yn+1 =
(

B + 1
2

) xn

1 + xn
yn

, n = 0, 1, ... . (43)

Based on Theorems 7 and 8, we obtain the following two results.

Assume that (A + 1
4 , B + 1

2 ) /∈ (1, ∞)2.
1. Then, the equilibrium point E∗

0 = (0, 0) is globally asymptotically stable, i.e., every solution
{(xn, yn)} of (43) satisfies

lim
n→∞

xn = lim
n→∞

yn = 0,

for all x0 ≥ 0 and y0 ≥ 0.
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2. If additionally (42) holds, then all solutions of non-autonomous systems (41) globally

asymptotically converge to
(
E∗

0 , u∗
1 , u∗

2
)
=


0
0

u∗
1

u∗
2

 ∈ R2
+ × U1 × U2, for all points x0 ≥ 0 and

y0 ≥ 0.

Example 6. Consider the following system

xn+1 = A(u(n))
yn

1 + yn
xn

yn+1 = B(u(n))
xn

1 + xn
yn

, n = 0, 1, ... , (44)

where A(u) > 0 and B(u) > 0 are twice differentiable functions with a single Fisher’s equation

un+1 = p
u2

n
1 + u2

n
(45)

with u0 ≥ 0, for n = 0, 1, ... .
The equilibrium points of Fisher’s equation (45) are solutions of the following equation

u
(

u2 − pu + 1
)
= 0.

Then, the following hold:

(i) if 0 < p < 2, then there exists only the zero equilibrium point E0 = 0,
(ii) if p = 2, then there exist two equilibrium points: E0 = 0 and E+ = E− = 1,
(iii) if p > 2, then there exist three equilibrium points: E0 = 0 and two positive equilibrium points

E± =
p±
√

p2−4
2 .

The zero equilibrium point is always locally asymptotically stable. For p = 2 the equilibrium
point E+ = E− = 1 is semistable from above since f ′(1) = 1 and f ′′(1) = −1 < 0, where
f (u) = p u2

1+u2 . If p > 2, then E+ is asymptotically stable and E− is a repeller, since f ′(E+) < 1
and f ′(E−) > 1.

By using Theorem 1.18 [18] we see that the equilibrium points E0 and E+ are globally
asymptotically stable with the corresponding basins of attractions:

(i) if 0 < p < 2, then B(E0) = (E0, ∞),
(ii) if p = 2, then B(E0) = (E0, E−) and B(E+ = E−) = (E−, ∞),
(iii) if p > 2, then B(E0) = (E0, E−) and B(E+) = (E−, ∞).

The corresponding fitness function is

A(x) = B(x) = α exp

(
− x2

2 + px − p arctan x
σ2

)
, (46)

where α > 0. Since A(0) = α and A(1) = αe
3−π

2 < α for p = 2 and σ2 = 1, we conclude that the
zero equilibrium E0 = 0 is ESS (evolutionary stable), since it is located at a global maximum of
the fitness function, see [9,10,15]. On the other hand, if p > 2 and σ2 = 1, then A(0) = α and
A(E+) > α, which means that the positive equilibrium point E+ is ESS since it is located at the
global maximum of the fitness function. See Figure 1.
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Figure 1. The graphs of fitness function (46) for Equation (45) for σ2 = 1, α = 1 and p = 2 and p = 3.

4. Conclusions

In this paper, we use several techniques to obtain some global attractivity results
for non-autonomous cooperative systems of difference equations. The first technique we
use is based on the difference inequalities theory which leads to some interesting results
for the cooperative systems of any order when coefficients are asymptotically constants.
Then, we used another technique specially designed for non-autonomous systems to obtain
global attractivity results under weaker conditions on non-autonomous coefficients such as
boundedness without convergence. Finally, we used a geometrical method to prove the
global asymptotic stability of an autonomous system (25) which is a limiting equation for a
non-autonomous cooperative system (34), and so we obtain the global attractivity of the
equilibrium of (34). Our results have some analog results for two-dimensional competitive
systems in [14], but unlike the results in [14] these results be extended to n-dimensional
cooperative systems. Our results can not be derived from incorrect results in [13] without
further verifications. The results in [13] need some extra conditions to be correct, in which
case they might have the potential to be applicable to our examples. In the last section,
we provide global dynamics of some cooperative evolutionary models, also known as
Darwinian models, which leads to the problems of describing the global attractivity of
non-autonomous cooperative systems of difference equations, see [9–12,15] for the basic
results of this theory.
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