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Abstract: This paper shows the potential of artificial intelligence (AI) in Li-ion battery charging
methods by introducing a new charging algorithm based on artificial neural networks (ANNs).
The proposed charging algorithm is able to find an optimized charging current profile, through
ANNs, considering the real-time conditions of the Li-ion batteries. To test and validate the proposed
approach, a low-cost battery management system (BMS) was developed, supporting up to 168 cells in
series and n cells in parallel. When compared with the multistage charging algorithm, the proposed
charging algorithm revealed a shorter charging time (7.85%) and a smaller temperature increase
(32.95%). Thus, the results show that the proposed algorithm based on AI is able to effectively charge
and balance batteries and can be regarded as a subject of interest for future research.

Keywords: lithium-ion batteries; artificial neural networks; particle swarm optimization; charging
algorithm; battery management system

1. Introduction

Lithium-ion (Li-ion) batteries have emerged as an enabling technology, and several
studies have included them in energy storage systems (ESSs) due to their characteristics,
as follows: high specific energy, high energy density, high energy efficiency, high working
cell voltage, long cycle life, no memory effects, relative low cost and low self-discharge
rate [1,2].

Despite all the improvements and technological advances, Li-ion batteries still face
some concerns and technical challenges. To address these challenges, some studies have
been undertaken to develop new and more environmentally friendly Li-ion batteries with
high performance/energy density as well as cost-efficiency and safety. Innovative materials
and chemistries have been used to accelerate the design and optimization of the next
generation of Li-ion batteries [3]. One of the most promising solutions is lithium–sulfur
batteries (Li–S), which replace the cobalt cathodes of conventional Li-ion batteries with
sulfur cathodes, producing thinner, lighter and lower-cost lithium batteries [4,5].

However, new lithium battery technologies raise several concerns. A key concern is
the charging approach, essential to improve efficiency, charging time, battery aging and
lifespan, and to avoid battery overcharging, one of the most severe safety problems for
the large-scale application of Li-ion batteries [6]. To reduce charging time, higher charger
rates are required to replenish the charge in the battery in the minimum possible time.
However, this results in an accelerated battery capacity fade, leading to a lower lifespan
and decreased charging efficiency due to the Joule heating effect [7,8].

Another concern is related to the inevitable need to interconnect multiple Li-ion
batteries cells in series to obtain the required voltage levels. The intrinsic and extrinsic
differences between cells result in a lack of uniformity that reduces usable capacity and,
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consequently, the performance of the pack. To address the above-mentioned concerns,
some attempts have been made to improve Li-ion battery charging performance. However,
designing proper charging approaches entails some technical challenges. For example,
lowering battery charging time while increasing charging efficiency and extending lifespan
are interrelated and antagonistic goals. Furthermore, constraints must be imposed (e.g., on
current, voltage, and temperature) to protect the battery from overcharging and overheating,
which can lead to premature degradation and safety issues [9].

To overcome these technical challenges, many charging approaches have been pro-
posed. These can be roughly classified into the following four main groups: simple
charging methods, optimized charging methods, model-based charging methods, and AC
charging methods [10]. In simple charging methods, such as the constant-current (CC) or
constant-voltage (CV) methods, one parameter (either current or voltage) remains constant
throughout the entire charging process. However, these methods present several disad-
vantages and are rarely used in modern commercial applications [11]. To overcome these
disadvantages, several optimized charging methods—such as CC/CV, multistage or pulse
charging—were developed based on simple charging methods. To optimize these methods,
some authors use AI based approaches to find the charging current profile, such as particle
swarm optimization (PSO) [12,13], gray prediction [14,15], fuzzy control [16–18], ant colony
algorithm [19], genetic algorithm (GA) [20] and Taguchi method [21,22].

Other authors use model-based charging methods to find the charging current pro-
file [23–25]. These methods take advantage of battery models, such as equivalent circuit
models (ECM) and electrochemical models (EM).

The AC charging methods, specifically the sinusoidal-ripple-current (SRC) method,
has recently attracted much attention regarding Li-ion battery charging. In this type of
methods, the AC impedance analysis is used to explore the optimal charging frequency.

In contrast to the aforementioned methods, the proposed approach uses artificial
neural networks (ANNs) to determine the charging current profile and the balancing orders,
based on the current state of the battery pack, i.e., the real time conditions of the pack. ANNs
are a machine learning approach, inspired by the information processing of biologic neurons
and their interconnections, to learn or discover underlying patterns embedded in the
training dataset, without requiring any physical knowledge of the modeled system. There
are many machines learning approaches that differ in terms of architecture, complexity,
popularity, training methods and working principles, including the convolutional neural
network (CNN), recurrent neural networks (RNNs), long short-term memory networks
(LSTMs) and gated recurrent unit (GRU) [26]. However, when compared to other state-
of-the-art machine learning approaches, ANNs are less complex (have fewer parameters
to learn), easier to design, and have a lower computational cost, especially in the training
process, i.e., they require a smaller training dataset to achieve similar results. For these
reasons, ANNs are widely applied in the estimation and monitoring of several battery
parameters, such as state-of-charge (SOC), state-of-health (SOH), state-of-function (SOF),
and others (SOX) [27–29].

In this context, the proposed algorithm uses two multi-layer feed-forward neural
networks (FFNN), one to estimate the cell balancing orders, and a second to estimate the
battery pack charging current. One of the most important features of an ANN is how
the learning/training process occurs, i.e., how internal states (weights and biases) are
updated by extrapolating the input patterns for the desired output. Conventionally, this
learning/training process uses gradient-based algorithms. Although these algorithms are
very efficient in local exploration, they can converge prematurely into local minimums; they
require continuity, convexity, and differentiability conditions; their efficiency is dependent
upon initial positioning. To mitigate these limitations, both FFNNs were trained with the
PSO algorithm.

The PSO is a metaheuristic population algorithm, well known for its simplicity of
implementation and good performance, which has already shown excellent performance
in the FFNN training process [30]. The use of ANNs applied to battery charging is novel
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and presents several advantages over the existing methods. For example, unlike simple
charging methods that operate based on static battery parameters, the proposed approach
can find the charging current profile considering the real-time conditions of the battery
pack. When compared with optimized charging methods and model-based methods, the
proposed approach has some key advantages. For instance, it does not require any physical
knowledge of the modelled system, is able to generalize, and can detect complex nonlinear
relationships between different battery pack parameters. Regarding the AC charging
approach, the proposed method leads to a simpler control and easier implementation.

The use of ANNs applied to battery charging is a promising and innovative approach
that allows shorter charging time and smaller temperature increase. Therefore, this ap-
proach is an interesting line for future research. Moreover, the proposed approach includes
a cell balancing strategy based on ANNs, which is especially important to ensure the safety
and efficiency of the system. To demonstrate the effectiveness of the proposed approach,
a battery management system (BMS) platform with a passive balancing method was in-
troduced. The implemented BMS is based on the Intersil ISL 94212 device, which enables
a chain connection of up to a maximum of 14 devices, supporting systems up to 168SnP
(168 cells in series and n cells in parallel). The Coulomb counting method was implemented
to estimate state of charge (SOC). This method measures the charging/discharging current
of a battery and integrates the current over time to estimate the SOC.

This paper is organized as follows: Section 2 presents a background on charging meth-
ods, balancing methods and artificial neural networks; Section 3 describes the proposed
charging algorithm with cell balancing strategy based on two FFNNs and their training
process with the PSO algorithm; Section 4 presents the implemented hardware, as well as
the experimental results and compares the proposed approach with a multistage method,
in terms of their charging time, cell temperature and cell voltage deviation; lastly, Section 5
concludes the paper and discusses the system implementation and algorithm.

2. Background
2.1. Charging Methods

Many charging methods have been reported in the literature, with various objectives,
e.g., improving charging performance, charging time, energy loss, temperature rise, aging
and lifespan. As seen in Figure 1, these methods can be roughly classified into the following
four main groups with different levels of complexity: simple charging methods, optimized
charging methods, model-based charging methods, and AC charging methods.

Simple charging methods are the most primitive charging approaches and can be
divided into the CC and CV methods. In these charging approaches, one of the charging
parameters, either current or voltage, remains constant throughout the charging process.
However, due to the high currents used, battery lifespan may decrease [10].

Optimized charging methods were created to overcome the limitations of simple
charging methods and can be divided into the following groups: multi-stage constant-
current charging, constant-current/constant-voltage (CC/CV), boost charging, and pulse
charging. The CC/CV method is the most popular strategy for Li-ion battery charging.
It is divided into three distinct charging phases. In the first phase, named trickle charge
(TC), the Li-ion battery is charged with a low charging current when cell voltage is below
a critical value. When the Li-ion battery voltage is equal or higher than the critical value,
the algorithm starts the second phase, named constant current (CC), wherein the Li-ion
battery is subjected to a constant current until it reaches the full charge voltage. Then, the
algorithm starts the third phase, named constant voltage (CV), when the Li-ion battery is
subjected to a constant voltage until the minimum charging current or the charging time
limit is reached [31,32].
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The multistage method divides the charging time into different charging current
stages [33]. In each current stage, the cell is charged with a lower current value than
the previous stage. The criterion most often used to switch between stages (threshold
crossing criterion) is when cells reach full charge voltage (typically 4.2 V). The authors
in [34] proposed a new transition criterion based on the difference between the full charge
voltage and the actual cell voltage, thereby reducing charging time and resulting in a small
temperature increase. In [21], the authors proposed a new charging strategy whereby a
Taguchi based PSO is used to search an optimal four-stage constant current pattern. Some
authors use other optimization algorithms to find the best values of current for each stage,
e.g., GA, Fuzzy, PSO and numerical optimization [11,20,35,36].

The pulse charge method can be divided into the following two different approaches:
variable frequency pulse charge (VFPC) and variable duty pulse charge (VDPC). The basic
idea of the VFPC is to optimize the frequency of the current pulse in order to minimize
cell impedance (best electrochemical reaction of the battery) and, consequently, maxi-
mize energy transfer by varying the pulse amplitude while fixing pulse width, or vice
versa [10,32,37]. There are many variants of this method. For example, in [38], the authors
proposed a VFPC variant with the objective of determining the optimal charging frequency,
i.e., the frequency for which the internal battery impedance is minimal and consequently
energy transfer is maximum. Another variant was proposed in [39] with the same concept
but using the VDPC. Boost charging consists of applying a very high current, during a short
period, to charge a depleted battery and then switching to the standard CC–CV charging
method. This method was first proposed in [40], and showed that it can charge a depleted
battery to one-third of its rated capacity within 5 min. Another study [41] showed that the
maximum boost charging current that could be safely applied to the tested high-energy
cells was 6.7 times higher than the manufacturer-stated maximum.

The model-based charging methods calculate the charging current of a battery using
the electrochemical model or the equivalent circuit model. The optimized charging process
is achieved by controlling the polarization voltage. In addition, the equivalent circuit
model can be combined with the temperature model, power loss model or the aging model
to obtain a better charging performance [42]. In [43], a new model-based approach was
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proposed that resulted in significant improvement in terms of battery charging time and
lifespan. In [1], the equivalent circuit model of Li-ion batteries was used to optimize the
stages of the multistage method. The study shows that an optimal value for the multistage
method can obtain faster charging, reduced capacity loss and longer cycle life.

Finally, the AC charging method seeks to charge Li-ion batteries at an optimal fre-
quency (obtained from electrochemical impedance spectroscopy (EIS) analysis), thereby
minimizing frequency-dependent impedance [44]. In [45], the authors proposed the
sinusoidal-ripple-current, again based on the minimization of the internal impedance
of the cell, allowing for maximum energy transfer.

2.2. Balancing Methodologies

There are two distinct methodologies for balancing Li-ion battery cells, as follows:
active and passive methodologies. In passive methodologies, cells are balanced by discharg-
ing when the cell or pack is not being used, or by providing an alternative path for current
flow during the charge operation. There are several distinct passive methodologies for
Li-ion battery cells, such as the fixed shunt resistor, the shunt resistor, complete shunting,
and the switched shunt resistor [46–49]. Passive methodologies are widely used due to
their simplicity, cost, efficiency, volume, weight and robustness [46].

Active methodologies ideally use a non-dissipative process with external circuits,
based on capacitors or inductors (DC–DC converters), to transfer energy among cells and
balance the cell energy levels during the charge and discharge operation. Active balancing
methodologies based on capacitors use a capacitor in parallel to transfer energy from a
cell or pack with higher energy to a cell or pack with lower energy. Several balancing
methodologies based on capacitors have been proposed, such as the modularized switched
capacitor [46,47,49–51], double-tiered switched capacitor [46], automatic switched capac-
itor [52,53], single switched capacitor [49,50], chain structure of switched capacitor [51],
and series-parallel switched capacitor [54,55]. Active balancing methodologies based on
inductors use DC–DC converters (isolated or non-isolated) to transfer energy among cells.
There are several active methodologies using isolated DC–DC converters, for example, the
multi-winding transformer [46–49] and the multiple transformers [46,48]. An alternative is
the use of non-isolated DC-DC converters, such as the buck, boost or buck-boost [48,56],
the Cuk [48,49], full-bridge DC–DC [46,48] and the quasi-resonant converters [48,57].

3. Proposed Approach
3.1. Artificial Neural Networks

Although criticized as “black boxes” (making it harder to understand the possible cor-
relations), FFNNs have proven to be a powerful tool and can approximate any continuous
function, as established by the Universal Approximation Theorem [58]. Therefore, FFNNs
can determine the charging current (ik) and the cell balancing orders (θk) in real-time. To
perform an efficient and optimized control of the battery charging process, the proposed
algorithm combines two FFNNs. The first FFNN (Figure 2a) is responsible for the determi-
nation of the charging current (ik). This FFNN uses the following three inputs to accurately
determine the charging current: the difference between the full charge voltage ( f cV) and
the average cell voltage of the pack (Ψk), which is represented by γk; the maximum differ-
ence between cell voltages (φk); the pack temperature (Tk), where k is the instant of time.
The second FFNN (Figure 2b) estimates the balancing orders (θk) using the following three
inputs: the average cell voltage of the pack (Ψk), the voltage of each individual cell (Vi,k),
and the standard deviation of the pack voltage (δk).

To ensure a reliable real-time charging current (ik), the FFNN1 training dataset was
created with real data obtained through CC charging method wherein the Li-ion battery was
subjected to different current values (from 0.25 A to 2 A with a 0.25 A step). Additionally,
to improve the FFNN1 generalization capability, the training dataset was enriched with
artificial data created according to security and operational guidelines. The obtained
training dataset is represented in Figure 3, by a three-dimensional map that correlates:
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the maximum difference between cells voltages (φk), the pack temperature (Tk and the
difference between the full charge voltage and the average cell voltage of the pack (γk).
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Figure 2. Representation of the proposed architectures: (a) implemented FFNN to estimate the
charging current; (b) implemented FFNN to estimate the balancing orders.

As seen in Figure 3, the parameter γk has a preponderant influence on the determi-
nation of the charging current, i.e., as the average cell voltage of the pack reaches the full
charge voltage, the charging current must be reduced to protect the battery pack from
overcharging and overheating. However, one must also consider the maximum difference
between cells voltages. When the average cell voltage of the pack is far from the full charge
voltage (4.2 V), the charging current only suffers a small decrease. As the average cell
voltage of the pack gradually approaches the full charge voltage, the current is reduced to
eliminate the imbalance between cells. Furthermore, the established guidelines prioritize
the more effective top balancing. Another important aspect that can greatly affect battery
pack lifespan is the operating temperature. Thus, to ensure a safe operation, the influence
of temperature on the charging current is gradually increased, i.e., as the temperature rises
the charging current is gradually reduced. However, if the pack operating temperature
reaches 45 ◦C, the charging process is interrupted [59].
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For the FFNN2 training process, the dataset was created according to Equations (1) and (2),
such that when the voltage of each individual cell (Vi,k) exceeds the average cell voltage of
the pack (γk) plus the standard deviation of the pack voltage (δk) multiplied by coefficient
α, the cell is considered balanced.

Vi,k > γk + δk × α (1)

α = 1−
(

γk
f cV

)
(2)

As can be seen in Figure 4, as the average cell voltage of the pack approaches the full
charge voltage ( f cV), the voltage balancing threshold gradually becomes more stringent
(by reducing coefficient α), making the balancing process more demanding at the end
of charging. This procedure allows a more effective balancing process at the end of the
charging process (top balancing), when the charging current is lower and the balancing
current is higher. Additionally, a safety rule was implemented, i.e., if any cell reaches the full
charge voltage and the stopping criteria was not fulfilled, the cell is considered balanced.
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3.2. Training Approach

The implemented training approach was an offline supervised method, using the par-
ticle swarm optimization (PSO) algorithm to optimize the FFNN’s internal states (weights
and bias). The PSO algorithm is inspired by the working principles of cooperation and
social behavior. This algorithm has a population of agents (particles), each one representing
possible solutions and capable of communicating and cooperating with each other, creat-
ing solutions that “navigate” the multidimensional search space in search of an optimal
solution. Each agent’s position is associated with a velocity, adjusted with an update
equation that considers the individual and collective experiences, i.e., the agent’s own
experience and the collective experience of the rest of the population. The basic idea is
that agents move through space in search of an optimal solution. At each iteration, the
algorithm evaluates every agent’s performance using a pre-defined objective function and
then changes velocity towards the personal best performance until then (xgbest ), as well as
towards the best performance found among all particles (xgbest ) [60].

Each agent’s velocity and position are determined using the following equations,
respectively:

vi,d(t + 1) = φvi,d(t) + c1γ1

(
xpbest,d(t)− xi,d(t)

)
+ c2γ2

(
xgbest,d(t)− xi,d(t)

)
(3)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1) (4)

where, vi,d represents the velocity of the agent (i); xi,d is the position of the agent (i); φ is
the inertia factor; c1 and c2 are the acceleration parameters; γ1 and γ2 are random numbers
uniformly distributed between 0 and 1; xgbest is the agent’s personal best position; xgbest is
the global best position; t represents the iteration; and d the problem dimension.
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The flowchart of the implemented training approach is presented in Figure 5. This
scheme generally illustrates the various steps, starting with dataset processing where
the input dataset was normalized between −1 and 1, using the min–max normalizations
method, thus ensuring a mean of 0 and a standard deviation of 1. Additionally, the
input dataset was divided into two sets: the training set (Nt) and the validation set (Nv),
corresponding to 75% and 25% of the data, respectively. Subsequently, all the variables and
parameters were initiated, namely, the lower and upper bound (xlb and xub), the number of
agents in the population, maximum number of iterations, and PSO control parameters.
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Figure 5. Flowchart of training algorithm.

Once the input dataset was created and all the variables and parameters were initiated,
the problem dimension (dann) was calculated through Equation (5), which depends on the
number of inputs (m), the number of neurons in the hidden layer (n), and the number of
outputs (o).

dann = m× n + n× o + n + o (5)

The agent initialization was carried out with the Nguyen–Widrow method [61]. Each
agent i in the population is represented by Equation (6). The representation format includes
the weights between neurons, and the bias of the hidden and output layer of each FFNN.
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xi =


w1,1, . . . , wm,n︸ ︷︷ ︸

Weightsbetweentheinput
thehiddenlayer

, w′1,1, . . . , w′n,o︸ ︷︷ ︸
Weightsbetweenthehidden

the
outputlayer

, b1, . . . , bn, b′1, . . . , bo︸ ︷︷ ︸
Biaso f theneurons

thehidden
outputlayers


(6)

In each iteration, agents move through the multidimensional search space trying to
minimize the learning error. Then, the performance of each agent is evaluated with the
mean squared error (MSE) of the training dataset, expressed by Equation (7).

MSE =
1

Nt

Nt

∑
i=1

(ŷi − yi)
2 (7)

where ŷi is the output response of the FFNN, yi is the target output and Nt is the number of
samples of the training dataset.

Each particle’s velocity and position were updated with Equations (3) and (4), respec-
tively. The hyperbolic strategy proposed in [62] was implemented, through successive
iterations. In this strategy, if the lower or upper bound is exceeded, the movement of the
particle is modified such that the new position is within the multidimensional search space.
These procedures are represented by Equations (8) and (9).

vi,d(t + 1) =
vi,d(t)

1 +
∣∣∣ vi,d(t)

xub,d−xi,d(t)

∣∣∣ i f vi,d(t + 1) > 0 (8)

vi,d(t + 1) =
vi,d(t)

1 +
∣∣∣ vi,d(t)

xi,d(t)−xlb,d

∣∣∣ i f vi,d(t + 1) < 0 (9)

There were two kinds of stopping criteria: the maximum number of iterations and a
threshold based on the performance of the training and validation dataset. The latter is
based on the MSE of the validation and training dataset given by xgbest in each iteration.
This technique aims to find the exact moment when the FFNN starts to lose the ability to
generalize (overfitting).

4. System Description and Experimental Results
4.1. System Description

The implemented system can be divided into the following three fundamental blocks:
processing and control unit; acquisition and balancing unit; power unit. The implemented
hardware blocks are shown in Figure 6. The processing and control unit can be subdivided
into the following two distinct units: the main control unit and the auxiliary control unit.
The main control unit algorithms were implemented in Mathworks Matlab® software
running on a desktop workstation. This type of centralized control architecture allows great
flexibility in the development of new charging algorithms with cell balancing strategies.

However, despite the flexibility, the workstation desktop that runs the main control
unit algorithms does not natively support serial peripheral interface (SPI) communication
(required by the acquisition and balancing unit). To solve this constraint, an auxiliary
control unit was implemented to act as intermediary in the communication between the
main control unit and the acquisition and balancing unit. This unit was based on a Texas
Instruments® TMS320F28069 microcontroller.
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Figure 6. Implemented system diagram.

The acquisition and balancing unit were based on an Intersil® ISL94212 device that
allows a chain connection of up to 14 devices. Each device allows the simultaneous
monitoring of 12 battery cells. In this study, the implemented system had 24 cells in series,
resulting in a nominal power of 230 W/h.

Another important capability of this device is the possibility to easily implement low-
cost balancing methods with few external components. Using this capability, the passive
switched shunt resistor method, described in Figure 7, was implemented in this study.
In this method, each cell in the pack is associated with a balancing resistor and a switch
controlled by the ISL94212 device. The cells are balanced by discharging through a Rbal
resistor (33Ohm) until all cells in the pack have reached the same voltage. However, the
ISL94212 device only allows four temperature sensors. Therefore, using the capabilities
of the TMS320F28069 microcontroller, a temperature acquisition system was developed to
enable the use of a larger number of temperature sensors (in this case 12 sensors, 1 sensor
for each 2 cells). Lastly, the power unit was the Magna-Power Electronics® DC SL 500-5.2
programmable power supply, which communicated through Standard Commands for
Programmable Instruments (SCPI) with the main control unit.
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As shown in Figure 8, the proposed charging process is categorized into four stages,
as follows:

• Stage 1. In this stage, all the system variables are initialized, and all the communication
ports are configured. Additionally, the number of ISL94212 devices connected in
the chain is checked and the initial voltages and temperatures of each battery pack
is acquired.

• Stage 2. The stop criteria, represented by Equations (10) and (11), is checked to verify
if the battery packs are in charging condition or already fully charged.

Vi,k ≤ 4.25 (10)

1
n

n

∑
i=1

Vi,k ≥
f cV ∧ 1

n

n

∑
i=1

Vi,k − 0.01 ≤ Vi,k ≤
1
n

n

∑
i=1

Vi,k + 0.01 (11)

where:
Vi,k: Voltage of the i cell at time k;
f cV: Full charge voltage (4.2 V);
n: Number of cells in the battery pack.
Equation (10) represents a safety criterion that prevents cell voltage from exceeding the

threshold (4.25 V). The second equation establishes when charging results are considered
acceptable, i.e., when the average cell voltage is greater than or equal to 4.2 V and all cells
are within acceptable voltage limits (±0.01 V), at which point charging is interrupted and
considered to have been successfully completed.

• Stage 3. In this stage, the input data of the FFNNs is obtained. To accomplish this, the
voltages and temperatures of each battery pack connected in the chain are acquired.
When the acquisition process is complete, the data is passed through a moving average
filter with the last six measured data points to reduce noise.

• Stage 4. In this stage, the FFNN1 is executed, and the calculated charging current is
communicated to the power unit through the SCPI.

• Stage 5. Finally, FFNN2 is executed and then the output response value is evaluated in
a comparison stage that normalizes the orders to binary values (0 or 1). Afterwards,
the balancing orders are performed using the acquisition and balancing unit. The
system then waits 60 s for the balancing process to finish in order to not compromise
the accuracy of the next measurement process.
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4.2. Experimental Results

The proposed algorithm was tested using 24 SAMSUNG ICR18650-26H 2600 mAh
Li-ion battery cells [56], with reduced charge/discharge cycles. The results during the
charging process with the proposed algorithm were also compared with the multistage
method. Both charging algorithms were performed under the same conditions, i.e., the
same stopping criteria and balancing algorithm, as previously explained. The multistage
method was implemented with five current levels, using the conventional criterion of
transition between current levels, i.e., transition occurs when a cell reaches the full charge
voltage (4.2 V). The number of current levels was chosen based on the study carried
out by [60], which concluded that the difference between applying different numbers of
charging current levels is almost negligible when the number of charging current levels is
greater than five.

Figure 9 presents the charging current profiles, the battery pack temperature, the
difference between the full charge voltage and the average cell voltage of the pack and,
finally, the maximum difference between cell voltages, for both experimental tests. For
the proposed algorithm, the current had an initial value of 1.64 A (Figure 9a), due to a
considerable difference between the cell voltages of 0.07 V (Figure 9b). After 4 min and
40 s, the current reached the maximum value of 2.18 A, due to a decrease in the difference
between cell voltages (0.03 V at that moment). During the remaining charge, there was an
oscillatory profile in the current. This is justified by the difference between cell voltages,
i.e., when there is an increase in the cell voltage difference, there is a decrease in the charge
current, and vice versa. Although there was a slight difference between cell voltages
during the entire charging process, this difference was gradually reduced as the charging
progressed, ending the charging process with a value of 0.01 V. As seen in Figure 9c,
the difference between the full charge voltage and the average cell voltage followed the
expected profile, i.e., a gradual decrease until the end of the charge, with steeper slopes
when the charging current was higher. Additionally, the temperature did not exceed the
predefined values for the cells, reaching a maximum value of only 33.59 ◦C, corresponding
to a 9.28 ◦C temperature variation.
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Figure 9. (a,b) current profiles for the proposed algorithm and the multistage method, respectively;
(c,d) charging parameters for the proposed algorithm and the multistage method, respectively.

Figure 9b shows the current profile for the multistage method. The first transition
between current levels occurred after 55 min and 40 s. However, the cell voltage exceeded
the full charge voltage (4.2 V) and remained above this value for 3 min and 30 s. Therefore,
and given the sampling time (60 s), the algorithm only performed one iteration at the
second and third current levels. After 3 min and 30 s, the cell voltage dropped below 4.2 V
and the charging current was fixed at the fourth level. This behavior occurred again in
the next transition, but due to the absence of more current levels, the current was fixed
at the fifth level. Figure 9d demonstrates that a much higher temperature value was
obtained when compared with the proposed algorithm, due to the high charging time
at high currents, reaching a maximum value of 38.68 ◦C, corresponding to a gradient of
13.84 ◦C.

Figure 10 shows the individual voltage of each cell in the pack for both experimental
tests. As aforementioned, in the tests performed with the proposed algorithm (Figure 10a),
the difference between cell voltages decreased towards the end of charging. The magni-
fication of this final stage (in Figure 10a) clearly reveals how the charging process was
completed successfully, fulfilling the stopping criteria with an average cell voltage of
4.203 V and a difference between cell voltages of 0.01 V. In contrast, in the experimental
test with the multistage method (Figure 10b), there was a reduced difference between cell
voltages throughout the charging process and there was a higher slope in voltage until
the first transition, which is justified by the high charging current of 2.5 A. The zoom in
Figure 10b shows the fulfillment of the stopping criteria (an average cell voltage of 4.202 V
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and a difference between cell voltages of 0.01 V), confirming once again the excellent results
obtained by the proposed balancing algorithm.
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Figure 10. Voltage of each cell for: (a) proposed algorithm; (b) multistage algorithm.

Figure 11 illustrates the number of cells that required balancing during the charging
process for both experimental tests, demonstrating the excellent performance of the pro-
posed balancing algorithm using the FFNNs. For the proposed algorithm, after 1 h and
30 min of charging there was an increase in the number of cells that required balancing
(Figure 11a), since the proposed algorithm privileges top balancing, making the balancing
process more stringent at the end of the charging process. Before 1 h and 30 min of charging,
few cells needed to be balanced, because balancing in this period is not very effective
(compared with balancing performed at end of charging) and is only carried out to mitigate
and prevent a higher difference between cell voltages. At the end of the charging process
and since the stopping criteria were not met, all cells exceeded 4.2 V and, consequently,
all cells were balanced. This procedure is essential to prevent cell voltage from further
exceeding the full charge voltage (4.2 V) and allowing the stopping criteria to be met
(Equations (10) and (11)).
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Figure 11. Number of cells balanced during charge for: (a) proposed algorithm; (b) multistage algorithm.

Figure 11b presents the results for the experimental test with the multistage method.
At the transition between current levels, all the cells required balancing, because all cells
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exceeded the full charge voltage. At the end of charging, as in the previous experimental
test, all cells required balancing. For both experimental tests, the proposed balancing
algorithm presented excellent results, managing to minimize the difference between cell
voltages and reaching the predetermined stopping criteria. Therefore, it is important to
note that regardless of the charging algorithm, the proposed balancing algorithm managed
to overcome the existent difference between cell voltages.

Table 1 summarizes the performance of both charging algorithms concerning the
charging time, difference between cell voltages at the end of the charging process, and
temperature increase.

Table 1. Comparison between the proposed charging algorithm and the multistage method.

Charging Time (h) Difference Between
Cell Voltages (V)

Temperature
Increase (◦C)

Multistage with five
current levels 2.42 0.01 13.84

Proposed charging
Algorithm 2.23 0.01 9.28

When compared to the multistage method, the proposed algorithm presented superior
results, achieving a 7.85% reduction in charging time and a 32.95% reduction in temper-
ature increase. Regarding the difference between cell voltages at the end of the charging
process, the proposed balancing algorithm was able to reduce this difference throughout
the charging process, in both cases ending with the same difference. Therefore, it should be
noted that the proposed charging algorithm achieved a major reduction in charging time
and in temperature increase.

5. Conclusions

This paper presents a new charging algorithm and a new battery-balancing strategy
for Li-ion batteries that reduces charging time and temperature increase. The proposed
charging algorithm determines, through an FFNN, the charging current profile, considering
the real-time conditions of the batteries, i.e., considering the difference between the full
charge voltage and the average pack voltage, the difference between cell voltages and the
battery temperature. When compared with the multistage algorithm, it showed better
results regarding charging time and temperature increase. Additionally, the proposed
charging method was able to adapt to different battery conditions, as it adapts to the actual
state of the battery pack. Another distinctive feature of the proposed charging method is
the cell balancing capability, which is especially important to maintain a safe and efficient
operation. The balancing orders were calculated considering the average pack voltage,
the voltage of each individual cell, and the standard deviation of the battery pack. The
proposed balancing strategy was able to eliminate the difference between the voltage of the
cells throughout the charging process, presenting an excellent performance. To compare
the robustness and versatility of the proposed balancing strategy, the multistage algorithm
was also implemented. Both cases resulted in the same difference between cell voltages.
However, when compared to the multistage method, the proposed algorithm presented
superior results, achieving a 7.85% reduction in charging time and a 32.95% reduction in
temperature increase.
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