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Abstract: Lithium-ion (Li-ion) batteries are an important component of energy storage systems
used in various applications such as electric vehicles and portable electronics. There are many
chemistries of Li-ion battery, but LFP, NMC, LMO, and NCA are four commonly used types. In order
for the battery applications to operate safely and effectively, battery modeling is very important.
The equivalent circuit model (ECM) is a battery model often used in the battery management
system (BMS) to monitor and control Li-ion batteries. In this study, experiments were performed to
investigate the performance of three different ECMs (1RC, 2RC, and 1RC with hysteresis) on four
Li-ion battery chemistries (LFP, NMC, LMO, and NCA). The results indicated that all three models
are usable for the four types of Li-ion chemistries, with low errors. It was also found that the ECMs
tend to perform better in dynamic current profiles compared to non-dynamic ones. Overall, the
best-performed model for LFP and NCA was the 1RC with hysteresis ECM, while the most suited
model for NMC and LMO was the 1RC ECM. The results from this study showed that different
ECMs would be suited for different Li-ion battery chemistries, which should be an important factor
to be considered in real-world battery and BMS applications.

Keywords: lithium-ion battery; battery modeling; equivalent circuit model; hysteresis effect; cell
chemistry; LFP; NMC; LMO; NCA

1. Introduction

Over the past 10 years, the annual energy generation has increased over 73 million
megawatts per hour, and renewable energy generation such as solar, wind, and tidal
increased over 30 million megawatts per hour in Canada [1]. Energy generated from
renewable resources cannot be easily stored similarly to fossil fuels. Therefore, energy
storage systems such as batteries are required to store the energy and be able to supply to
the grid on demand. The acceleration of climate change has accelerated the development
of batteries to reduce carbon footprints and encourage the use of renewable energy [2,3].

Lithium-ion (Li-ion) batteries are becoming increasingly common due to their advan-
tages as an energy storage system such as long cycle life, low self-discharge rate, small
size, light weight, rapid charging capabilities, and wide temperature range [4–6]. With
changes to the materials used in anodes and cathodes such as spherical lithium iron phos-
phate cathodes and lithium-sulfur, Li-ion batteries can have higher power density, higher
energy density, and lower costs than competing chemistries, allowing them to be used in
applications formerly dominated by other battery types [7]. At the end of 2018, over 90%
of large-scale battery storage power capacity was provided by Li-ion batteries in the US [8].
A total of 125 storage systems that held a combined total of 869 MW was reported at the
end of 2018, demonstrating exponential growth and doubling the reported value in 2015,
just 3 years prior.

Batteries 2021, 7, 51. https://doi.org/10.3390/batteries7030051 https://www.mdpi.com/journal/batteries

https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-9937-1749
https://orcid.org/0000-0002-3012-4093
https://orcid.org/0000-0001-8152-0451
https://orcid.org/0000-0002-9761-0336
https://doi.org/10.3390/batteries7030051
https://doi.org/10.3390/batteries7030051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/batteries7030051
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries7030051?type=check_update&version=1


Batteries 2021, 7, 51 2 of 15

Batteries serve critical roles in the daily lives of their users. Therefore, optimization of
battery performance via a battery management system (BMS) is called for to further enhance
their abilities and longevity. BMS software executes model algorithms, commonly using
Equivalent Circuit Models (ECMs), to continuously capture battery dynamics, allowing
for the estimation of battery pack information [9]. BMS software can thereby perform the
crucial task of maintaining a safe operating area (SOA) for modern electronics equipped
with intensive cell arrangements and minimal tolerance for faulty behavior [10]. In the
majority of BMS applications, important tasks include (1) the determination of battery
states (e.g., state of health (SOH), state of charge (SOC), state of function (SOF), etc.),
(2) battery cell and battery pack monitoring, (3) energy management during charging
and discharging, and (4) thermal management. To provide a specific example, a BMS in
a battery application captures measurable information of current, voltage, power, and
battery temperature to make comparisons with predicted values from the corresponding
model, allowing the BMS to detect battery faults [11,12]. Among various battery estimation
models, the equivalent-circuit-based model is gaining popularity due to its stability on
major commercial battery chemistries such as LFP [13].

ECMs simulate the battery’s internal characteristics, which may include the following
three major parts: a static representation of battery chemistry properties such as nominal
capacity and open-circuit voltage (OCV), a dynamic representation of the cell’s internal
operation such as internal resistance and RC time constant, and lastly, a source of potential
that drives and completes the simulated circuit [13]. ECMs are constructed based on
the physical understanding of the cell configuration and chemistry, and according to the
Occam’s razor principle that states that only components that correspond to the physical
phenomena should be inserted in an equivalent circuit [14]. Therefore, elements of the ECM
circuitry are configured to simulate existing battery chemistries. The ECM can help predict
a battery’s states including the SOH, SOC, output power, and transient and dynamic
behaviors based on terminal voltage. As mentioned above, ECMs are widely gaining
popularity as a cost-efficient and relatively simple model in BMS design. Its suitability
is mainly due to the reduced amount of model parameters and the underlying ordinary
differential equation model, allowing quick firmware operation during runtime and the
ability to make estimations in advance [15].

ECMs have been studied for the purpose of investigating relationships between model
accuracy and complexity, thus demonstrating the overall effectiveness of each type of
ECM. He et al. [16] compared seven battery models, including three ECMs of zeroth,
first, and second-order, using an LFP cell, to find that the second-order ECM had the best
performance, and the first-order ECM was the second best. Hu et al. [17] compared the
performance of twelve ECMs, under three sets of training data and temperature ranges, for
NMC and LFP cells. The study found that the first-order ECM was preferable for NMC
cells, while the first-order ECM with hysteresis was better for LFP cells. Zhang et al. [18]
tested two ECMs using an LFP cell, under the Urban Dynamometer Driving Schedule
(UDDS) current profile and suggested higher efficiency from a second-order ECM for
EV applications.

However, there has not been any comparative study on the performance of different
ECMs, relatively, in multiple commonly used Li-ion battery types. This study utilizes
four commonly used battery chemistries, including lithium iron phosphate (LFP), lithium
nickel manganese cobalt oxide (NMC), lithium manganese oxide (LMO), and lithium nickel
cobalt aluminum oxide (NCA). The performance of three widely used ECMs, including a
first-order ECM, a second-order ECM, and a first-order ECM with hysteresis, are compared
among each other as well as in all four of the battery chemistries. The models are built
and characterized using MATLAB and validated experimentally using a UDDS current
profile and a non-dynamic current profile. The results are analyzed to evaluate model
accuracy and model complexity for different battery chemistries and different applications.
The rest of the paper is organized as follows. Section 2 outlines some background on the
four cell chemistries as well as the three ECMs used in the study. Section 3 describes the
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experimental setup and procedure for cell characterization and model validation. Section 4
presents some characterization and validation results as well as comparative discussion.
Finally, Section 5 provides some concluding remarks.

2. Background
2.1. Lithium-Ion Battery Chemistries

Many battery storage devices are made from electrochemical cells [19]. Electrochemical
cells convert chemical potential to electrical potential when discharging and vice versa if
the cell is charging. This study will focus on lithium-ion batteries and will exclude other
popular battery types such as lead-acid and nickel-metal hydride.

Li-ion batteries have a structured anode and cathode that houses lithium. The cathode
can have three different structures that consist of a layered, spinel, or olivine structure. With
changes to the cathode materials on Li-ion batteries, the characteristics of energy density
and cost effectiveness can be further improved [6,7]. Among the phosphate-based cathode
materials, LFP has the highest capacity though a much lower open circuit voltage [20].
However, when Goodenough et al. demonstrated the lithium extraction and insertion
stability into FePO4, an olivine structure, LFP solidified its position as the best candidate
for phosphate-based cathodes [21].

2.1.1. Lithium Iron Phosphate (LFP) Battery

When LFP batteries discharge, lithium molecules from the negative electrode detach
from layered graphene, becoming lithium ions and electrons. The electrons travel out of
the battery as lithium ions move across a separator and both integrate into iron phosphates
at the positive electrode. During charge, lithium separates from the iron phosphate,
generating lithium ions and electrons. The lithium ions and electrons transfer to the
positive electrode and integrate into the graphene structure. The reaction occurs from right
to left. The electrochemical reactions are shown below [22] (Table 1).

Table 1. Electrochemical reactions of a lithium iron phosphate (LFP) battery.

Electrode Electrochemical Reactions

Anode LinC6 
 Li0C6 + nLi+ + ne−

Cathode Lim − nFePO4 + nLi+ + ne− 
 LimFePO4
Overall LinC6 + Lim − nFePO4 
 Li0C6 + LimFePO4

2.1.2. Lithium Nickel Manganese Cobalt Oxide (NMC) Battery

NMC is a Li-ion battery with a different type of cathode. Unlike LFP, which possesses
good capacity and stability, NMC demonstrates an improved cycle life, thermal stability,
and energy density [23,24]. Its layered cathode structure demonstrates a single-phase
intercalation process as opposed to olivine structures with two phases [22]. The cathode
of NMC consists of Li(NixMnyCoz)O2, where the sum of the molar fractions (x, y, z) is
equal to one [25]. The discharge chemistry of NMC is similar to LFP, as they are both Li-ion
batteries [16]. It follows the process of lithium oxidation on the anode and reduces at the
cathode. The discharge reaction proceeds from left to right, whilst the charge reaction
proceeds from right to left (Table 2).

Table 2. Electrochemical reactions of a lithium nickel manganese cobalt oxide (NMC) battery.

Electrode Electrochemical Reactions

Anode LinC6 
 Li0C6 + nLi+ + ne−

Cathode Lim − n(NixMnyCoz)O2 + nLi+ + ne− 
 Lim(NixMnyCoz)O2
Overall LinC6 + Lim − n(NixMnyCoz)O2 
 Li0C6 + Lim(NixMnyCoz)O2
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2.1.3. Lithium Manganese Oxide (LMO) Battery

LMO batteries were first commercialized in 1975 by the Sanyo company, making it
one of the first Li-ion batteries to be used commercially [26]. Newer LMO batteries contain
a three-dimensional spinel structure to improve the diffusion of lithium ions [27], allowing
it to have high thermal stability, low cost, and environmental affinity [28]. However, LMO
batteries suffer from severe capacity fading due to the surface dissolution of manganese in
the electrolyte at temperatures above 60 ◦C.

A typical LMO battery provides a working voltage of 3.7 V and a specific capacity of
148 mAh g−1. When compared to the average NMC battery, which has a working voltage
of 3.6 V and a specific capacity of 170 mAh g−1, the LMO battery has a slightly higher
working voltage but a lower specific capacity.

The discharge chemistry is as follows, with the discharge reaction occurring from left
to right and the charge reaction occurring from right to left (Table 3).

Table 3. Electrochemical reactions of a lithium manganese oxide (LMO) battery.

Electrode Electrochemical Reactions

Anode: LinC6 
 nLi+ + ne−

Cathode: Lim − nMn2O4 + nLi+ + ne− 
 LimMn2O4
Overall: LinC6 + Lim − nMn2O4 
 Li0C6 + LimMn2O4

2.1.4. Lithium Nickel Cobalt Aluminum Oxide (NCA) Battery

NCA batteries share many similarities with NMC batteries as they both share the
layered cathode structure. However, NCA batteries replace the manganese of the NMC
batteries with aluminum. This improves the specific energy and lifespan when compared
to its NMC counterpart [27]. NCA batteries also have a high gravimetric capacity of 200
mAh·g−1 when compared to the capacities of LMO and LFP batteries at 148 mAh·g−1

and 170 mAh·g−1, respectively. Finally, NCA batteries are known to have a long lifespan.
The main disadvantage of NCA batteries is that they are not as safe as other battery types.
These batteries require special safety monitoring measures for use in applications such as
electric vehicles [29].

The discharge chemistry of NCA batteries closely follows that of the other Li-ion
batteries listed above. Lithium undergoes oxidation at the anode and reduction at the
cathode, with the discharge reaction occurring from left to right and the charge reaction
occurring from right to left. The electrochemical reactions can be seen below (Table 4).

Table 4. Electrochemical reactions of a lithium nickel cobalt aluminum oxide (NCA) battery.

Electrode Electrochemical Reactions

Anode LinC6 
 Li0C6 + nLi+ + ne−

Cathode Lim − n(NixCoyAlz)O2 + nLi+ + ne− 
 Lim(NixCoyAlz)O2
Overall LinC6 + Lim − n(NixCoyAlz)O2 
 Li0C6 + Lim(NixCoyAlz)O2

2.2. Equivalent Circuit Models for Lithium-Ion Batteries

ECMs often use resistor-capacitor (RC) pairs to mimic the phenomenological behavior
of a battery’s internal behavior, for example, internal resistance, effective capacitance, and
equivalent potential [30]. The commercial RC network model was originally developed
by SAFT using the PSpice software platform and was later converted into ADVISOR’s
MATLAB-compatible platform [31]. It is designed based on the Thevenin model shown in
Figure 1, which connects several parallel RC networks in series to simulate the dynamic
characteristics of the battery.



Batteries 2021, 7, 51 5 of 15Batteries 2021, 7, x FOR PEER REVIEW 5 of 16 
 

  
(a) (b) 

Figure 1. Equivalent circuit model diagrams, (a) first-order (1RC), and (b) second-order (2RC). 

Figure 1a shows a first-order ECM (1RC) that consists of major components including 
open-circuit voltage (UOC), resistors (Ro, RTh) that are used to represent ohmic resistance 
and polarization resistance, respectively, and capacitance (CTh) that describes the battery’s 
transient response during charge and discharge [30]. The second-order ECM (2RC), as 
represented by Figure 1b, is defined as a dual polarization (DP) model, which can provide 
refined representation of polarization characteristics, concentration polarization, and elec-
trochemical polarization independently [16]. The 2RC model includes the internal re-
sistance component (Ro) and polarization resistances, Rpa and Rpc, that represent a re-
sistance characterizing electrochemical polarization, and a resistance characterizing con-
centration polarization, respectively. The second-order ECM also includes effective capac-
itance, Cpa and Cpc, which represent the transient response of the battery’s charge/dis-
charge process and the polarization characteristic, respectively. Factors including compu-
tational time, accuracy, and parameterization are key considerations of a BMS’s efficiency 
[32,33]. Adding RC networks up to a fifth-order RC model can increase accuracy, but RC 
networks beyond the second-order model would not achieve an effective balance between 
computational complexity and accuracy [17]. 

Hysteresis can be found in modern battery chemistries, which is a phenomenon that 
affects the cell’s OCV during charging or discharging. Hysteresis can even occur in an idle 
state known as ‘zero-current hysteresis’, which can cause an OCV response of up to 50 
mV or above [34]. Its behavior can depend on factors including charging or discharging 
relaxation time, battery chemistry, and battery SOC. Prominent hysteresis effects can be 
found in LFP chemistries, as well as the non-linear regions of SOC for some batteries, 
between 0–20% and 80–100% [35]. Comparatively, OCV-based estimation algorithms for 
the estimation models are developed under the combination of a dynamic hysteresis 
model and an n-RC ECM to further enhance accuracy. For this reason, dedicated circuitry 
components that represents a battery’s hysteresis behaviors are added to the n-th-order 
RC model, which are defined as n-th-order RC models with hysteresis [36]. Batteries that 
exhibit large hysteresis levels would be affected when OCV-based SOC estimation meth-
ods are used [37]. The scope of this paper will be limited to the first order ECM with hys-
teresis. 

The equations for the three models discussed in this study are shown below, in dis-
crete form to better suit the MATLAB model construction and calculations. 

The first-order ECM is as follows: = − − ,  (1)

, = exp − ∆ , + [1 − exp − ∆ ]  (2)

the second-order ECM is as follows: 
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Figure 1a shows a first-order ECM (1RC) that consists of major components including
open-circuit voltage (UOC), resistors (Ro, RTh) that are used to represent ohmic resistance
and polarization resistance, respectively, and capacitance (CTh) that describes the battery’s
transient response during charge and discharge [30]. The second-order ECM (2RC), as
represented by Figure 1b, is defined as a dual polarization (DP) model, which can pro-
vide refined representation of polarization characteristics, concentration polarization, and
electrochemical polarization independently [16]. The 2RC model includes the internal resis-
tance component (Ro) and polarization resistances, Rpa and Rpc, that represent a resistance
characterizing electrochemical polarization, and a resistance characterizing concentration
polarization, respectively. The second-order ECM also includes effective capacitance, Cpa
and Cpc, which represent the transient response of the battery’s charge/discharge process
and the polarization characteristic, respectively. Factors including computational time,
accuracy, and parameterization are key considerations of a BMS’s efficiency [32,33]. Adding
RC networks up to a fifth-order RC model can increase accuracy, but RC networks beyond
the second-order model would not achieve an effective balance between computational
complexity and accuracy [17].

Hysteresis can be found in modern battery chemistries, which is a phenomenon that
affects the cell’s OCV during charging or discharging. Hysteresis can even occur in an
idle state known as ‘zero-current hysteresis’, which can cause an OCV response of up to
50 mV or above [34]. Its behavior can depend on factors including charging or discharging
relaxation time, battery chemistry, and battery SOC. Prominent hysteresis effects can be
found in LFP chemistries, as well as the non-linear regions of SOC for some batteries,
between 0–20% and 80–100% [35]. Comparatively, OCV-based estimation algorithms
for the estimation models are developed under the combination of a dynamic hysteresis
model and an n-RC ECM to further enhance accuracy. For this reason, dedicated circuitry
components that represents a battery’s hysteresis behaviors are added to the n-th-order
RC model, which are defined as n-th-order RC models with hysteresis [36]. Batteries that
exhibit large hysteresis levels would be affected when OCV-based SOC estimation methods
are used [37]. The scope of this paper will be limited to the first order ECM with hysteresis.

The equations for the three models discussed in this study are shown below, in discrete
form to better suit the MATLAB model construction and calculations.

The first-order ECM is as follows:

Vj = OCV − R0 Ij − U1,j (1)

U1,j+1 = exp
(
− ∆t

R1C1

)
U1,j + R1[1 − exp

(
− ∆t

R1C1

)
]Ij (2)

the second-order ECM is as follows:

Vj = OCV − R0 Ij − U1,j − U2,j (3)
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U1,j+1 = exp
(
− ∆t

R1C1

)
U1,j + R1[1 − exp

(
− ∆t

R1C1

)
]Ij (4)

U2,j+1 = exp
(
− ∆t

R2C2

)
U2,j + R2[1 − exp

(
− ∆t

R2C2

)
]Ij (5)

and the first-order ECM with hysteresis (ECMwH) is as follows:

Vj = OCV − R0 Ij − U1,j + Hj (6)

U1,j+1 = exp
(
− ∆t

R1C1

)
U1,j + R1[1 − exp

(
− ∆t

R1C1

)
]Ij (7)

Hj+1 = exp
(
−
∣∣kIj∆t

∣∣)Hj + [1 − exp(−
∣∣kIj∆t

∣∣)]h (8)

where V is the battery terminal voltage, I is the battery current, OCV is the battery open
circuit voltage, R0 is the internal ohmic resistance, U1 and U2 are the voltages of the RC
networks, R1C1 and R2C2 are the time constants of the RC networks, H is the hysteresis
voltage, k is the hysteresis decaying factor, h is the maximum hysteresis voltage that is
positive for charge and negative for discharge, and ∆t is the sampling time, with the
subscript j being the discrete index. In these equivalent circuit models, V is the output, and
I is the input, while OCV, R0, R1, C1, R2, C2, k, and h are the model parameters and are
functions of the battery SOC.

3. Experimental

One cell was tested for each of the four chemistries. The four cells, including LFP,
NMC, LMO, and NCA, are presented in Figure 2. The specifications of each cell are
outlined in Table 5. Experimental testing for all four cells was conducted using a MACCOR
Model 4200 battery testing system, with each cell inside a fire-resistant chamber at a room
temperature of 23 ◦C, as shown in Figure 3. All the tests described below were run at a
controlled ambient temperature to ensure consistency of the data.
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Table 5. Cell specifications for each chemistry.

Chemistry Manufacturer Cell Name
Nominal
Capacity
(mAh)

Nominal
Voltage (V)

Voltage
Range (V)

LMO EFEST IMR18650V1 2600 3.70 2.50–4.20
LFP K2 Energy Solutions, Inc. LFP26650P 2600 3.20 2.00–3.65

NMC Samsung SDI INR18650-20S 2000 3.60 2.50–4.20
NCA Panasonic NCR18650B 3200 3.60 2.50–4.20
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3.1. Cell Characterization Experiments

The characterization of each cell consisted of the following three stages: (1) capacity
testing, (2) SOC–OCV testing, and (3) hybrid pulse power characterization (HPPC) testing.
Capacity tests consisted of three complete charge/discharge cycles at 1C-rate. SOC–OCV
tests consisted of a complete charge/discharge cycle at a C-rate of C/25. Lastly, HPPC
tests were performed according to the test profile shown in Figure 4 (for the NCA cell as a
representative for all four tested cells). At each SOC level from 0.1 to 0.9 with an interval of
0.1, a one-minute discharge/rest/charge pulse was run. The steps followed in the HPPC
test were as follows, beginning at a fully charged state:

(1) Discharge pulse at 1C for 10 s.
(2) Rest for 40 s.
(3) Charge pulse at 0.75C for 10 s.
(4) Rest for 30 min.
(5) Discharge at 1C for 6 min (resulting in a 10% drop in the SOC).
(6) Rest for 1 h.
(7) Repeat steps (1)–(6) 10 times.

The capacity tests are performed to confirm the rated capacity of the cells, to ensure
that the 1C-rate current is accurate. The SOC–OCV tests are conducted to establish the
relationship between the SOC and the OCV. The voltage and current data collected from
the HPPC tests are used to fit the ECM parameters aside from the OCV, using the ‘nlinfit’
function in MATLAB. It should be noted, about the sign convention, that positive current
values indicate discharging and negative current values indicate charging.
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3.2. Model Validation Experiments

To validate the battery models, a dynamic profile and a non-dynamic profile were used,
in order to represent different battery applications. A dynamic profile can be described as
inconsistent charging and discharging cycles that mimic a real-life application. This is often
used in battery testing to obtain real-life simulation data and can validate cell models. For
example, UDDS represents general city driving conditions in the United States, established
by the United States Environmental Protection Agency (EPA) [38]. The driving conditions
can be translated into battery discharge and charge (regenerative braking) patterns. In
contrast, a non-dynamic profile consistently performs battery cycles that simulate non-
intensive electrical devices such as smartphones and other low usage devices. Figure 5
shows the current profiles for one UDDS drive cycle and a non-dynamic (ND) cycle. The
four batteries went through these cycles under the MACCOR, and the experimental voltage
and current measurements were collected. The experimental current data were used as the
input for the battery models, and the predicted voltage was then calculated as the output
using MATLAB. The cycles were run at 11 different initial battery SOC levels, ranging from
0.3 to 0.8 with an increment of 0.05, as this is the normal operating SOC range for many
battery applications. The predicted voltage from the models was then compared to the
experimental voltage to evaluate the performance of the models.
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4. Results
4.1. Cell Characterization Results

The SOC–OCV curves were constructed for each cell chemistry as shown in Figure 6.
The lower values of the OCV came from the discharging of the cells, whereas the higher
OCV values came from charging. The average OCV values are to be used in the three
ECMs as a parameter. From Figure 6, it is observed that there is more variation between
the high and low OCV values in LFP and NCA. It is, hence, expected that the 1RC with
hysteresis model will perform better in those cells, compared to NMC and LMO.

The data collected from the HPPC runs were fitted with the three ECMs using the
‘nlinfit’ function in MATLAB, which utilizes the Levenberg–Marquardt nonlinear least
squares algorithm to fit data to functions. The MATLAB scripts for the model fitting
can be found at https://github.com/kmtran95/Battery-HPPC-model-fitting (accessed on
21 July 2021). The voltage and current data from the one-minute pulse, at each SOC level
from 0.1 to 0.9, were input into MATLAB and fitted with the ‘nlinfit’ function. The results
of the fitting can be seen in Tables 6–9 for LFP, NMC, LMO, and NCA, respectively. The
validation experiments would only be conducted under initial SOC levels ranging from
0.3 to 0.8. Thus, only the parameter data from 0.3 to 0.8 SOC, obtained from the HPPC
runs and interpolated from the result tables, would be utilized for model validation in this
study. The parameters would then be used in the ECMs to predict the voltage in the UDDS
and ND cycles at different SOCs, and validation results are shown in the next sub-section.

https://github.com/kmtran95/Battery-HPPC-model-fitting
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Table 6. Model parameters obtained from HPPC data fitting in MATLAB for the LFP cell.

SOC

1RC 2RC 1RCwH

R0 R1 C1 R0 R1 C1 R2 C2 R0 R1 C1 k h

(Ω) (Ω) (F) (Ω) (Ω) (F) (Ω) (F) (Ω) (Ω) (F) / (V)

0.9 0.0251 0.0280 769.39 0.0228 0.0278 1011.76 0.0047 456.43 0.0241 0.0144 714.37 0.0629 0.0274
0.8 0.0263 0.0351 747.04 0.0237 0.0361 967.72 0.0052 420.79 0.0252 0.0146 700.26 0.0416 0.0309
0.7 0.0271 0.0287 720.09 0.0242 0.0284 962.90 0.0055 355.45 0.0259 0.0148 646.30 0.0673 0.0319
0.6 0.0279 0.0312 687.74 0.0247 0.0311 935.50 0.0061 321.02 0.0266 0.0153 600.76 0.0537 0.0304
0.5 0.0284 0.0317 649.01 0.0248 0.0315 887.06 0.0067 271.69 0.0270 0.0160 558.52 0.0597 0.0300
0.4 0.0296 0.0367 618.50 0.0253 0.0373 863.25 0.0078 238.12 0.0281 0.0166 505.92 0.0353 0.0349
0.3 0.0306 0.0392 567.06 0.0257 0.0402 836.13 0.0094 210.55 0.0288 0.0177 433.25 0.0299 0.0383
0.2 0.0324 0.0487 520.73 0.0268 0.0539 834.83 0.0118 202.02 0.0300 0.0193 353.49 0.0087 0.0341
0.1 0.0344 0.0750 427.09 0.0287 0.1047 754.39 0.0164 214.49 0.0310 0.0234 277.31 0.0003 0.0338
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Table 7. Model parameters obtained from HPPC data fitting in MATLAB for the NMC cell.

1RC 2RC 1RCwH

SOC R0 R1 C1 R0 R1 C1 R2 C2 R0 R1 C1 k h

(Ω) (Ω) (F) (Ω) (Ω) (F) (Ω) (F) (Ω) (Ω) (F) / (V)

0.9 0.0602 0.0198 1112.36 0.0586 0.0220 2254.18 0.0058 671.31 0.0594 0.0094 903.89 0.0048 0.0107
0.8 0.0612 0.0354 921.69 0.0601 0.0942 2310.05 0.0099 758.97 0.0603 0.0116 754.16 0.0041 0.0132
0.7 0.0610 0.0436 880.62 0.0598 0.1017 1852.54 0.0094 794.67 0.0601 0.0119 781.74 0.0041 0.0127
0.6 0.0615 0.0596 905.44 0.0600 0.1139 1395.74 0.0067 855.04 0.0604 0.0101 886.73 0.0049 0.0169
0.5 0.0613 0.0300 1249.34 0.0599 0.0389 1902.48 0.0045 884.10 0.0605 0.0079 1058.58 0.0057 0.0170
0.4 0.0630 0.0312 1268.09 0.0619 0.0460 2098.65 0.0049 1102.26 0.0623 0.0081 1136.45 0.0048 0.0157
0.3 0.0641 0.0330 1290.36 0.0630 0.0511 2076.67 0.0048 1098.68 0.0633 0.0077 1159.12 0.0045 0.0167
0.2 0.0614 0.0377 1287.61 0.0605 0.0854 2237.54 0.0056 1224.73 0.0607 0.0074 1216.08 0.0043 0.0179
0.1 0.0629 0.0392 1075.17 0.0619 0.1150 2206.02 0.0078 965.10 0.0621 0.0094 954.07 0.0039 0.0170

Table 8. Model parameters obtained from HPPC data fitting in MATLAB for the LMO cell.

1RC 2RC 1RCwH

SOC R0 R1 C1 R0 R1 C1 R2 C2 R0 R1 C1 k h

(Ω) (Ω) (F) (Ω) (Ω) (F) (Ω) (F) (Ω) (Ω) (F) / (V)

0.9 0.0428 0.0323 1041.59 0.0417 0.1061 1251.12 0.0078 846.01 0.0419 0.0101 851.06 0.0077 0.0136
0.8 0.0425 0.0404 888.84 0.0410 0.0919 1384.18 0.0062 776.83 0.0417 0.0124 816.91 0.0070 0.0139
0.7 0.0428 0.0515 862.27 0.0417 0.0912 1488.50 0.0079 911.13 0.0420 0.0123 867.86 0.0098 0.0138
0.6 0.0431 0.0661 838.53 0.0411 0.0808 1017.97 0.0044 668.99 0.0423 0.0114 975.99 0.0104 0.0178
0.5 0.0415 0.0307 1318.82 0.0402 0.0362 1744.50 0.0033 981.40 0.0409 0.0077 1301.65 0.0105 0.0177
0.4 0.0417 0.0287 1369.56 0.0405 0.0332 1805.97 0.0031 1074.47 0.0411 0.0076 1370.47 0.0108 0.0164
0.3 0.0424 0.0353 1329.23 0.0413 0.0472 1848.58 0.0036 1258.78 0.0418 0.0076 1366.15 0.0086 0.0173
0.2 0.0439 0.0375 1212.60 0.0426 0.0494 1690.60 0.0040 1036.82 0.0432 0.0082 1195.19 0.0057 0.0190
0.1 0.0553 0.0574 743.89 0.0510 0.0884 1144.14 0.0136 315.48 0.0510 0.0136 615.53 0.0039 0.0218

Table 9. Model parameters obtained from HPPC data fitting in MATLAB for the NCA cell.

1RC 2RC 1RCwH

SOC R0 R1 C1 R0 R1 C1 R2 C2 R0 R1 C1 k h

(Ω) (Ω) (F) (Ω) (Ω) (F) (Ω) (F) (Ω) (Ω) (F) / (V)

0.9 0.1086 0.0372 994.96 0.1063 0.0303 726.32 0.0099 636.78 0.1024 0.0338 905.42 0.0019 0.0266
0.8 0.1030 0.0492 928.76 0.1016 0.0302 734.10 0.0102 594.41 0.1016 0.0448 845.17 0.0017 0.0273
0.7 0.1033 0.0534 899.13 0.1020 0.0315 766.53 0.0105 575.44 0.1020 0.0486 818.20 0.0016 0.0272
0.6 0.1034 0.0527 958.57 0.1023 0.0390 929.76 0.0078 613.48 0.1025 0.0480 872.30 0.0027 0.0345
0.5 0.1032 0.0388 1233.95 0.1024 0.0271 1131.40 0.0078 789.73 0.1024 0.0353 1122.90 0.0012 0.0330
0.4 0.1048 0.0403 1237.15 0.1040 0.0275 1161.67 0.0077 791.77 0.1040 0.0367 1125.80 0.0011 0.0306
0.3 0.1050 0.0406 1231.86 0.1042 0.0272 1128.74 0.0077 788.39 0.1042 0.0369 1120.99 0.0011 0.0316
0.2 0.1081 0.0476 1166.00 0.1070 0.0272 982.50 0.0076 746.24 0.1070 0.0433 1061.06 0.0014 0.0373
0.1 0.1344 0.0619 999.38 0.1325 0.0498 747.54 0.0096 639.61 0.1241 0.0588 909.44 0.0016 0.0389

4.2. Model Validation Results

Using the parameters from Tables 6–9, the battery voltage of each cell can be predicted
using the three ECMs, with the measured battery current data being the input of the models.
Two types of cycles were used in the validation experiments, a dynamic UDDS and a non-
dynamic discharge/rest/charge cycle, representing two different battery application types.
In total, there were 132 validation runs, including one for each of the 4 cells, 3 models,
and 11 SOC levels. Since there are a large number of runs, only one validation run result
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is presented as a representative. Figure 7 shows the model validation results for the LFP
cell using the first-order ECM at 0.6 SOC. As can be seen, the model, for the most part,
agrees well with the experimental data. This observation was also seen with the rest of
the validation runs. It can be stated that all three models performed relatively well for
predicting the battery voltage, indicated by the low errors between the predicted voltage
and the experimentally measured voltage. For each run, the root mean square error (RMSE)
of the voltage was calculated as a metric for model performance. The performance of each
model in different cell chemistries can be evaluated and compared, and further comparative
results and analysis are discussed in the next sub-section.
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4.3. Comparative Discussion of Models and Battery Chemistries

Figures 8 and 9 show the comparison between the three models for the four chemistries
in terms of RMSE. The ’Average RMSE’, ‘Max RMSE’, and ‘Min RMSE’ noted in the figures
are the average, maximum, and minimum values of the RMSE for each of the 11 SOC levels
that were tested for each model and cell chemistry.
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As can be seen from the figures, the trends are relatively similar for the two cycles,
UDDS and ND. However, the errors from the UDDS cycles are lower than those from the
ND cycles, indicating that the ECM might perform better in more dynamic applications.
In terms of cell chemistry, using an ECM without hysteresis, LFP, LMO, and NMC give
better model prediction performance than NCA. Using an ECM with hysteresis, LFP gives
significantly better results than the rest. Additionally, NCA improves its results from the
worst (using an ECM without hysteresis) to the second best (using an ECM with hysteresis).
In terms of model accuracy, the 1RCwH model performed the best in LFP and NCA, which
was expected from the SOC–OCV curve observations. For LMO and NMC, all three models
have very similar performance; therefore, the simplest model should be sufficient in these
cells. In general, the 2RC ECM performs better than the 1RC ECM, but not by a significant
amount. It should be noted that, in terms of computational complexity, 1RCwH and 2RC
have the same number of parameters, therefore, it is assumed that they have a similar
complexity, while 1RC is the least complex since it has the fewest number of parameters.
Therefore, it can be concluded that the 1RCwH model is most suited for LFP and NCA cells
due to the high hysteresis effect in those chemistries, and the 1RC model is most suited for
LMO and NMC cells because of its lower complexity and comparable performance overall.

5. Conclusions

This study investigated and compared the performance of three different equivalent
circuit models (1RC, 2RC, and 1RC with hysteresis) using four Li-ion battery chemistries
(LFP, NMC, LMO, and NCA) under dynamic and non-dynamic current profiles. The
batteries underwent characterization experiments to obtain the model parameters to be
used in voltage prediction. The three models were then validated experimentally and
compared using RMSE to determine the best model for each type of Li-ion battery. The
main conclusions from this work are as follows:

1. All three ECMs were able to predict battery voltage with low errors.
2. The hysteresis effect is stronger in LFP and NCA compared to NMC and LMO, based

on the SOC–OCV curves of the batteries.
3. The ECMs perform better under dynamic current profiles such as a UDDS cycle

compared to non-dynamic profiles such as a constant discharge/rest/charge cycle.



Batteries 2021, 7, 51 14 of 15

4. The ECMs perform the best for the LFP cell, and the worst for the NCA cell, while for
NMC and LMO, the results are similar and in between the other two.

5. Overall, the best model for LFP and NCA is 1RC with hysteresis, as the improvement
in accuracy is worth the increase in computational complexity. On the other hand, the
best model for NMC and LMO is 1RC, since it has decent accuracy compared to the
other models while having the lowest complexity.

These findings above show that different ECMs are suited for different Li-ion battery
chemistries, which should be an important factor to be considered in battery and BMS
applications. The results from this study contribute towards a better understanding of
battery modeling as well as the future developments of more advanced and accurate
battery models to be used in real-world applications.
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