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Abstract: The frequent safety accidents involving lithium-ion batteries (LIBs) have aroused widespread
concern around the world. The safety standards of LIBs are of great significance in promoting usage
safety, but they need to be constantly upgraded with the advancements in battery technology and
the extension of the application scenarios. This study comprehensively reviews the global safety
standards and regulations of LIBs, including the status, characteristics, and application scope of
each standard. A standardized test for thermal runaway triggering is also introduced. The recent
fire accidents in electric vehicles and energy storage power stations are discussed in relation to the
upgrading of the rational test standards. Finally, the following four suggestions for improving battery
safety are proposed to optimize the safety standards: (1) early warning and cloud alarms for the
battery’s thermal runaway; (2) an innovative structural design for a no-fire battery pack; (3) the
design of a fire water injection interface for the battery pack; (4) the design of an immersive energy
storage power station. This study provides insights for promoting the effectiveness of relevant safety
standards for LIBs, thereby reducing the failure hazards.

Keywords: lithium-ion batteries; thermal safety; standards and regulations; electric vehicles; energy
storage

1. Introduction

Under the dual pressure of environmental protection and the energy crisis, as well as
the promotion of the goal of carbon neutrality, energy conservation and emission reduction
have become urgent tasks involving all major global economies [1–3]. Electric vehicles
(EVs) use clean energy to escape from the dependence on petroleum, and effectively
reduce the emission of various greenhouse gases. This has become a hot academic and
industrial topic and has received extensive attention from governments worldwide [4–6].
In recent years, the EV industry has been expanding rapidly, and the sales volume is
ever-increasing. Lithium-ion batteries (LIBs) have become the absolute mainstream among
all EV power sources due to their advantages, such as their high energy density, excellent
life cycle performance, and high charge–discharge efficiency [7–9]. The global installed
capacity of LIBs in EVs is expected to reach 357.5 GWh in 2022 [10]. In addition, the
large-scale utilization of renewable energy is the overwhelming path to achieving deep
decarbonization of the electrical power system. In this process, the new energy storage
technology represented by electrochemical energy storage has become an important pivot
method of continuously increasing the installation proportion of renewable energy. With
the development of the electrochemical energy storage industry, the advantages of LIBs for
energy storage are now prominent, and they currently account for approximately 75% of
the chemical energy storage [11].

To pursue higher specific energy LIBs, cathode materials with high specific energy
have been developed, such as NCM111, NCM532, NCM622, and NCM811 [12–14]. In
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addition, manufacturers are using thicker battery cathodes, which can improve the lithium
content [15], or thinner separators and thinner current collectors to decrease the non-
energized parts of the single cells [16]. The size of each single cell has also become larger
and larger, and the ordinary volume of a prismatic battery has increased from 360 cm3 (five
years ago) to 1200–1500 cm3 (today), while the capacity of a single cell has increased from
10–20 Ah five years ago to 150–200 Ah. However, the energy density of LIBs is gradually
approaching the inherent safety limits of their electrochemical systems [17–19]. Once
certain abusive conditions break the stability boundaries of the electrochemical system,
an LIB is more susceptible to thermal runaway (TR), leading to fire accidents [20,21]. In
2021, China reported more than 3000 EV fire accidents [18]. In the past decade, more
than 60 fire accidents in electrochemical energy storage power stations have been reported
worldwide [22,23]. The investigation reports show that most of these accidents were caused
by TR of the LIBs. The safety of LIBs has become a key factor affecting their sustainable
development and has become a social and academic hotspot [24–28].

The state-of-the-art of the research on battery TR is focused on various technologies,
mainly divided into two major technical schemes, i.e., active and passive safety technolo-
gies [29–32]. However, few studies have focused on the important issue of battery safety
regulations and standards. In the research and development of new cell chemistries, strin-
gent safety test standards are required to evaluate and ensure the usage safety of batteries.
However, battery fire accidents still occur even after a battery has passed a series of abuse
test standards [33,34]. The reason for this phenomenon is that the abuse conditions of the
LIBs may be more serious and unpredictable in practical scenarios, while the relevant safety
test standards cannot cover all real situations. Therefore, developing reasonable battery
safety test regulations for battery safety evaluations is very important.

There are many safety test regulations and standards for LIBs that are constantly
developing and evolving [18,35–38]. Therefore, it is necessary to comprehensively review
and analyze the regulations and test standards related to battery safety. In this study,
the typical regulations and standards regarding battery safety tests are comprehensively
summarized, and the technical characteristics and application scope of each regulation and
standard are compared. Then, through the investigation of the fire accidents involving
EVs in 2021 and the fire accidents involving energy storage power stations in the past
decade, four valuable suggestions are put forward to improve the test standards regarding
battery safety.

The remainder of this paper is organized as follows. Section 2 summarizes the reg-
ulations and standards related to the safety of LIBs in detail. Section 3 compares and
summarizes the fire accidents involving energy storage power stations and EVs in re-
cent years. Section 4 puts forward four suggestions for standard updating based on the
characteristics of fire accidents. Finally, some conclusions are provided in Section 5.

2. Regulations and Standards for Battery Safety
2.1. Overview
2.1.1. Thermal Runaway Process and Fire Behavior

A lithium-ion battery comprises an anode, cathode, separator, electrolyte, collector,
and shell, and the lithium-ion is embedded and de-embedded between the anode and
cathode during normal operation [39]. The battery charging and discharging process is
essentially a chemical reaction inside the battery, which is reversible and stable. However,
due to mechanical abuse, thermal abuse, electrical abuse, and other incentives, side effects
may occur inside the battery, resulting in abnormal temperature increases and TR [40–44].
Battery TR has been widely reported, and many scholars are exploring the TR mechanism
and process [45–48]. The results show that when battery TR occurs, a series of side reactions
occur first on the anode, including the decomposition of SEI and the reaction between
the embedded lithium and electrolyte. Subsequently, the separator is closed, contracted,
and collapsed, and the anode and cathode are contacted to form a large-scale internal
short circuit. In this case, a lot of heat is released. Then, the cathode material is gradually
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decomposed and oxygen is released, which reacts violently with the cathode material and
electrolyte accompanied by a large amount of heat. Finally, the heat release causes the
battery to burn or even explode, causing serious safety accidents.

According to the battery TR mechanism, many TR suppression methods have been
proposed, which can be roughly divided into three technical paths: intrinsic safety, active
safety, and passive safety [49]. Intrinsic safety refers to improving the thermal stability
of batteries at the material level and ensuring the battery’s reliability from a design and
manufacturing perspective. For example, the fluorinated electrolyte can effectively in-
hibit the exothermic reaction between the anode and electrolyte [50]. Ceramic-coated,
high-temperature-resistant, aramid separators can prevent them from melting under high
temperatures, causing the internal short circuit of the battery [51]. In addition, the all-solid-
state batteries use stable solid electrolytes instead of flammable organic electrolytes, which
is expected to solve the battery safety problem and attract global attention [52]. Active
safety refers to the early warning of TR through intelligent control, big data, and other
advanced battery management technologies [53,54]. Passive safety means that thermal
management is used to restrain heat propagation after the TR of a single battery cell has
occurred [55–57]. In this process, it is critical to prevent TR from spreading in the battery
pack through heat insulation and dissipation.

2.1.2. Standards and Regulations

With the continuous development of LIBs, the corresponding LIB test standards are
constantly improved. The various organizations and institutions that make these standards
have actively participated in guaranteeing the safety of the battery industry [36,58,59],
including the International Organization for Standardization (ISO), the International Elec-
trotechnical Commission (IEC), the Society of Automotive Engineers (SAE), the UL certi-
fication body, the China Administration for Standardization (SAC), and the Ministry of
Industry and Information Technology of China (MIIT). A large number of standards have
been developed to regulate the safety testing of LIBs. Table 1 summarizes the applicable
scope and technical characteristics of the general standards for LIBs.

Table 1. Applicable scope and characteristics of the general standards for LIBs.

Standard System Standard Name Scope Technical Features

ISO

ISO 6469-1
(2019) [60]

System

Battery system safety specifications

ISO 6469-3
(2021) [61] Electrical Safety

ISO 6469-4
(2015) [62] Electrical safety after crash

ISO 12405-1
(2011) [63]

Pack and Module

Requirements for reliability and resistance to
abuse for power batteries

ISO 12405-2
(2012) [64]

Requirements for reliability and resistance to
abuse for energy batteries

ISO 12405-3 (2014) [65] Safety requirements oriented from accidents that
electric vehicles may encounter in use

ISO 12405-4
(2018) [66] Module and System Basic performance tests
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Table 1. Cont.

Standard System Standard Name Scope Technical Features

IEC

IEC 62660-1
(2018) [67]

Cell

Basic performance tests

IEC 62660-2
(2018) [68]

Reliability and abuse testing, electrical,
mechanical, environmental, and other abuse tests

IEC 62660-3
(2022) [69]

Safety requirements, including electrical,
mechanical, environmental, and other safety tests

IEC 62619
(2022) [70] Cell, Module,

and System

Safety requirements for energy storage systems

IEC 63056
(2020) [71] Safety requirements for energy storage systems

SAE

SAE J2464
(2021) [72]

Cell, Module,
and System Safety and abuse testing

SAE J2929
(2013) [73]

Cell, Module,
and System Safety requirements for single cells

SAE J2380
(2021) [74] Cell Vibration test

FreedomCAR SAND2005-3123
(2005) [75]

Cell, Module,
and Pack Safety requirements and test methods

UL

UL 1642
(2020) [76] Cell and Module Safety requirements

UL 2580
(2020) [77] Safety requirements for vehicle power batteries

UL 9540 A
(2019) [78]

Cell and System
Safety requirements for energy storage systems

UL 1973
(2022) [79] Safety requirements for energy storage systems

GB

QC/T 743
(2006) [80]

Cell

Safety requirements and test methods

GB/T 31485
(2015) [81] Safety and experimental methods

GB 31467.3
(2015) [82] Pack and System Safety requirements and test methods

GB/T 36276
(2018) [83] Cell, Module,

and System

Safety requirements for energy storage systems

GB 38031
(2020) [84] Security requirements

All LIBs must pass a series of safety test standards, and each nationality or region
should conduct safety tests according to their domestic standards. These safety tests
evaluate the LIBs by simulating extreme situations that may occur during usage. All of
the standards have a criterion or hazard rating for judging whether the test sample is
qualified or unqualified. Generally, all of the tests must meet the requirement of no fire
and no explosion occurring. However, the qualification requirements for specific safety
tests may differ, such as the external combustion test, which only requires no explosion to
occur. In addition, the requirement in GB 38031-2020 [84] for the TR propagation test upon
the battery pack is to provide an alarm signal (used for vehicle thermal alarms to remind
passengers of dispersion) 5 min before the TR propagation worsens into the combustion or
even explosion of the battery system.
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The major causes of the TR of LIBs can be divided Into three categories: mechanical
abuse, electrical abuse, and thermal abuse [44,85,86]. Therefore, the safety tests for the
relevant standards are mainly categorized into these three types. Accordingly, the safety
test terms can be roughly divided into three categories: mechanical tests (such as drop tests,
vibration tests, and mechanical shock tests), electrical tests (such as external short circuit
tests, overcharge tests, and overdischarge tests), and environmental tests (such as thermal
shock cycle tests, damp heat cycle tests, and external fire tests). These test methods are
described in detail below.

2.2. Mechanical Tests

The mechanical tests include drop, vibration, mechanical impact, and extrusion tests.
The relevant characteristic parameters in each test standard are listed in Table 2.

2.2.1. Drop Test

The drop test simulates a scenario where the battery accidentally falls from a high
place. The main method of this test is to let the tested battery fall freely onto the ground
from the specified height at a certain angle. The specific test methods in each standard
are slightly different, but the safety requirements are that the battery should not ignite or
explode. SAE J2464-2021 [72] only involves drop tests on battery packs. The test height
should be 1 m or the height specified in the actual field application procedure. The drop
test in SAND 2005-3123 [75] is quite special. It stipulates that the drop height shall not
exceed 10 m, and the sample must be dropped to a cylindrical steel object with a radius
of 150 mm. In UL 2580-2020 [77], the drop test requires the tested sample to drop from a
height of at least 1 m to the concrete plane, which is at least 76 mm thick. At least one drop
test is not a horizontal drop. In addition, there is a drop test in the test standards for energy
storage batteries, which aims to simulate an accidental drop that may occur during battery
installation and maintenance. In IEC 63056-2020 [71], drop tests are specified in detail for
different weight classes, as listed in Table 3. Battery samples weighing less than 7 kg need
to be dropped from a height of 100 cm, battery samples weighing from 7 kg to 20 kg need
to be dropped from a height of 100 cm, samples weighing from 20 kg to 50 kg need to be
dropped from a height of 50 cm, samples weighing above 50 kg need to be dropped in the
form of angular contact or edge contact, samples weighing from 50 kg to 100 kg have a test
height of only 5 cm, and the drop height of samples weighing above 100 kg is only 2.5 cm.
The test method in IEC 62619-2022 [70] is similar to that in IEC 63056-2020, and the samples
are also divided into 5 grades, as shown in Table 4. In UL 1973-2022 [79], the test samples
are only divided into three weight classes, which requires that samples weighing less than
7 kg are dropped from a height of 100 cm, samples weighing 7 kg to 100 kg are dropped
from a height of 10 cm, and samples weighing more than 100 kg are dropped from a height
of 2.5 cm. GB/T 36276-2018 from China divides the drop tests into the cell and module
tests [83]. In the cell drop test, the positive or negative terminal of the cell is facing down
and dropped onto a concrete floor from a height of 1.5 m, while the module is dropped
from a height of 1.2 m.
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Table 2. Mechanical test standards for LIBs.

Safety Test
(Parameters)

Standard for Vehicle Standard for Energy Storage

ISO 12405-1(2)
(2012) [64]

IEC 62660-3
(2022) [69]

SAE J2464
(2021) [72]

SAND2005-
3123

(2005) [75]

UL 2580
(2020) [77]

GB 38031
(2020) [84]

IEC 63056
(2020) [71]

IEC 62619
(2022) [70]

UL 1973
(2022) [79]

GB/T 36276
(2018) [83]

Drop
(High) ≥1 m ≤10 m ≥1 m

100 cm 12

50 cm 3

5 cm 4

2.5 cm 5

100 cm 1

10 cm 23

5 cm 4

2.5 cm 5

100 cm 1

10 cm 234

2.5 cm 5

1.5 m
(cell)
1.2 m

(module)

Vibration
(frequency) 5~200 Hz 1© fixed and

random

Mechanical
Shock

(pulse shape;
acceleration)

Half-sine;
500 m/s 2

Half-sine;
500 m/s 2

Half-sine;
25 g

Half-sine; 20 g
(low)

Half-sine; 30 g
(Mid-1)

Half-sine; 20 g
(Mid-2)

half-sine;
25 g

half-sine;
7 g

Crush
(force;

deformation
degree)

≤1000 × M;
15%

≤1000 × M;
15%;

(Phase one)
50%

(Phase two)

≤1000 × M;
15%;

(Phase one)
50%

(Phase two)

≤100 kN; 15%;
(Phase one)

50%
(Phase two)

≤1000 × M or
100 kN; 15%

(cell)
≤100 kN; 30%

(pack and
system)

≤13 kN;
30%

Penetration
(material;

speed)

Steel needle;
8 cm/s;

Steel needle;
8 cm/s;

Roll-over
(speed) 6◦/s 6◦/s 6◦/s

Impact
(weight; high) 9.1 kg; 610 mm 535 g; 1.29 m

Note: N represents not specified or no specific parameter indicators; 1 represents the level of “M < 7 kg”; 2 represents the level of “7 kg ≤ M < 20 kg”; 3 represents the level of
“20 kg ≤ M < 50 kg“; 4 represents the level of “50 kg ≤ M < 100 kg“; 5 represents the level of “M ≥ 100 kg“; M represents the weight of the sample; 1© according to SAE J2380-2021 [74].
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Table 3. Specifications of the drop test methods in IEC 63056-2020 (Adapted from [71]).

Mass of Sample Test Method Orientation Height of Drop

M < 7 kg Whole Random 100 cm
7 kg ≤ M < 20 kg Whole Bottom down direction 1 100 cm
20 kg ≤ M < 50 kg Whole Bottom down direction 1 50 cm

50 kg ≤ M < 100 kg Edge and corner - 5 cm
M ≥ 100 kg Edge and corner - 2.5 cm

1 The bottom surface of the sample is specified by the manufacturer.

Table 4. Specifications of the drop test methods in IEC 62619-2022 (Adapted from [70]).

Mass of Sample Test Method Height of Drop

M < 7 kg Whole 100 cm
7 kg ≤ M < 20 kg Whole 10 cm

20 kg ≤ M < 50 kg Edge and corner 10 cm
50 kg ≤ M < 100 kg Edge and corner 5 cm

M ≥ 100 kg Edge and corner 2.5 cm

2.2.2. Vibration Test

The vibration test simulates the vibration environment that the battery may experience
during use. Since EVs will inevitably experience vibration during driving, this test is bound
to be included in the safety standards of LIBs for EVs. However, it is not mentioned for the
LIBs used in energy storage scenarios. ISO 12405-1(2)-2012 [63,64] divides the vibration
tests into the following two parts: (1) part 1 of the test measures the behavior of the overall
battery pack or system; (2) part 2 of the test separately measures the behavior of the electric
and electronic devices with low masses. In UL 2580-2020 [77], the test sample is required to
be fully charged, and the test method is carried out following SAE J2380-2021. SAE J2380-
2021 is a standard for vibration testing that provides a test procedure for characterizing the
impacts of long-term road-induced vibrations and shocks on the performance and service
life of EV batteries [74,87]. In GB 38031-2020 [84], the sample used for the vibration test is a
battery pack or system, and the SOC of the test battery should be adjusted to no less than
50% of the normal SOC working range specified by the manufacturer. Random and constant
frequency vibration loads shall be applied in each direction. The loading sequence shall
be Z-axis random, Z-axis fixed frequency, Y-axis random, Y-axis fixed frequency, X-axis
random, and X-axis fixed frequency (the vehicle travel direction is the X-axis direction, and
the horizontal direction perpendicular to the travel direction is the Y-axis direction). The
random vibration shall be tested for 12 h in each direction, and the sinusoidal constant
frequency vibration shall be tested for 2 h in each direction.

2.2.3. Mechanical Shock Test

The mechanical shock test simulates the shock to the battery that may occur during a
vehicle crash [88]. The standards for LIBs in EVs specify this test item in detail, while the
standard for LIBs for energy storage remains blank. In ISO 12405-1(2)-2012 [63], the test
battery is required to discharge to 50% SOC, the impact acceleration is 500 m/s2, and the
duration is 6 ms. The test is carried out in 6 directions, 10 times in each test direction [89].
IEC 62660-3-2022 [69] requires BEV battery samples to be tested at 100% SOC, while HEV
battery samples are to be tested at 80% SOC. The test requires mechanical shocks in six
directions of the sample. In SAE J2464-2021 [72], the test requirements are that the impact
acceleration is 25 g, the duration is 15 ms, and there are 3 tests on three axes in both positive
and negative directions, totaling 18 times. SAND2005-3123 divides the mechanical shock
test into three levels, namely low, mid-1, and mid-2 [75]. The acceleration in the low level
is 20 g and the maximum duration is 55 ms; the acceleration in mid-1 is 30 g and the
duration is 65 ms; the acceleration in mid-2 is 20 g and the duration is 110 ms [90]. The test
method in UL 2580-2020 [77] is consistent with SAE J2464-2021. In GB 38031-2020 [84], the



Batteries 2022, 8, 248 8 of 28

mechanical shock test is conducted on the Z-axis direction of the battery pack or system.
The shock acceleration is 7 g with a duration of 6 ms, and the test is performed 6 times in
each direction of the Z-axis.

2.2.4. Crush Test

The crush test simulates the external load force that may cause deformation of the
battery and verifies the safety performance of the battery [91]. In IEC 62660-3-2022 [69],
the tested samples are divided into pure and hybrid EV batteries. The SOC of pure EV
batteries needs to be adjusted to 100% and that of hybrid EV batteries to 80%. During the
test, the battery flat is placed on an insulated rigid flat surface and pressed with a round or
semi-circular rod or ball with a diameter of 150 mm, as shown in Figure 1. The center of
the tested battery is crushed with a crushing speed of less than or equal to 6 mm/min. The
condition for the termination of the test is that the voltage of the tested battery drops by
one-third, the battery deforms by more than 15%, or the applied force reaches 1000 times the
weight of the battery. In SAND2005-3123 [75] and SAE J2464-2021 [72], the tested sample
is required to be placed on a textured pressure plate, which is shown in Figure 2b. Then,
it is crushed by a flat plate. The whole test is divided into two stages. The first stage is
displacement control. The crushing displacement is 15% of the height of the sample, and it
is maintained for 5 min. The second stage involves the control of the force and displacement.
The crushing displacement reaches 50% of the sample height and then it is maintained
for 5 min. The crushing force should be limited to a maximum of 1000 times the weight
of the sample. The battery test in UL 2580-2020 [77] also uses a textured pressing plate
for crushing, but it adds a limitation that the maximum force applied on the tested object
should not exceed 100 ± 6 kN. In GB 38031-2020 [84], the cell crush test uses a half cylinder
with a radius of 75 mm, as shown in Figure 2a, to crush the cell. The crushing speed is no
more than 2 mm/s until the cell voltage reaches 0V, the deformation reaches 15%, or the
crushing force reaches 100 kN or 1000 times the weight of the test cell. The battery pack
or system test can involve any of the methods displayed in Figure 2. It is required to test
the two directions of the tested object (the vehicle running direction and the horizontal
direction perpendicular to the running direction). The crushing speed should be no greater
than 2 mm/s and test is stopped when the crushing force reaches 100 kN or the crushing
deformation reaches 30% of the overall size of the extrusion direction. For the energy
storage standards, the test method for GB/T 36276-2018 [83] is basically consistent with
that of GB/T 38031-2020 [38,83], and the crushing form is shown in Figure 2a. However,
the two standards are different in terms of the crushing speed and degree. GB/T 36276-
2018 [83] requires that the crushing speed is 5 ± 1 mm/s, and when the voltage reaches 0 V,
the crushing deformation reaches 30%, or the extrusion force reaches 13 ± 0.78 kN, the test
shall be stopped. Moreover, the test for the battery module during energy storage should
be stopped when the deformation reaches 30% or the crushing force reaches 13 ± 0.78 kN.
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2.2.5. Penetration Test

The penetration test is used to test the battery safety by drilling a steel needle into a
LIB at a certain speed [92,93]. In SAE J2464-2021 [72] and SAND2005-3123 [75], a 3-mm-
diameter steel needle penetrates the single cell with a speed of 8 cm/s until the battery
is fully pierced. For battery modules and packs, it is penetrated with a 20-mm-diameter
steel needle, which needs to pierce at least 3 cells or the penetration depth needs to reach
100 mm. Although GB 38031-2020 [84] does not require a penetration test for a single cell,
the TR propagation test is carried out on the battery pack or system. The TR triggering
method of a cell can be selected for steel needles with a diameter of 3–8 mm, whereby the
angle range of the needle tip is 20–60◦ and the needling speed range is 0.1–10 mm/s.

2.2.6. Rollover Test

The rollover test is used to evaluate the battery safety when the vehicle is rotated [59].
In SAE J2464-2021 [72] and SAND2005-3123 [75], it is required to first turn the test battery
at 360◦/min for one cycle, then turn it around at 90◦ increments and hold each position for
60 min. In UL 2580-2020 [77], a fully charged battery is flipped at a speed of 90◦/15 s, and
it needs to be rotated 360◦ in 3 different directions that are perpendicular to each other.

2.2.7. Impact Test

The impact test is designed to assess the mechanical integrity of the housing and its
ability to provide mechanical protection to the contents of the battery system [35]. In IEC
62619-2022 [70], the test requires a cylindrical metal bar to be placed on the sample and
dropped on the bar using a 9.1 kg object from a height of 610 ± 25 mm. In UL 1973-2022 [79],
however, the test requires a steel ball, measuring 50.8 cm in diameter and 535 g in weight,
to be dropped directly onto a fully charged battery from a height of 1.29 m, or a steel ball is
suspended by a rope and swung like a pendulum to collide the ball with the test battery,
starting at a vertical height of 1.29 m.

2.3. Electrical Tests

The electrical tests can be divided into external short circuit tests, overcharge tests,
overdischarge tests, and others. The relevant test characteristic parameters in each standard
are listed in Table 5.

2.3.1. Overcharge Test

The overcharge test evaluates the safety performance of a battery or battery system
under overcharge conditions [94]. In ISO 12405-1(2)-2012 [63], only the overcharge protec-
tion function of the battery system is tested. During the test, the cooling system is turned
on. The test sample is required to be fully charged and charged with a constant current
of 5 C (2 C in ISO 12405-2-2012) until the protection device is activated and the charging
is automatically interrupted, the SOC reaches 130%, or the battery temperature exceeds
55 ◦C (the limits of the SOC and the temperature are determined by the manufacturer).
IEC 62660-3-2022 [69] requires the battery to be tested at the initial state of 100% SOC. The
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battery of the pure EVs is charged at 1 C or 1/3 C, while that of the hybrid EVs is charged
at 5 C or 1 C. When the voltage of the tested battery reaches 120% or the SOC reaches 130%,
the overcharge is stopped. In SAE J2464-2021 [72], the cell test is overcharged with the
maximum current until the cell reaches a maximum voltage of 150% or 200% SOC. How-
ever, for the overcharge test of the module the battery pack is charged at the 1 C current,
and when the pack voltage is above 400 V, it only needs to be overcharged to 120% of the
maximum voltage. In SAND2005-3123 [75], the two tests are differentiated considering the
different overcharging scenarios of pure and hybrid EVs. For pure EVs, the test sample
is charged with a constant current of 32A and the battery voltage does not exceed 450 V.
In hybrid EVs, the recommended charging current is 32A. The upper limit for the power
supply voltage should be set so as not to exceed the maximum voltage delivered by EVs.
The above test is performed with the passive overcharge protection device running. The
charging should continue until the sample fails or reaches 200% SOC. In UL 2580-2020 [77],
a fully discharged test sample is overcharged at the maximum specified current until the
protected circuit is terminated or the battery under testing is charged to 110% of its rated
charging capacity or the limit specified by the manufacturer. In GB 38031-2020 [84], the
single cell is charged at a constant current of no less than 1/3 C when it is fully charged
until it reaches 1.1 times the charging termination voltage specified by the manufacturer
or 115% SOC. The overcharge test of the battery system requires the SOC to be in the
middle part of the normal operating range, and the charging strategy with the shortest
time permitted by the manufacturer is adopted. Charging shall be stopped when the
tested sample stops charging, the temperature of the tested sample exceeds the maximum
temperature defined by the manufacturer by 10 ◦C, or the test sample continues to charge
for 12 h. In the standards for energy storage batteries, IEC 62619-2022 [70] requires that
sample cells are charged with a constant current equal to the maximum specified charging
current of the battery system until the voltage reaches the maximum voltage value that
is possible under the condition where the original charging control does not work [95].
In UL 1973-2022 [79], the test battery is overcharged with the maximum charging current
specified by the manufacturer to reach 110% of its specified maximum charging voltage
limit. GB/T 36276-2018 [83] requires the test battery to be charged at a constant current,
and the charging current is 1 C. In the cell test, the charging is stopped when the battery
voltage reaches 1.5 times the charge termination voltage or after charging for 1 h. In the
module test, the charging is stopped when any cell voltage reaches the above conditions.

2.3.2. Overdischarge Test

The overdischarge test simulates the safety of the battery or battery system under
the condition of overdischarge [96,97]. In ISO 12405-1-2012 [63], the battery system is
discharged at 1 C until the guard automatically interrupts the discharge or the sample
voltage drops to 25% of the nominal voltage or continues to discharge for 30 min. In
IEC 62660-3-2022 [69], the test sample with 0% SOC is discharged at 1 C current until
the sample voltage reaches 25% nominal voltage or the test lasts for 30 min. SAE J2464-
2021 [72] requires that both cells and modules discharge at the maximum current. In the
cell test, the cell is discharged from full charge until the discharge capacity is twice the
battery capacity. The stop condition of the module overdischarge is that the module voltage
reaches 0.0 V ± 0.2 V under load. In Sand2005-3123 [75], the test battery with 100% SOC is
discharged at 1 C current for 1.5 h, or until 50% of all subassemblies (for the module- or
packet-level tests) have achieved voltage reversal for 15 min. In UL 2580-2020 [77], the test
battery is discharged at the specified maximum current from full charge until the guard is
activated or an additional 30 min after the discharge limit is reached. GB 38031-2020 [84]
requires a fully charged single cell to be discharged at 1 C current for 90 min, but the initial
state of the battery system during testing is not specified. When the voltage of the test
battery is reduced to 25% of its rated voltage or the temperature change of the test battery
is less than 4 ◦C within 2 h, the test can be finished. In the energy storage battery standards,
IEC 63056-2020 [71] requires that the battery system discharge at the maximum specified
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current starting from 30% SOC. The test should be carried out until the BMS terminates the
discharge. IEC 62619-2022 [70] requires the test battery to be discharged at a discharge rate
of 1 C for a test period of 90 min. In UL 1973-2022 [79], the test battery is discharged with
the maximum discharge current for an additional 30 min after reaching the lower limit of
the normal discharge voltage. In GB/T 36276-2018 [83], the discharge current takes the
smaller value of 1 C and the maximum continuous discharge current of the test sample. In
the single test, the discharge is stopped when the battery continues to discharge for 90 min
or the battery voltage reaches 0 V. In the module test, the discharge is stopped when the
battery continues to discharge for 90 min or the voltage of any cell reaches 0 V.

2.3.3. External Short Circuit Test

The external short circuit test is used to evaluate the bearing capacity of the battery
after the external short circuit [98–100]. ISO-12405-1-2011 [46] selects 100 mΩ conductors
for the external short circuit and lasts for 10 min, while ISO-12405-2-2012 [64] selects 20 mΩ
conductors [101]. IEC 62660-3-2022 [69] and SAND2005-3123 [75] use conductors of less
than or equal to 5 mΩ for 10 min to simulate the external short circuit. In SAE J2464-
2021 [72], the external short circuit test uses conductors of less than or equal to 5 mΩ and
the test time lasts for 60 min. UL 2580-2020 requires a resistance of 20 mΩ to be used for the
test until the sample is completely discharged or the test lasts 7 h [77]. GB 38031-2020 [84]
requires the external short circuit of the cell to last for 10 min, the conductor should be
less than 5 mΩ, and the battery system test selects a conductor of no more than 5 mΩ.
The test is stopped when short-circuited for 1 h. IEC 63056-2020 [71] requires that the test
selects conductors of (30 ± 10 mΩ) * (number of series/number of parallels) or conductors
of less than or equal to 5 mΩ. The test lasts 6 h or stops when the case temperature
drops by 80% of the maximum temperature increase. In IEC 62619-2022 [70], each cell
is short-circuited by connecting the positive and negative terminals with a total external
resistance of 30 mΩ ± 10 mΩ. The cells are to remain under testing for 6 h or until the
case temperature declines by 80% of the maximum temperature increase, whichever is
sooner. In UL 1973-2022 [79], the total short resistance of the test sample shall be 20 mΩ.
The battery should be completely discharged or the test is stopped when temperature on
the center module has reached a peak or stable state or a fire or explosion has occurred.
The test methods for energy storage batteries and modules in GB/T 36276-2018 [83] are
consistent with those for battery cells in GB 38031-2020 [84].

2.3.4. Internal Short Circuit Test

The internal short circuit test simulates the situation where conductive particles cause
an internal short circuit in the battery [18,102,103]. In IEC 62660-3-2022 [69], the internal
short circuit test can be achieved by inserting nickel particles into the cell. In addition,
IEC 62660-3-2022 [69] also proposes an alternative method to simulate the internal short
circuit, which is to pierce 1–2 layers of the pole sheet with a nail. SAE J2464-2021 [72] does
not require an internal short circuit test but provides some methods to simulate a short
circuit, such as inserting nickel particles into the battery or by crushing a blunt nail. In the
same way, IEC 62619-2022 [70] also simulates an internal short circuit by inserting nickel
particles into cells and then extruding them. This test has the disadvantages of being very
difficult, being inconvenient to operate, and having questionable repeatability; thus, it is
rarely included in the standards. However, our team is still working on new methods that
can better simulate internal short circuit failures in test standards.

2.4. Environmental Tests

The environmental tests include high-temperature endurance, thermal shock, damp
heat cycle, and water immersion tests. The relevant test characteristic parameters in each
standard are summarized in Table 6.
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Table 5. Electrical test standards for LIBs.

Safety Test
(Parameters)

Standard for Vehicle Standard for Energy Storage

ISO 12405-1(2)
(2012) [63]

IEC 62660-3
(2022) [69]

SAE J2464
(2021) [72]

SAND2005-
3123

(2005) [75]

UL 2580
(2020) [77]

GB 38031
(2020) [84]

IEC 63056
(2020) [71]

IEC 62619
(2022) [70]

UL 1973
(2022) [79]

GB/T 36276
(2018) [83]

Overcharge
(rate; cut-off

soc or cut-
off voltage)

5 C; 130% SOC
(ISO 12405-1)

2 C; 130% SOC
(ISO 12405-2)

1 C or 1/3 C;
(BEV)

5 C or 1 C;
(HEV)

120% V or
130% SOC

Imax;
150% V or
200% SOC

32 a;
200% SOC

Imax;
110% SOC

≥1/3 C;
110% V or
115% SOC

Imax; N Imax;
110% V

≤1 C;
150% V

Overdischarge
(rate; cut-off

voltage or
over time)

1 C; 25% V or
30 min

(ISO 12405-1)
1/3 C; 25% V

or
30 min

(ISO 12405-2)

1 C;
25% V or 30

min

Imax;
N

1 C;
30 min

Imax;
30 min

1 C; 30 min
(cell)

N; 25% V
(system)

Imax; N 1 C; 90 min Imax;
30 min

≤1 C; 0 V or
30 min

External
short circuit
(resistance)

100 mΩ
(ISO 12405-1)

20 mΩ
(ISO 12405-2)

≤5 mΩ ≤5 mΩ ≤5 mΩ ≤20 mΩ

≤5 mΩ;
(cell)

≤5 mΩ;
(system)

≤5 mΩ 30 mΩ ± 10 mΩ 20 mΩ ≤5 mΩ

Internal
short circuit

Battery-
embedded

nickel
particles

Battery-
embedded

nickel
particles

Battery-
embedded nickel

particles

Note: N represents not specified or no specific parameter indicators; Imax represents the maximum current that can be charged and discharged; V represents the maximum upper or
lower voltage specified by the manufacturer; BEV represents a battery electric vehicle; HEV represents a hybrid electric vehicle.
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Table 6. Environmental test standards for LIBs.

Safety Test
(Parameters)

Standard for Vehicle Standard for Energy Storage

ISO 12405-1(2)
(2012) [63]

IEC 62660-3
(2022) [53]

SAE J2464
(2021) [72]

SAND2005-
3123

(2005) [75]

UL 2580
(2020) [77]

GB 38031
(2020) [84]

IEC 62619
(2022) [70]

UL 1973
(2022) [79]

GB/T 36276
(2018) [83]

High-temperature
endurance

(temperature; time)

130 ± 2 ◦C;
30 min

590 ◦C;
20 min

130 ± 2 ◦C;
30 min

85 ± 5 ◦C;
3 h

130 ± 2 ◦C;
30 min

Temperature
shock cycling
(temperature
range; Cycles)

−40~85 ◦C;
5 −40~85 ◦C; 30 −40~70 ◦C;

5
−40~80 ◦C;

5
−40~85 ◦C;

5

−40~85 ◦C; 5
(cell)

−40~60 ◦C; 5
(pack or system)

Damp heat cycle
(temperature;

humidity; Cycles)

25~80 ◦C;
55~98%;

5

25~60 ◦C;
55~98%;

5

45 ◦C; 93%;
keep 3 days

Water immersion
(liquid; duration) 5%NaCl; 2 h seawater; 2 h 5%NaCl; 1 h 3.5%NaCl; 2 h 1©

Exposure to fire Put at 890 ◦C for
10 min

Fire on the
bottom for

20 min

60 s preheating;
70 s direct
burning;

60 s indirect
burning

External fire
for 20 min

Salt spray
(liquid) 50 g/L NaCl 5%NaCl 50 g/L NaCl 50 g/L NaCl

Low pressure
(pressure; time) 61.2 kPa; 5 h 11.6 kPa; 6 h

Note: 1© According to IEC 60529 or CAN/CSA-C22.2 No. 60529.
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2.4.1. High-Temperature Endurance Test

The high-temperature endurance test simulates the high-temperature environment
that the battery may experience and verifies the battery’s safety [104,105]. The test methods
for IEC 62660-3-2022 [69], GB 38031-2020 [84], and GB/T 36276-2018 [83] are the same. All
of them put the test sample into a hot box, which is heated to 130 ± 2 ◦C at a temperature
rise rate of 5 K/min and kept for 30 min. In SAE J2464-2021 [72], the test method is to
place the sample in a radiation heater for 20 min, in which the heater needs to reach 590 ◦C
within 5 min. However, in IEC 62619-2022 [70], the test requires a hot box temperature of
85 ± 5 ◦C and the test sample needs to be kept at a high temperature for 3 h.

2.4.2. Thermal Shock Cycle Test

The thermal shock cycle test simulates a situation where the temperature suddenly
changes to ensure the battery’s safety against thermal shock. ISO 12405-1-2011 [63] requires
that the test battery is first discharged to 50% SOC at 1 C and then thermally cycled
from −40 to 85 ◦C, while the transition between the two extreme temperatures should be
completed within 30 min. Each extreme temperature needs to be maintained for 1 h, and the
entire test requires 5 cycles. The test method of ISO-12405-2-2012 [64] is basically the same
as the above, except that the initial SOC of the test sample is 80%. IEC 62660-3-2022 [69] is
performed following IEC 62660-2-2018 [68]; the temperature cycle range is also 40 to 85 ◦C,
and the test requires 30 cycles. In SAE J2464-2021 [72], the test requires the test sample to
be performed at the maximum working SOC, with thermal cycling between −40−70 ◦C,
while the conversion between extreme temperatures should be within 15 min. The cell
needs to be kept for at least 1 h at an extreme temperature and the module needs to be kept
for 6 h, and the above process is cycled 5 times. In SAND2005-3123 [75], the SOC of the
test battery must be adjusted to 50%; then, the battery is thermally cycled between −4 and
80 ◦C, and the conversion between two extreme temperatures should be completed within
30 min. UL 2580-2020 [77] is also implemented following SAE J2464-2021 [72], but the cycle
temperature range is −40–85 ◦C. GB 38031-2020 [84] requires the cell to be cycled between
−40 and 85 ◦C for 5 cycles. The battery system is cycled 5 times from −40 to 60 ◦C, the
extreme temperature conversion is completed within 30 min, and the extreme temperature
is maintained for 8 h. This test is not included in the standards for energy storage batteries.

2.4.3. Damp Heat Cycle Test

The damp heat cycle is simulated in a high-temperature and high-humidity envi-
ronment to ensure the battery’s safety [106]. ISO 12405-1(2)-2012 [63,64] is implemented
following IEC 60068-2-30 but specifies a temperature range of 25~80 ◦C and a relative hu-
midity range of 55~98% for 5 cycles. The temperature range required in GB 38031-2020 [84]
is 25~60 ◦C and the humidity range is 55~98%, with 5 cycles. For the energy storage
standard, GB/T 36276-2018 [83] only tests the battery safety under high humidity and high
heat, without thermal cycling, which requires the test sample to be kept at a temperature of
45 ◦C and relative humidity of 93% for 3 days.

2.4.4. Immersion Test

The immersion test simulates a situation where the vehicle or battery system is
flooded [18,107]. In SAE J2464-2021 [72], the test sample needs to be fully immersed
in a 5% NaCl solution for 2 h. SAND2005-3123 [75] also immerses the test sample in salt
water for at least 2 h. UL 2580-2020 [77] also requires the test sample to be immersed in a 5%
NaCl solution for only 1 h. In GB 38031-2020 [84], the battery pack or system is immersed in
water after the vibration test. There are two test methods: one is to immerse the test sample
in 3.5% sodium chloride solution for 2 h; the other is for the test object with a height of less
than 850 mm, and its lowest point should be 1000 mm below the water surface. For a test
object whose height is greater than or equal to 850 mm, the highest point should be 150 mm
lower than the water surface and the test should last for 30 min. In the energy storage
standards, UL 1973-2022 [79] requires that the test sample is tested for moisture resistance.
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It should be subjected to a moisture resistance test based on its IP rating following IEC
60529 or CAN/CSA-C22.2 no. 60529.

2.4.5. Fire Test

The fire test simulates a vehicle under fire conditions to verify whether the battery
system will explode [20,108,109]. SAND2005-3123 [75] requires that the test sample at 100%
SOC be placed in a cylindrical fixture heated by radiation for 10 min, where the temperature
of the heater is 890 ◦C. In UL 2580-2020 [77], the external fire is conducted on the bottom
surface of the test object and the fire source is located in the middle of the test object. During
the test, the surface temperature of the shell of the test sample should be monitored. The
thermocouple on the enclosure should be placed 25 mm from the bottom. The minimum
temperature of at least one thermocouple should be above 590 ◦C after 5 min of ignition
and should be maintained for 20 min before the fire is stopped. In GB 38031-2020 [84], the
test is divided into 3 steps. The first step is to ignite the gasoline at least 3 m away from the
test sample for 60 s of preheating; the second step is to place the burning oil pan directly
under the test sample and burn it directly for 70 s. The third step is to cover the oil pan with
a refractory heat insulation board and indirectly burn it for 60 s. Finally, the test sample
should be separated from the ignited oil pan and observed for 2 h. For the energy storage
standard, UL 1973-2022 [79] also stipulates that the test sample needs to be tested using
external fire for 20 min.

2.4.6. Salt Spray Test

The salt spray test simulates the use of vehicles or energy storage systems in coastal
areas [110]. UL 2580-2020 [77] is performed following the level 6 test method in IEC 60068-
2-52-2017 [111], which requires that the sodium chloride concentration of the sprayed
solution collected is 50 ± 5 g/L. The entire test requires eight cycles, and each cycle lasts for
7 days. One cycle shall consist of spraying the specimen with a salt solution at 35 ± 2 ◦C
for 2 h, followed by humid conditions at 40 ± 2 ◦C and 93% ± 3% RH for 22 h. The above
process shall be repeated 4 times. The test specimens shall then be stored under a standard
atmosphere at 23 ± 2 ◦C and 50% ± 5% RH for three days. In GB 38031-2020 [84], the
concentration of the sodium chloride in the spray solution is 5 ± 1%, and its pH value range
is 6.5–7.2 at 35 ◦C. The battery is sprayed for 8 h and rested for 16 h. The above process is
circulated 6 times at 35 ◦C. For the energy storage standards, UL 1973-2022 [79] and GB/T
36276-2018 [83] follow the test methods in IEC 60068-2-52-2017 [111]. The difference is that
UL 1973-2022 [79] uses grades 1 and 2 for testing, while GB/T 36276-2018 [83] uses grade 6
for testing.

2.4.7. Low-Pressure Test

The low-pressure test is used to simulate the situation of a vehicle driving at a high
altitude [112–114]. Due to the geographical diversity of China, this test is only included
in the Chinese standards. In GB 38031-2020 [84], the battery pack or system is placed
in an environment with an air pressure of 61.2 kPa for 5 h (simulating the air pressure
condition at an altitude of 4000 m), then the test sample is discharged at a discharge current
of no less than 1/3 C. For the energy storage system standard, GB/T 36276-2018 [83] only
requires cells to be tested, whereby the single cells need to stand for 6 h in an environment
of 11.6 kPa and 25 ◦C during the test.

2.5. Thermal Runaway Propagation Test

The thermal runaway propagation test for LIBs is mainly for the battery module or
pack [115]. There are few thermal safety tests for battery packs or systems due to the high
test costs and complex test procedures. In UL 2580-2020 [77], the TR of the cell can be
triggered by acupuncture, overcharge, heating, or other factors. The test requires there
to be no external fire propagating from the sample or explosion of the sample within a
specific time. SAE J2464-2021 [72] requires repeated testing at different locations. In GB
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38031-2020 [84], it is specified that the battery pack or system needs to undergo a thermal
propagation test. It is required that the battery pack or system should provide a thermal
alarm signal 5 min before the start of thermal propagation caused by the TR of a single
cell. The thermal alarm signal may be triggered by the temperature, temperature rise rate,
SOC, voltage, current signals, and other abnormal parameters. During the test, the SOC
of the test battery is adjusted to no less than 90–95% and placed in an environment above
0 ◦C, with a relative humidity range of 10%–90% and air pressure range of 86–106 kPa. GB
38031-2020 [84] provides specific test methods for triggering TR by needling or heating.
The external heating method uses a surface covered with ceramic, metal, a flat insulation
layer, or a rod heating device. The specific requirements are as follows: (1) When the size
of the block heating device is the same as that of the battery cell, the heating device can be
used to replace one battery cell in the module and can directly contact the battery surface.
(2) The heating area of the heating device shall not be greater than the surface area of the
battery cell. (3) The test shall be started within 24 h after the heater’s installation, and the
battery shall be heated with the maximum power of the heater. Moreover, the temperature
sensor is placed on the side away from the heat conduction; that is, on the opposite side of
the heater. The recommended needling method uses a steel needle with a diameter range
of 3–8 mm and a conical angle range of 20–60◦ to pierce the cell vertically at a speed range
of 0.1–10 mm/s.

For the energy storage standards, IEC 62619-2022 [70], UL 1973-2022 [79], UL 9540A-
2019 [78], and GB/T 36276-2018 [83] require a TR propagation test for the battery system. In
IEC 62619-2022 [70] and UL 1973-2022 [79], the requirement for test compliance is that the
test sample should not ignite or explode. UL 9540A-2019 [78] details the TR test and tests
for TR gassing. GB/T 36276-2018 [83] requires that there should be no fire, no explosion,
and no TR propagation after the TR of the single cell. In the actual operation of the energy
storage system, electrical abuse and thermal abuse are more likely to occur. Therefore, two
recommended TR triggering methods are given in the standard, and the cell in the center of
the battery module should be triggered during the test. The overcharge trigger for the TR
is to charge the cell at a constant current with a maximum current greater than or equal to
1/3 C and less than or equal to the maximum working current until the charged cell reaches
TR or its SOC reaches 200%. Moreover, only the triggered battery cell shall be overcharged,
and other cells in the battery module shall not be overcharged. The other heating trigger
method is the same as the heating method given in GB 38031-2020 [84].

From the above analysis, it can be seen that most of the test methods for TR propagation
are designed to trigger the TR of a cell in the battery system using certain triggering
methods. The common triggering methods are needling, heating, and overcharge, as
shown in Figure 3. Almost all standards do not stipulate that only one method can be
used for the TR test, because there are many reasons for battery TR. However, some TR
trigger methods are recommended in some standards, such as needling and heating are
recommended in GB 38031, GB/T 36276, and GB 38031 for EV batteries, and the heating
power is closely related to the battery capacity. GB/T 36276 recommends overcharge
triggering for energy storage batteries. Generally, the trigger method most likely to cause
TR should be selected based on the application scenarios. There are a few standards related
to the TR propagation test for the LIB in EVs, and there is no requirement for no TR
propagation. Most of the standards of energy storage batteries require a TR propagation
test. However, the evaluation criteria are inconsistent. A TR propagation test in China
needs to meet the requirement of having no TR propagation, which is relatively strict. The
test requirements in other countries are lower, only requiring that the battery not ignite
or explode.
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3. Case Analysis of Battery Fire

Although the various standards on LIBs are constantly updated, iterated, and im-
proved, the safety of LIBs is far from the ideal state. Fire accidents involving LIBs used
for EVs and energy storage frequently occur [116,117], which bring about huge losses and
attract public concern.

3.1. Fire Accidents Involving EVs

With the increase in EVs, fire accidents are also increasing. According to our incomplete
statistics, 22 and 45 fire accidents involving EVs were reported in 2017 and 2018, respectively,
in China [118], and the number reached 138 in 2021, as shown in Figure 4a. This has
attracted the attention of society to the safety of EVs.
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Figure 4b shows the investigation results for EV fire accidents in China in 2021. The
fire accidents involving EVs will increase with the warming of the weather. The probability
of EV fire accidents is greatest in summer and gradually decreases in winter. In addition,
it is reported that most fire incidents occurred in the south of China, such as Hangzhou,
Guangzhou, Shenzhen, and other places. The main reason may be related to the large
number and high penetration of EVs in the south, where high-temperature weather is
more likely.

Figure 4c shows the on-site photos of some EV fire accidents. It can be observed that
some EVs suddenly generate smoke and fire while driving, some occur in the process of
charging, and some are caused by vehicle collisions. To better analyze the fire accidents
involving EVs, the fire accidents from 2018 to 2021 are classified and counted in Figure 4d.
Fire accidents involving EVs usually occur in three states, including charging, parking,
and driving. In 2021, fire accidents during charging accounted for approximately 27.16%,
fire accidents during parking accounted for approximately 33.33%, fire accidents during
driving accounted for approximately 27.16%, fire accidents caused by collisions accounted
for approximately 7.41%, and fire accidents under other conditions accounted for approxi-
mately 4.94% of the total. The proportion of vehicle fire accidents caused by mechanical
abuse, such as collisions, is not high, while the probability of accidents during charging,
parking, and driving is as high as 87.65%. The main cause of TR in EV batteries is probably
electricity abuse, and it is more likely that an internal short circuit may be caused by the
battery aging and the lithium plating [119–121]. In the statistics for EV fire accidents, almost
no vehicles can be rescued and extinguished in time, and almost all vehicles are completely
burned. Meanwhile, the surrounding vehicles and buildings will also be involved, causing
huge losses. When TR occurs in a battery, the chemical substances inside the battery will
decompose rapidly and release a large amount of heat. However, CO2, dry powder, and
other fire extinguishing agents cannot prevent the violent chain decomposition reactions
inside the battery [122,123]; therefore, the fire accidents involving EVs always burn vio-
lently and are prone to reigniting. From the accident statistics, it can be found that many
vehicles catch fire during charging and parking. Fortunately, at this time there is usually
no one around the vehicle, although this means it is impossible to report to the police and
inform the firefighters in time, thereby causing the surrounding vehicles and buildings to
be burned.

The main process of fire accidents involving EVs is shown in Figure 5. In the early stage,
the battery usually emits white smoke first, which becomes more and more intensive. Many
people have actively used fire extinguishers to put out fires to reduce the disasters caused
by accidents, but the positive effects have been minimal. It is not until the firefighters come
to the scene and use high-pressure water guns to spray water on the train to cool down
the fire that the fire is effectively suppressed. However, after the open fire is extinguished,
the vehicles will reignite, which causes great difficulties for firefighting. Some experienced
firefighters will overturn the vehicle, use bag-breaking tools to break the shell of the battery
pack, and then spray cooling water directly into the battery pack for cooling. This method
is very effective in dealing with fire accidents involving EVs.
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3.2. Fire Accidents from Energy Storage Power Stations

With the large-scale application of LIBs in energy storage power stations, their fire
safety has attracted more and more attention. In recent years, fire accidents in energy
storage power stations have occurred gradually. The fire accident losses in an energy
storage power station are far greater than in EVs. According to the incomplete statistics,
the accidents in energy storage power stations in the last 10 years are listed in Table 7.

Table 7. Statistics on fire accidents involving energy storage power stations in the past 10 years.

Time Location Capacity
(MWh) Battery Status Battery Type Architectural

Form Reason

2011.9 Japan - Charging Sodium
sulfur battery -

The failure of the cell caused the
high-temperature melt to cross the

sand layer, and a short circuit occurred
between adjacent battery modules

2012.8 USA 20 Charging Lead-acid
battery Container -

2017.5 China/
Shanxi - After charging NCM Container -

2017.11 Belgium - - LIBs - -

2018.8 China/
Jiangsu - - LFP Container -

2019.4 USA/Arizona 2 - NCM Container
TR of cells and lack sufficient thermal
insulation between cells. Combustible

gas accumulation

2019.5 China/
Beijing 2 Under

maintenance LIBs Container -

2021.4 China/
Beijing 25 Installation

and debugging LFP Concrete house

TR propagation in the cell and module,
and the flammable and explosive

mixture was mixed with air to produce
explosive gas

2021.7 USA/Illinois 12 - LFP Container -

2021.7 Australia 450 During
running tests LIBs -

Short circuit caused by leakage in the
cooling system, causing electronic

components to catch fire

2022.2 USA/California 1200 - LIBs Concrete house -

2022.4 USA/Arizona 40 - LIBs Concrete house Thermal runaway of a single battery

2022.4 USA/California 560 - LIBs Container
An electrical fault caused some smoke

to be generated, triggering the
protection system

2022.6 France - - LIBs Container -

2017–2022 Korea/
(34 incidents) - Most were

after charging NCM Container

Defects in the battery system,
inadequate protection system for

electrical faults, insufficient
management of the operating

environment, and lack of an integrated
management system

Table 6 shows that the installed capacity of LIBs in energy storage power stations has
been increasing in recent years, and fire accidents are gradually increasing. For energy
storage, lithium iron phosphate (LFP) batteries are mainly used in China, while batteries
with ternary cathodes are adopted in other countries. For these energy storage accidents,
less information is publicly reported. Among them, China released an investigation report
on a fire and explosion accident in an electrical energy storage power station in Beijing.
According to the report, the direct cause of the fire in the south building was an internal
short circuit fault of the LFP battery, which caused the battery TR. The direct cause of
the explosion in the north building was that the combustible and explosive components
generated in the south building entered the energy storage room in the north building
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through the underground cable trench and mixed with the air to form explosive gas, which
exploded in the presence of electric sparks, as shown in Figure 6a. Figure 6b shows a
schematic diagram of the fire accident in an energy storage power station in Arizona in
the United States on April 18, 2022. There were more than 3200 cells in the energy storage
project, with a total energy storage capacity of 40 MWh. After the fire accident occurred,
the power station burned for 5 days, and thick smoke was emitted continuously, which
not only caused huge losses but also seriously affected the surrounding environment. The
losses caused by a fire accident in an energy storage power station often equal tens of
millions dollars, producing a lot of environmental pollution. Moreover, once a fire accident
occurs in an energy storage power station, the difficulty of the fire rescue is far greater than
for EVs. Firefighters often need several days to put out the fire, and the workforce and
material resources consumed are huge.
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Most energy storage power stations store their batteries in containers that are placed
in the open air. Some of them store their batteries by placing them in energy storage
cabinets in the buildings. Different building forms have different effects on energy storage
accidents. Once a fire accident occurs in a building, the toxic, combustible, and explosive
gases released by the failed battery easily accumulate in the house, which may aggravate
the hazard of the fire accident and increase the difficulty of extinguishing the fire. Energy
storage power station with open-air containers are more susceptible to the influence of
weather and other environmental factors, which increases the accident rate. Although
there are many factors that lead to energy storage safety accidents, such as the battery
management systems, cable harnesses, the operating environment, safety management,
and other factors, the primary cause is the battery itself. When a fire accident occurs, the
energy storage power station is normally in operation. During the charging and discharging
process of LIBs, the thermal safety of the battery may be affected due to its own defects, the
lithium plating, aging, an internal short circuit, and other reasons, and then the safety may
be affected. The huge number of batteries has also caused a great test burden for the battery
management systems, given the inconsistency between batteries. Some retired batteries
from EVs are used for energy storage [124–126], significantly increasing the safety risk to
the energy storage power station.

3.3. Comparison and Analysis

From the above analysis, the fire accidents in EVs and energy storage power stations
are generally caused by the TR of LIBs. In the early stage of a fire accident, white smoke will
be emitted and then ignited. The rapid spread of the fire leads to the TR of the surrounding
batteries, and a large amount of thick smoke is continuously emitted, accompanied by
an explosion. Upon the arrival of firefighters, a large amount of cooling water spray
is usually used to extinguish and cool the fire, meaning the fire can be controlled. The
difference is that EVs that are on fire can be completely burned in a few minutes. The
large number of batteries in an energy storage power station provides sufficient energy for
flame combustion. The whole fire often lasts for dozens of hours and even several days for
large energy storage power stations. Figure 7 compares the difference between EVs and
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energy storage power stations in terms of the hazard, firefighting difficulty, and loss of fire
accidents. At present, the safety problem for energy storage batteries is more prominent for
EV batteries. The fire water required for a single EV may equal 100 t, while the fire water
required for a large energy storage power station may be as high as 5000 t, and spraying
this water for cooling often takes several days. The losses caused by fire accidents increase
as the battery energy storage system expands. The loss of a single EV can cost tens of
thousands of dollars, while the loss of an energy storage power stations is in the millions.
Therefore, battery safety in energy storage power stations needs to be further emphasized,
bottleneck technology needs to be advanced, and the test standards need to be developed
and strengthened.
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4. Prospects and Suggestions

The use of standards is the highest priority for guaranteeing battery safety, and the
products produced according to such standards are regarded as qualified. The safety
standards play a vital role in improving the safety of LIBs and their systems. However,
there are still some shortcomings in the current safety standards. Based on our investigation
and analysis of fire accidents, we put forward four suggestions for updating the relevant
standards to improve battery safety and reduce the probability of fire accidents.

(a) Design early warning and cloud alarms for battery TR: There is a high probability
of fire accidents in the charging process and the static process after charging. At
this time, the battery system is usually in a high SOC state and has a relatively high
temperature. It is necessary to strengthen the early detection and warning of potential
TR causes. At the same time, it is also necessary to monitor the temperature and gas
state in the critical positions in the battery system to provide accurate alarms for TR
ine single cells [127–129], which can remind people to evacuate and dial the fire alarm
telephone number in time. Currently, most of the relevant battery safety standards
regulate the abuse of the battery itself. There are few safety management standards for
battery systems, and there is a lack of standards for TR warnings and fire cloud alarms.
Therefore, developing these standards will be an important task in the future.

(b) Innovative structural design for no-fire battery packs: Effectively delaying the TR
propagation of LIBs will result in longer rescue times. In many cases, when the TR of
a single cell occurs, the high-temperature particles can burn through the shell of the
battery pack, meaning the oxygen and the combustible electrolyte gas generated by
the battery failure are fully mixed and burnt. An effective means is to strengthen the
structural design of the battery pack [91,130]. Figure 8 shows the structure design of
a no-fire battery pack. This strengthens the heat insulation and dissipation function
of the battery pack through the reasonable design of the fire shield, heat insulation
sheet, cooling system, and explosion-proof valve to delay the TR propagation and
prevent the battery pack shell from burning through. Moreover, the arc generated
by the high-voltage system upon thermal failure will destroy the preset protection
countermeasures against TR propagation. Therefore, the arc issues should be more
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emphasized in future standards. In addition, most standards only take the non-fire
and non-explosion scenarios of the whole battery pack as the evaluation requirements,
lacking a strength test for the battery pack shell. It is necessary to restrict and regulate
the structure and fire resistance of the battery pack in the standards.
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(c) Design a fire water injection interface for the battery pack: The battery pack is located
at the bottom of the vehicle and has a certain waterproof design. It is difficult to reach a
battery undergoing TR inside the battery pack through conventional external spraying
measures, which increases the difficulty for firefighters to extinguish the fire. In the
actual firefighting process, experienced firefighters may overturn the vehicle to break
the package and then spray water into the battery pack to cool it down. Therefore, it
is necessary to improve the structure of the battery pack and even the vehicle body.
As shown in Figure 9, the design idea for a fire interface that can be connected to a
fire water gun is provided. After the open fire is extinguished, the fire hydrant can be
directly connected to the firefighting interface to cool the inside of the battery pack. At
the same time, the process of spraying water into the battery pack can be simulated
through the model to design the optimal battery pack structure. At present, there are
few fire safety standards for EVs, and it is difficult to guide the firefighting process.
Installing a fire interface on the battery pack could effectively reduce the temperature
and extinguish the fire, which is an effective way to deal with EV fire accidents.
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(d) Design immersive energy storage power stations. According to the existing fire acci-
dents involving energy storage power stations, it can be found that once a fire accident
occurs, the current fire extinguishing measures may not be effective. The whole process
of firefighting consumes a large amount of cooling water. Moreover, the cooling water
ejected by the firefighters cannot fully act on the TR batteries, resulting in a large
amount of water loss, which is a waste of water resources. Therefore, it is necessary
to improve the fire protection measures for energy storage power stations. As shown
in Figure 10, an immersive energy storage firefighting design is provided, in which
the storage container is placed in deep pits or low-lying areas. In case of fire, the
firefighters can directly inject cooling water into the deep pit to immerse the containers
to reduce the temperature and greatly save water resources. In addition, the containers
can be grouped into pits. When a container catches fire, water is poured into the pit,
which not only improves the fire extinguishing efficiency but also reduces the impact
on other containers, thereby reducing the accident losses.
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5. Conclusions

The thermal safety of LIBs is a hot but complex topic for battery research, development,
and application. Improving the safety of LIBs is very important for their sustainable
development. The safety standards play a critical role in promoting the safety of LIBs. The
standards should be constantly revised and evolved with the development of LIBs. This
paper summarizes the global safety standards for LIBs for vehicles and energy storage
systems and analyzes the technical characteristics and applications. In addition, the fire
accidents involving EVs in 2018–2021 and the fire accidents involving energy storage
power stations in the past 10 years are assessed, after which the main characteristics of
the failure accidents are compared and analyzed, providing a valuable reference for the
development of relevant safety standards. Finally, four suggestions and prospects for
upgrading the safety standards are put forward: (1) developing early warning and cloud
alarm technologies; (2) designing no-fire battery packs; (3) designing fire extinguishing
water injection interfaces for the battery packs; (4) designing immersive fire extinguishing
methods for energy storage batteries. Promoting the safety of LIBs requires the joint efforts
of the government, research institutes, and industry. Our research has significant reference
value for promoting the formulation of relevant safety standards for LIBs.
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