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Abstract: The present study aimed to evaluate the factors that influence the formation of sodium
hydroxide (NaOH) by means of an electrolytic cell with ion exchange membranes. To achieve this
experiment, the NaOH production cell had to be designed and built inexpensively, using graphite
electrodes. The operational parameters in our study were: initial NaOH concentration, applied
voltage, and temperature. All experiments were carried out using model NaCl solutions with a
concentration of 40 g/L for 150 min. The results of the experiment were that the NaOH concentration,
conductivity, and pH presented an increasing linear trend with the electrolysis time. Finally, it was
possible to obtain the efficiency level of the electric current in our investigation, which was an average
of 80.2%, that indicated good performance of the built cell.

Keywords: sodium hydroxide; electrolytic cell; ion exchange membranes

1. Introduction

The chlor-alkali industry uses brine and electricity for chemical production, like
chlorine, hydrogen, and sodium hydroxide [1,2]. Chlorine manufacture made by chlor-
alkali electrolysis is the second-biggest industrial electrochemical process, with more
than 70 million tons of Cl2 produced yearly and requires more than 200 TWh of power
supply [3].

Chlorine and sodium hydroxide are the top 10 chemicals produced worldwide, and are
the raw materials for a huge number of products used in everyday life. Soda is employed
in the making of detergent soap, fabric, paints, glass, and ceramics [4], in addition to its
usage in pH regulation and acid neutralization, caustic soda is employed as a reactant in
the production of many chemicals [5].

By applying direct-current (DC) electricity to a pair of electrodes (positive and neg-
ative) submerged in aqueous sodium chloride (NaCl), hydrogen (H2), chlorine (Cl2),
and sodium hydroxide (NaOH, often referred to as “alkali”) are simultaneously pro-
duced [6].

Chlor-alkali production requires a lot of electricity consumption that usually repre-
sents 40–50% of process expenses in operation; power consumption depends on different
technologies used in production [7]. Most of the chlor-alkali is made by electrolyzing
a brine (NaCl) solution that requires mercury, diaphragm, and membrane technologies.
However, the chlor-alkali process generates polluting emissions that causes a serious im-
pact on the environment, and people. Thus, development of more efficient and cleaner
processes is required [8].

European countries willingly accepted to change their mercury cell technology due
to environmental protection laws and huge power costs. The Minamata Convention on
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Mercury began to be applied on 16 August 2017, and this agreement requires less usage
and emissions of mercury; at the same time, it claims for more research and development
of technologies that do not use mercury.

The production of chlorine and sodium hydroxide by membrane technology was in-
troduced into industrial practice in the mid-1970s as an alternative to mercury diaphragm
and cathode methods, and in 1990 about 20% of NaOH and Cl2 were produced by mem-
brane technology. At the end of 2016, membrane technology in Europe accounted for
approximately 66% of chlorine production. Lately, membrane technology has been the top
preferred process in Europe, having more than 83% of the chlorine yield in the EU 27 and
EFTA countries in 2018 [9]. The global reaction in electrolytic cells is shown in Equation (1):

2H2O(l) + 2NaCl(aq) → 2NaOH(aq) + Cl2(g) + H2(g). (1)

The top challenge that the chlor-alkali industry has to face is finding efficient processes
that use less power supply, and to produce maximum yield. Considering the currently
high costs of electric power, the benefits of the industry mainly depend on such new
technologies [10].

Mercury cells were widely used in the United States; they represented 20% of full
chlor-alkali yield in the 1980s, but they have become banned because of mercury pollution
laws, including the National Emissions Standards for Hazardous Air Pollutants [11,12].
The process consists of two principal steps, the electrolyzer and the decomposer [4].

A simplified diagram of the production process is shown in Figure 1. Then the brine
enters the electrolytic cell from the side near the anode, and the diluted brine exits the other
end of the cell. At the anode, which is the positively charged electrode, the chloride ion
oxidizes to chlorine gas. The reaction is shown in Equation (2).

Oxidation at the anode:
2Cl−

(aq) → Cl2(g) + 2e−. (2)

Reduction at the cathode: At the cathode the sodium ion is reduced and produces an
amalgam with the mercury, and the reaction is shown in Equation (3):

Hg(l) + Na+
(aq) + 2e− → NaHg(l). (3)

The sodium amalgam then reacts with the water in a separate reactor called a decom-
poser where gaseous hydrogen, ordinary hydroxide solution, and mercury are produced,
which is recirculated to the electrolytic cell. The reaction is shown in Equation (4):

2NaHg(l) + 2H2O(l) → 2NaOH(aq) + 2Hg(l) + H2(g). (4)

At the outlet of the decomposer, the sodium hydroxide holds a 50% purity.

Figure 1. Mercury cell process.

The mercury cell process is known to produce the highest-quality caustic soda, but its
major drawback is that its products have some mercury present [13].
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Because of incidents of mercury contamination in Minamata and Niigata in 1972, Japan
began changing to membrane cells, and today there are mercury-free cells operating [4,14].
Membrane cell technology is a clean, feasible technique for the reuse of these wastes, but
simultaneously, it relies on many aspects, like brine pureness, flow density, and pH factor [15].

The anode and cathode are isolated by an ion exchange membrane. This membrane
avoids the transit of chlorine ions (negatively charged) but permits sodium ions (positively
charged) to move freely through the cell [11]. In this process, sodium chloride brine is
added to the cell through the anode compartment [16], while the water moves along
the cathode compartment. The continuation of the reactions occur at the anode and the
cathode [3]. These are shown in Equations (5) and (7).

Ánode:
2Cl−

(aq) → Cl2(g) + 2e−. (5)

In addition to the release of chlorine gas, the evolution of unwanted oxygen gas is
mainly due to the oxidation of water:

2H2O(l) → 4H+
(aq) + O2(g) + 2e−. (6)

In the cathode, water is electrolyzed into OH− and hydrogen gas.
Cathode:

2H2O(l) + 2e− → H2(g) + 2OH−
(aq). (7)

A cation-exchange membrane divides the anode and cathode solutions, but is perme-
able to Na+. The sodium ions merge with hydroxyl ions and form sodium hydroxide [17].
The reaction is shown in Equation (8).

Na+
(aq) + OH−

(aq) → NaOH(aq). (8)

The full electrolysis reaction of NaCl to NaOH and Cl2 can be seen below [18], and
the reaction is shown in Equation (9).

2NaCl(aq) + 2H2O(l) → Cl2(g) + 2NaOH(aq) + H2(g). (9)

In this method, sodium chloride solution is poured into the cell through the anode
compartment, while the water moves through the cathode compartment. The by-product
of hydrogen is frequently employed to supply heat by combustion [13]. In addition, other
usages can be found in the future, such as use in fuel cells [19]. A typical membrane
electrolysis cell is shown in Figure 2. On the anode, chloride is oxidized to chlorine gas,
and then dissolved in the anolyte [20].

Figure 2. Membrane cell process.

Table 1 shows the main advantages and disadvantages of mercury cells and mem-
branes, adapting and modifying from [2].
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Table 1. Advantages and drawbacks of electrolytic chlor-alkali technologies

Technology Advantages Drawbacks

Mercury
Low standard requirements for raw Mercury utilization.

material solution. High power demand.

Top product quality. High expenses of environmental
procedures.

Membrane
Low power demand. Top quality standards for raw
Safety raw materials. material solution.
Good NaOH quality. Poor chlorine quality.

Elevated thermic energy consumption.
High expensive of membranes.

Because the capital investment, operating costs, and power consumption expenses
are lower than that of diaphragm and mercury technology [21], membrane cell technology
is used in all new chlor-alkali plants. Another technique for NaOH production is by the
diaphragm cell, which operates at a lower voltage than mercury cells, the discharge is
free from mercury problems and requires less brine purity than membrane cells, which
reduces the brine pretreatment charge [22]. Because of the separated formation of Cl2 and
NaOH, the mercury cell generally produces a purer product than do the diaphragm and
membrane cells but with higher energy consumption because of the increased cell voltage
for electrolysis [23].

The main objective of our study was to evaluate the operational factors that influence
the reached concentration of sodium hydroxide in the chlor-alkali membrane cell using
experiments with synthetic brine. The initial NaOH concentration, electric potential, and
temperature factors were studied in a laboratory scale experiment.

The present work is divided up as follows: in Section 2 the experimental procedure to
be used is shown, in Section 3 we present the results, and finally, in Section 4 the conclusions
obtained from the present study are presented.

2. Experimental Procedure
2.1. Materials

The chemicals used in our research were analytically pure, such as sodium chlo-
rid (NaCl), sodium hydroxide (NaOH), and hydrochloric acid (HCl). For the analysis,
deionized water was used, supplied by a Chiwatec Water Treatment Technology brand
for electroionization equipment. The glass materials used were burettes to carry out the
titration operation. A heating system with an rpm and temperature indicator was also used.

2.2. Chemical Analysis

The changes in the sodium hydroxide concentration were determined by an acid-base
titration with a calibrated solution of HCL of 0.01 N using phenolphthalein as an indicator.
The NaOH concentration was calculated using Equation (10).

CNaOH =
CHCl ×VHCl

VNaOH
(10)

CHCl(mol/l): concentration of the calibrated HCl solution.
VHCl(L): volume of the acid.
VNaOH(L): volume of NaOH used for titration.

The conductivity of the hydroxide was evaluated using the ADW 310 conductimeter,
and the pH of the NaOH using the AD 12 pH meter.

2.3. Characteristics of the Ion Exchange Membrane

A cation exchange membrane type FTCM-E (Fumatech Bwt GmbH, Bietigheim-
Bissingen, Germany) [24] was used in this study. According to the manufacturer, this
is a high-durability membrane for electrolysis application. The membrane has a thickness
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of (0.17–0.19 mm) and a very low specific area resistance (2.5–3.5 Ω.cm2) at 0.5 M NaCl
and 25 ◦C and an ion exchange capacity of 1.5–1.8 meq/g. For good functioning of the
membrane, it is first immersed in distilled water for a period of 24 h and then in a 0.25 N
aqueous solution of NaCl for the other 24 h.

When conducting the experiments, there are factors that could affect the membranes.
The paper [21] mentioned that the application of depolarized cathodes with oxygen in
the cell affects the membrane, reducing the consumption of electrical energy in the chlor-
alkali process. Then in [25] it was mentioned that the membrane is susceptible to being
contaminated with ions such as Mg2+ and Cd2+ in the brine, which shortens its useful life.
Regardless, [26] mentioned that calcium and magnesium in precipitated form decrease
efficiency and increase energy consumption. Furthermore, the high pressure gases in the
electrolytic cell exacerbate the degradation of the membrane.

2.4. Electrolytic Cell

An electrolytic cell was constructed with compartments divided by a 90 cm2 fumartch-
type cationic membrane (FTCM-E) [24] section, as shown in Figure 3, where the volume of
the cells was 200 ml for each compartment, electrodes of 10 cm × 10 cm graphite, and the
space between the electrode and the membrane was 5 mm. The reactor was connected to a
power supply with a voltage of 30 volts and a current intensity of 5 A.

The anolyte compartment was connected to a 1 L container containing a NaCl solution
and the catholyte compartment was connected to a 1 L capacity sodium hydroxide reservoir.
Both compartment reservoirs were connected to a pump with silicone rubber tubing.

The electrolysis cell is of the filter press type was built with acrylic material on which
a cationic membrane with a mesh-shaped turbulence promoter was assembled and secured
with eight cross bars with nuts to avoid leaks, mixing, or spilling of the liquid.

Rubber gaskets were placed between each frame and membrane, which allows for
sealing and maintenance of the uniform distribution of flow within the cells, and two
acrylic plates were also placed at the ends, each one with an inlet and outlet for the flow
of solutions. The external acrylic plates allowed the system to be kept under pressure,
providing stability and resistance to the set of cells. Two 1.5 cm-thick acrylic frames were
used, into which the electrodes were inserted, each with an inlet and outlet through which
the sodium hydroxide and sodium chloride solutions entered.

Figure 3. Membrane cell process.

2.5. Procedure

The experiences were made in a batch system for the formation of sodium hydroxide.
The sodium chloride solution enters the cell through the anode compartment through a
submerged pump from a container containing 1.0 L capacity. Silicone tubing was used to
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recirculate the brine solution evenly, while dilute sodium hydroxide solution was fed to
the cathode side by means of a submerged pump from 1.0 L capacity.

Electrolysis occurs when a direct current passes through anodes and cathodes inside
the electrolyte electricity solution. During electrolysis, Cl2 gas is absorbed by a 2 M sodium
hydroxide solution in a 2 L container, and hydrogen is simultaneously generated at the
cathode and collected in a similar manner. After each experiment the setup was rinsed
completely with distilled water, and the electrolysis run time was 150 min. The feed tanks
were heated with jacketed heaters and a digital thermometer monitored their temperature.
A direct-current power supply was also used.

In our experiment, the operating time was 150 min. This was not an optimal value
chosen. In Franco et al. [27] mentioned that the potential and electric current in an industrial
chlor-alkali membrane electrolyzer is a tool used to evaluate the progress of its operating
efficiency over time. The authors also analyzed the performance of an industrial electrolyzer
as a function of its service time for approximately 8 years, recording variations in cell
potential and current density.

3. Results and Discussion

As a hypothesis in our research, we tried to verify how certain operating parameters
affected the concentration of NaOH produced in the membrane cell. In our experiments,
these parameters were: cell temperature, initial concentration of NaOH (N), and the
applied electric potential. How these evaluated parameters have a significant influence
on the conductivity and pH of the NaoH solution in 150 min was also verified. For all
the experiments carried out, the concentration of the NaCl solution was kept constant at
40 g/L, and the feed flow of the NaOH and NaCl solution at 400 mL/min.

Figure 4 shows the effect of the variation of the initial concentration of NaOH at three
different concentration values, such as 0.01 N, 0.05 N, and 0.1 N. Operating conditions
were maintained at 6.5 V and 35 ◦C.

Figure 4. Effect of NaOH Concentration at 6.5 V and 35 ◦C.

Figure 5 shows the effect of the voltage variation applied to the initial concentration of
NaOH at three different voltage values, such as 5.0 V, 6.5 V, and 7.5 V. Operating conditions
were maintained at 25 ◦C and 0.01 N.
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Figure 5. Effect of applied voltage on NaOH concentration at 25 ◦C and 0.01 N.

Figure 6 shows the effect of the temperature variation on the initial concentration at
three different temperature values, such as 25 ◦C, 35 ◦C, and 45 ◦C. Operating conditions
were maintained at at 6.5 V and 0.05 N

Figure 6. Effect of temperature at 6.5 V and 0.05 N with NaOH concentration.

With these three experiments carried out, it was possible to verify how these op-
erational parameters affected the concentration of NaOH produced and how they also
increased linearly with time.

To verify the influence of the previously evaluated parameters on conductivity and pH,
the following experiments were performed. Figures 7 and 8 show the evolution of electrical
conductivity and pH over time at different conditions of concentration, temperature,
and voltage.
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Figure 7. Evolution of the conductivity of NaOH.

Figure 8. Sodium hydroxide pH evolution time.

In both experiments, we found a linear trend between electrical conductivity and pH
with time of electrolysis.

To evaluate the influence of current intensity on NaOH production, experiments
were carried out at an electric potential of 5.0 V, 6.5 V, and 7.5 V at 25 ◦C and an initial
concentration of 0.05 N of NaOH. This is shown in Figure 9.

In this experiment we appreciate that in the first few minutes the intensity of the
current increased, then its value changed, and finally stabilised over time.

Current efficiency is an important parameter in determining the operating range of an
electrolytic cell. The current efficiency was calculated based on the concentrations of the
final base. It is defined as the ratio of the electrical charge used for the transport of ion to
the total electrical current charge [28], and is calculated by (11):

ε =
zF(C f − Ci)Vt

n
∫ t

0 idt
× 100% (11)

ε : current efficiency.
F: Faraday constant (96,500 A.s/ mol).
C f , Ci: initial and final concentration of the NaOH solution mol/L.
i: electric current intensity (A).
η : number of cell pars.
Vt: volume of recirculated NaOH solution.
z: electric charge.
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Figure 9. Evolution of current intensity with electrolysis time at 25 ◦C and 0.01 N.

The efficiency for each experiment was carried out at 25 ◦C, an initial concentration
of 0.01N NaOH, a workflow of 400 mL/min, and a NaCl concentration of 40 g/L. This
current efficiency is presented in Table 2.

Table 2. Current efficiency.

Voltage (V) NaOH Produced (N) Efficiency

5.0 0.05 85.3%
6.5 0.24 77.6%
7.5 0.33 77.8%

The result of the current efficiency obtained can be compared with other work carried
out under different operating conditions. In Savari et al. [29] used a flow of 66 mL/min,
a NaCl concentration of 58.5 g/L, and a commercial NAFION-117 membrane [30] was also
used. In this work, an average efficiency was obtained that was quite similar to our work,
equal to 80.1% at different operating conditions. In both cases, the same operating time of
150 min was used. This information is shown in Table 3, adapting and modifying from [29].

Table 3. Current efficiency.

Voltage (V) NaOH Produced (N) Efficiency

10.7 0.04 93.8%
16.5 0.08 60.6%
23.7 0.05 85.8%

We can conclude that the average efficiency in our research was 80.2%, which repre-
sents a good efficiency of our experimental equipment, and a greater quantity of NaOH
was also produced. Regarding the economic considerations of our cell to carry out the
experiment, we mentioned that the design and construction cost an average of 500 dollars.
This cost can be considered quite low compared to other similar research.

4. Conclusions

In the present study, the operating parameters of the electrolysis of a model sodium
chloride solution on the formation of NaOH were studied, using graphite electrodes and a
cation exchange membrane.

The results obtained in our experiment indicate that the best operating conditions are
found at a cell voltage of 7.5 V, an initial concentration in the cathodic compartment of
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0.1 N NaOH, and a temperature of 45 ◦C. Obtained in each case were the highest values of
the NaOH concentration after 150 min.

In addition, the average electric current efficiency was obtained at the conditions of
25 ◦C, initial NaOH concentration of 0.01 N, and voltages of 5.0 V, 6.5 V, and 7.5 V. Its
average value was 80.2%.

The applied tension was identified as one of the most significant variables to reach the
concentration of sodium hydroxide. This is mainly due to its direct relationship with the
consumption of electrical energy. Finally, we mention that the results of the study show
that the electrochemistry of the membrane process offers a method that is an interesting
economic alternative for the synthesis of NaOH.

As future work, we hope to study other operational variables, such as: sodium
hydroxide flux, types of membranes and their durability, electrode materials in relation to
specific energy consumption, and process efficiency.
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