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Abstract: Supercapacitors are regarded as reliable energy storage devices to alleviate the energy crisis
and environmental pollution. However, the relatively low capacitance and low energy density limit
the practical application of supercapacitors. In this context, boron carbon nitride (BCN) nanomaterials
have been extensively studied in the past decade due to their chemical and thermal stability, high
mechanical strength, as well as tunable bandgap. The specific capacitance and energy density of
supercapacitors can be significantly improved by fabricating nanostructured BCN-based electrode
materials. In this review, the recent advances in the application of BCN-based materials in superca-
pacitors is presented. Strategies such as structure design, porosity/defect engineering, and hybrid
nanostructure construction to boost the electrochemical performance of BCN-based materials are
provided and, finally, promising research directions for novel energy storage materials are proposed.
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1. Introduction

The massive use of traditional fossil energy has caused serious environmental pollution
and the growing energy crisis, which has urged mankind to transition to sustainable energy
sources instead of fossil fuels [1]. In order to solve these issues, electrical energy is gaining
major popularity because it can be generated through clean and renewable resources such
as solar, biomass, tidal, and wind energy. Electrical energy as an energy carrier can provide
great potential to increase the sustainability of human beings’ lives. However, the problem
with electricity is the lack of a stable energy storage mechanism to store excess energy during
the night trough period. In this regard, rechargeable batteries and supercapacitors (SCs) are
emerging as effective storage media. As compared to batteries, SCs have a lower energy
density but possess high power density, are eco-friendly, have a quick charge–discharge
capability, stable recyclability, a relatively low cost, and higher safety [2]. It is promising
for SCs to replace batteries as SCs can bridge the gap between rechargeable batteries and
electrolytic capacitors in terms of their electrochemical properties.

Unlike batteries, SCs store energy through kinetically faster physisorption of charges or
(near) surface-confined faradaic reactions of electrodes [3]. According to their charge storage
behavior, SCs can be divided into three types: electrochemical double-layer capacitors
(EDLCs), electrochemical pseudocapacitors, and hybrid supercapacitors [4]. EDLCs stores
charges at the “Helmholtz layer” formed through electrostatic interactions between the
electrode/electrolyte interface, while a pseudocapacitor works using the faradaic process
(or redox reaction) on the electrode (near) surface [5,6]. The charge storage mechanism of
a hybrid supercapacitor is based on both faradaic and non-faradaic processes. Although
the three types of SCs have different energy storage mechanisms, the type and mechanism
of the SCs all directly depend on the performance of the electrode materials. Hence, it
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is urgent and necessary to develop advanced electrode materials with greater capacity,
voltage, and energy densities for future SCs.

In the past decades, a number of researchers have been preparing advanced mate-
rials and hybrid composites with specific architectures and nano-dimensional structures
to improve the electrochemical performance of SCs [7,8]. It is not surprising that two-
dimensional (2D) materials such as graphene, hexagonal boron nitride (h-BN), graphitic
carbon nitride (g-C3N4), transition metal dichalcogenides (TMDs), metal oxides and hy-
droxides, covalent organic frameworks, and MXene, etc., are widely used in capacitor
fabrication [9–11]. The unique structure, large surface area, reactive basal planes or edges,
interlayer spacing, tunable thickness, and composition make 2D materials highly appealing
compared to bulk materials to accommodate faradaic reactions and insertion pseudocapac-
itance [12]. However, wide bandgap 2D materials such as g-C3N4 and h-BN often suffer
low electrochemical performance, including inferior energy density, insufficient capacity,
low volumetric capacitance, low conductivity/stability during electrode reaction, and
smaller operating voltage when they are used in supercapacitor applications [10,13–16].
To overcome these challenging issues, an emerging material named boron carbon nitride
(BCN) has attracted extensive attention for application in SCs [17,18].

Boron carbon nitrides (BxCyNz) are ternary compounds with diverse compositions
and various applications in supercapacitors, electrocatalysis, CO2 photoreduction, wastew-
ater treatment, hydrogen production, and several others [19–21]. Such BxCyNz species
would combine the unique properties of graphene and h-BN with adjustable properties
depending on element portion and structure [22]. As compared to other applications, the
amalgamation of graphene and BN-type structures permits BCN to adjust its electronic
properties as required for SC applications. Heteroatom doping makes BCN possess an
enhanced electrical conductivity, more active sites, and improved surface charge mobility
and wettability compared to carbon and h-BN materials. Therefore, BCN materials show
great promise in SC applications.

Recently, several review papers on the synthesis and applications of h-BN and BCN,
such as photocatalysis, wastewater treatment, electrocatalysis, and energy storage devices,
have appeared [23–26]. For example, Han et al. surveyed the research work on functional-
ized h-BN and its energy-related applications such as electrocatalysis, hydrogen storage,
catalytic dehydrogenation reaction, and batteries [19]. Recepoglu et al. summarized the
preparation methods such as chemical vapor deposition (CVD), magnetron sputtering,
and ion-beam-aided deposition, as well as several environment applications of 2D BCN
materials [24]. These articles either focus on the fundamental properties and various appli-
cations of BCNs or emphasize the diverse synthesis techniques, growth, and characteristics
of thin BCN films [27]. However, there is hardly any review only concentrated on the SC
application of BCN nanomaterials. Although the research on the utilization of BCNs for SCs
is still in its infancy, a comprehensive review of published works is needed to summarize
recent advances in the field of materials science with the rapid growth of BCN research. In
order to overcome the challenges of applying BCNs in SCs, strategies are needed to prepare
BCN nanomaterials with controllable morphology and electronic structure, thus tuning the
insulating properties of h-BN to semiconducting or conducting properties. Modification
strategies are also needed to boost the electrochemical performance of BCN. Therefore, it
is crucial to sum up the achievements of BCN-based electrode materials along with their
development and future aspects.

This paper provides a summary of the exceptional contribution of BCN nanomaterials
in supercapacitor applications. The recent studies directed towards the design, synthesis,
and characterization of BxCyNz containing hexagonal BCN networks are presented. This
work mainly focuses on the understanding of the relationship between BCNs’ chemical
composition, morphology, and hybrid structures with their electrochemical performance in
SCs. The challenges to boost the electrochemical performance of BCN electrode materials
have been considered and modification strategies to bypass the drawbacks have been
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provided. The goal of this review is to facilitate the design of high-performance BCN
electrode materials for future energy storage systems.

2. Definition and Properties of Boron Carbon Nitride

Owing to the reciprocal electron structure and similar atomic size among the B, C, and
N elements, each two of them can form a stable covalent bond [28]. In order to understand
the compositional diagram of the BxCyNz materials, Figure 1 exhibits a phase illustration
of different layered hexagonal phases via the combination of these three elements. Each
corner at the intersection of a triangle and a circle represents a pure phase. For example,
graphene is considered in the C corner while 2D borophene is regarded at B. Boron-doped
carbon, such as B4C, BC3, and other metastable intermediate phases will be produced
when moving towards boron from C. Similarly, nitrogen-doped carbon such as C3N4 and
C3N5 will be observed between the C and N corners. Along the B–N side, the middle
point represents cubic or hexagonal BN. It is worth noting that diamond, B4C and c-BN are
sp3 hybridized as super hard materials, while graphene, graphitic-C3N4, and h-BN have
sp2 configurations and are known as 2D substances. The sp3 hybridized B-C regions may
disrupt the 2D configuration desired for a BCN material [18]. Through well-controlling the
thickness and composition of B, C and N, the 2D h-BCN material would be formed at the
center point of the diagram.
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Figure 1. Phase diagram of BxCyNz materials formed by different stoichiometries among B, C, and
N elements.

Depending on the stoichiometry of B, N, and C, a number of hybridized and randomly
distributed h-BN and graphene domains (BxCyNz system, 0 ≤ x, y, z ≤ 1) can be formed
with constitutions varied, from pure h-BN to pure graphene, as shown in Figure 2a [29].
As depicted in Figure 2b, pure graphene is a zero-bandgap material while wide-bandgap
h-BN can be regarded as an insulator [30]. Considering the similar honeycomb structure
of graphene and h-BN, h-BCN material not only inherits the excellent chemical and ther-
mal stabilities of h-BN, but also possesses a smaller band gap and improved electrical
conductivity due to the carbon doping. Through adjusting the arrangement and atomic
ratios of B, C, and N atoms, the optical, mechanical, magnetic, and electrical properties of
BxCyNz materials can be easily tuned [31,32]. As a hybrid phase of h-BN and graphene,
BCN semiconductors offer a tunable bandgap and stronger charge carrier mobility than
insulated h-BN [32]. At the same time, doping h-BN domains gives BCN a higher oxidation
resistance than graphene [33]. Relying on the unique planar structure, large specific surface
area (SSA), high electrical and thermal conductivity, and easily controlled components and
thicknesses, BCN exhibits tremendous potential in supercapacitor applications.
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However, it is difficult for BCN materials to achieve the good control of composition
and dimensionality in all circumstances. The final B:C:N ratio and nanostructure will
determine the physical and chemical properties of the BxCyNz material. In general, varying
the atomic ratio and controlling the shape and size of BCN nanomaterials may pave the
way to innovative and intriguing electrode materials.

3. Synthesis of Nanostructured BCN Materials

Low-dimensional BCN nanomaterials exhibit interfacial effects and quantum con-
finement with unique properties compared with bulk BCN materials. To date, note-
worthy attempts have been reported for the preparation of BCN materials with related
nanostructures such as zero-dimensional (0D) quantum dots, one-dimensional (1D) nan-
otube/nanorods, 2D nanosheets, and three-dimensional (3D) aerogels or foams, mainly
employing techniques such as chemical vapor deposition (CVD), pyrolysis, and solvother-
mal/hydrothermal methods. These approaches use either single or different sources for B,
C, and N precursors, which are briefly summarized in the following subsections.

3.1. Chemical Vapor Deposition

CVD is one of the most common methods in which 2D materials such as graphene are
formed by gaseous substances reacting on the substrate surface or in the gas phase. Kaner
et al. reported one of the earliest syntheses of graphitic BCN films by thermal decomposition
of boron trichloride, ammonia, and acetylene at 400–700 ◦C in 1987 [34]. Since then, diverse
modified CVD processes have been proposed to prepare B-C-N ternary materials, i.e., ambient
pressure CVD (APCVD), low-pressure CVD (LPCVD), microwave plasma CVD (MPCVD),
laser CVD (LCVD), and plasma-enhanced CVD (PECVD) [27,35–37]. Varying CVD experi-
mental parameters such as temperature, time, buffer gas, precursor and substrate selection,
and distance between the source and the substrate can control the layer structure, thickness,
micro-size, and orientation of the BCN material [38]. Yang et al. fabricated a graphene/h-BN
heterostructure using PECVD in which large-area graphene single crystals with a fixed stack-
ing orientation were successfully grown [39]. Tang et al. subsequently realized a growth of
micron-sized graphene domains on an h-BN substrate via a gaseous silane catalyst-assisted
CVD [40]. Ultra-flat h-BN has emerged as an ideal substrate for graphene nanodevices and
shows promise to engineer graphene’s electronic structure. Kim et al. recently reported a facile
CVD method using a single molecular precursor, N-tri-methyl borazine, to prepare h-BxCyNz
films on a Ni catalyst [41]. The atomic structure of the product closely resembles h-BC2N and
the bandgap decreased to 2.15 eV by arranging the B, C, and N atoms in an sp2 network. The
obtained h-BC2N films exhibited photoluminescence and electroluminescence as potential
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candidates for 2D light-emitting diode applications. Recently, Yi et al. successfully grew a 2D
hybridized BC2N film with a band gap of about 2.3 eV through the PECVD method [30]. The
mechanism of the temperature-dependent PECVD growth is illustrated in Figure 3.
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Above 500 ◦C, C atoms begin to deposit while the plasma will etch and remove some
C atoms, leading to the formation of a defective BCxN film. At 580–620 ◦C, deposition and
etching reach a relative equilibrium, resulting in the growth of h-BC2N. When the reaction
temperature is over 650 ◦C, C deposition and nucleation dominate and eventually produce
a thick graphitic BC2N film. Over the years, CVD has become a preferred technique for the
growth of high-quality BCN films with controlled defect sites and lateral sizes.

3.2. Pyrolysis

The advantages of CVD methods for preparing h-BCN lie in the simple preparation
principle and the ability to obtain large layered h-BCN single crystals. However, its
disadvantages include poor controllability of the reaction process, complicated operation,
high cost, and unsuitability for industrial production. Compared with CVD, the pyrolysis
method has the advantages of low cost, simplicity, high yield, and can be used for large-
scale industrial production. Through designing a special synthesis process, the composition,
morphology, and size of the BCN product can be controlled. This subsection summarizes
three categorized pyrolysis approaches.

3.2.1. Template-Assisted Methods

Due to the atomic similarity between B and C, nanostructured carbon materials with
various morphologies can serve as a template to prepare BCN materials. The structural
similarity between h-BN and graphite allows B and N atoms to replace C atoms on the
carbon skeleton during the reaction. At high temperatures, the boron source decomposes
into boron trioxide (B2O3) compounds, which react with nitrogen-containing gases (N2,
NH3) and carbon, ultimately forming BCN. The following reactions are involved during
the substitution:

2H3BO3 → B2O3 + 3H2O, (1)

B2O3 + 5C + N2 → 2BCN + 3CO, (2)

B2O3 + 2C + NH3 → 2BCN + 3H2O, (3)
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As a carbon template, carbon nanotubes (CNTs), activated carbon, graphite, and car-
bon nanocages have been used for the preparation of BCN nanotubes (BCNNTs), BCN
nanosheets (BCNNs) and BCN nanocages, respectively [42–47]. Luo and co-workers
reported a bio-hydrogel template method to manufacture 3D BCN ceramic aerogels
which possess improved crystallinity, increased SSA, and enhanced photocatalytic perfor-
mance [48]. Similarly, graphitic carbon nitride (g-C3N4) also offers an excellent platform to
synthesize BCNNs with various ratios of B, C, and N. Portehault et al. obtained nano- and
mesoporous BCN materials with high SSA, up to 1560 m2 g−1, by using the mesoporous
g-C3N4 as a hard template and BH3-NH2

tBu as the boron source [49]. Wang et al. used
g-C3N4 as a sacrificial template and boric acid (H3BO3) as the boron source to control the
formation of BCNNs [50]. The specific capacitance of the BCN product is 134.5 F g−1, which
is greater than the 47.2 F g−1 value of g-C3N4/G nanosheets at a scan rate of 5 mV s−1. Li
et al. produced a series of flake-like BCNNs by calcinating H3BO3 and g-C3N4 at different
reaction temperatures [51]. As shown in Figure 4, g-C3N4 is both implemented as a carbon
source and nitrogen source. C atoms are gradually substituted by B with the increasing
temperature. The carbon content decreased to 9.67 at% of BCN-800 (prepared at 800 ◦C)
from 25.33 at% of BCN-600. In addition, other templates of boron and nitrogen-containing
frameworks, metal−organic frameworks (MOFs), ionic liquids, and mesoporous molecular
sieves have also been used [52–54]. For example, Goyal et al. manufactured a hierarchical
porous BxCN material from a dimethylaminoborane precursor and an SBA-15 template [55].
BCN products can successfully replicate the porous structure of templates via this method.
However, the relatively complex preparation process and the difficulty of completely
removing the template also limit the application of template-assisted approaches.
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3.2.2. Precursor Pyrolytic Methods

Template-assisted methods often suffer the disadvantages of insufficient filling of
precursors, sophisticated and harmful template removal steps, a long synthesis time, and
high cost, which hinder their large-scale application. Conversely, template-free pyrolysis
is currently the most common and scalable method for synthesizing h-BCN. By simply
adjusting the synthesis process and changing reaction parameters such as temperature,
time, gas flow, and the B:C:N precursor ratio, the morphology, structure, and size of the
BxCyNz products can be regulated. For the high-temperature pyrolysis method, precursor
selection plays a vital role in deciding the final morphologies and properties of the BCNs.
Massimi et al. fabricated a ternary nanocrystalline BCN compound by using a single molec-
ular precursor, ethane 1,2-diamineborane [56]. The initial B:C:N ratio of the raw material
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was 1:1:1, while the BCN product presented a 0.11:0.76:0.13 stoichiometry, richer in C–C
networks with respect to the bulk. Zhang et al. successfully synthesized crystalline BC2N
quantum dots (QDs) with high yield by in situ two-step thermal decomposition of a single
sodium cyanoborohydride precursor in a hydrogen-rich environment [57]. Liu et al. re-
ported a synthesis of BCN nanorods using two easily accessible precursors with melamine
as a carbon and nitrogen source and H3BO3 as a boron source [31]. Through controlling the
carbon content via a simple oxidation process, BCN compounds exhibit colorful fluores-
cence properties under ultraviolet (UV) excitation. Giusto et. fabricated sp2-conjugated
B-C-N films from a simple solid precursor pyrolytic method at a lower temperature [58].
Through the thermal polymerization of a melamine and H3BO3 mixture at 550 ◦C, the
as-prepared thin BCN films showed tunable energy levels and band gaps with a near-UV
up to 460 nm photoluminescence emission via tuning the precursor content. Han et al.
demonstrated that a two-step reaction could be used to produce C-doped h-BNNS with the
usage of ammonia borane and ethylenediamine [59]. Figure 5a depicts the synthetic route
in which a polymeric precursor is firstly produced and then the BN nanosheet is formed
with uniformly dispersed carbon atomic clusters. Electron microscopic characterization
results (Figure 5b–g) indicate that h-BCN has a sheet-like morphology and sp2 hybridized
B-C-N structure. Electron energy loss spectroscopy (EELS) mapping confirms that C atoms
are distributed in small atomic clusters throughout the h-BN framework.
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from [59]. Copyright 2021, Elsevier.

Except for the above precursors, it is more common to introduce an extra carbon
source to finely manipulate the composition of BCN products [60]. In general, BCN can be
obtained from the thermal transformation of B, C, and N precursors at high temperatures.
For example, Huang et al. reported a synthesis of semiconducting BCN materials via the
thermal decomposition of H3BO3, urea, and glucose mixtures at 1250 ◦C for 5 h [61]. The
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as-prepared products showed promise in catalyzing H2 or O2 evolution from water as well
as CO2 reduction under visible light irradiation. Wang et al. acquired a highly porous
BCNNS via the thermal pyrolysis of poly(ethylene oxide-co-propylene oxide) (p123) and a
polymeric gel precursor which was formed by hydroxyl and amino group cross-linking
between polyvinylic alcohol (PVA), H3BO3, and guanidine carbonate [62]. The BCNNS
products had a surface area of up to 817 m2 g−1 and exhibited a comparative oxygen reduc-
tion reaction (ORR) performance to commercial Pt/C and carbon materials in both alkaline
and acidic solutions. Zou et al. developed an effective synthetic approach for BCNNTs
via the assembly and pyrolysis of H3BO3, urea, and polyethylene glycol (PEG) [63,64]. It
was found that PEG-2000 favored the formation of BCNNTs with segregated B–C and N–C
bonds. Compared to commercial Pt/C catalysts, BCNNT products exhibit size-dependent
ORR performance with Pt-like ORR activity and superior ORR stability. Zhang et al. subse-
quently used a similar method to prepare BCNNTs which were considered as ideal platform
catalysts to clarify the origin of the activity, similarity, and difference of nonmetallic car-
bon and BN materials [65]. The B, C, and N contents of BCNNTs can be regulated in a
wide range by varying the PEG precursor content, while the O content of BCNNTs can
be regulated via a low-temperature oxidation in air. BCNNT catalysts show an enhanced
methanol conversion of 29% and high selectivity to formaldehyde which is up to 54%.
Hence, the precursor pyrolytic method is becoming a prevalent process for nanostructured
BCN synthesis because it is stable, cost-effective, and is easy to expand in scale to meet
industrial production requirements.

3.2.3. Molten Salt Synthesis

Molten salt synthesis (MSS) is another widely used method to prepare BN-based
nanomaterials [66–68]. As illustrated in Figure 6, the precursor will be converted to BCN in
melting salt and eventually form different products such as nanosheets or nanoparticles
after removing the solid salts. The salt melting point, precursor solubility, and system
stability are extremely important factors which will influence the reaction rate, particle
size, and surface morphology of the BCN product. Lei et al. reported a facile synthesis of
BCN nanoparticles in a eutectic LiCl/KCl salt melt with the usage of sodium borohydride
and guanidine raw materials [69]. Relying on the LiCl/KCl melting salt, the reaction
temperature decreased to 700 ◦C without any other post-treatment and harsh experimental
conditions compared to CVD and pyrolysis processes. Liu et al. quickly obtained a thin
BCNNS product from a single molecular precursor ethylenediamine bisborane (EDAB) at
1000 ◦C via MSS [33]. During the synthesis, a liquid reaction environment forms from the
KCl/NaCl melting salt which will accelerate the dissolution of precursor molecules and
prevent the self-agglomeration of BCN layers. For high-temperature pyrolytic treatment,
bulk BCN products are quite often acquired after the pyrolysis of B, C, and N precursors.
Instead, MSS tends to favor the formation of thin 2D BCNNS because of the rapid mass
transport and quick solvation of the precursor molecules in the liquid melting salt envi-
ronment [70–72]. Jing et al. utilized H3BO3, tripolycyanamide (N source), and PEG as the
precursors to produce boron carbon oxynitride (BCNO) nanosheets at 750 ◦C through the
KCl/NaCl molten-salt-assisted method [73]. Zhang et al. attained atomically thin BCNNS
through decomposing boron oxide, melamine, and glucose mixtures in a KCl/NaCl salt
melt at 1250 ◦C for 5 h [74]. Compared with the bulk BCN material prepared by the direct
pyrolysis of precursor mixtures, the semiconducting BCNNS which are prepared via the
molten-salt-assisted assembly growth strategy have atomic-level thickness (0.4 nm), micron
lateral size (~10 µm), and enhanced photocatalytic activity for H2 evolution. Wang et al.
subsequently investigated the effects of molten salt type and carbon content on the forma-
tion of BCNNS using the same starting materials [75]. It was found that LiCl-KCl melting
salt was more favorable than NaCl-KCl as a liquid melting medium for the growth of BC-
NNs. This is because the lower melting point of LiCl-KCl (353 ◦C) compared to NaCl-KCl
(657 ◦C) is conducive to quicker BCN formation in a liquid environment. Furthermore,
the higher average electronegativity of cations in the melting LiCl-KCl salt can provide
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higher solubilities for the formed B and N intermediates. When the C content increases to
40% (molar ratio), the obtained BC0.4N products have a sheet-like morphology of about
10 nm thick and an SSA as high as 484 m2 g−1. To conclude, the swift solvation and
accelerated mass transfer of the reactants in melting salt are beneficial to the production of
nanostructured BCN materials.
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3.3. Other Methods

A solvothermal method was used to prepare BCN materials with the utilization of
different precursors. Huang et al. reported that a solvothermal reaction of CH3CN·BCl3
and lithium nitride using benzene as the solvent had been successfully applied in the
synthesis of BCN phases at 300 ◦C and less than about 7 MPa [76]. Wang et al. fabricated
three different BCNNs with tuned C contents (5.5–14.3%), SSA (82–290 m2 g−1), and
morphologies (ultrathin nanosheets, triangular plates) by using ammonium fluoroborate
(NaBH4), sodium azide (NaN3), and alcohol as reactants at different temperatures. This
work demonstrates that BCNs are promising nonmetallic catalysts in dehydrogenation
applications. BCNs could also be prepared through the chemical or mechanical exfoliation
from a bulk material [10]. Shi et al. obtained large size (1–20 µm) and ultrathin (thickness
of ≈1–3 nm) BCNNs with a complete lattice structure through a novel “ultrasonic ball
milling” strategy [77]. This strategy achieved the synergistic utilization of shear force and
friction force by adding moderate sapphire (Al2O3) abrasive in the liquid phase system,
producing high-quality BCN materials. Interestingly, Li et al. utilized molten hydroxide to
chemically exfoliate bulk h-BN in a top-down method [78]. During the reaction of h-BN
and hydroxides, cations (Na+ or K+) and anions (OH−1) are inserted into the interlayer gap
of BN in self-curling nanosheets, ultimately promoting the detachment of BN sheets from
the parent h-BN material. This method can be extended for efficient chemical stripping of
BCNNs from bulk BCN materials [24].

Some selected BCN synthesis methods reported in the literature are summed up in
Table 1. Among all the above-mentioned approaches, using CVD techniques to prepare
BCN is limited due to the expensive substrate, high temperature and difficulty to operate.
The solvothermal method and chemical or physical exfoliation are of high cost and may
have toxic chemical effects [18]. The template-assisted method requires specific templates
and a time-consuming removal process and is not a cost-effective approach. Precursor
pyrolysis and MSS are relatively easier, less time-consuming, and more efficient to study
the nano-structures and intrinsic properties of BCN materials at the atomic level. Through
arranging the B, C, and N compositions, advanced nanostructures and desired products
can be obtained via pyrolysis.
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Table 1. Table highlighting the relevant literature on BCN synthesis parameters.

Method Materials with Composition (B:C:N) in
Atomic Ratio (%) Precursor Temperature (◦C) Properties of Products Advantages/Disadvantages Ref.

CVD
2D h-BC2N
(25:48:27)

BH3·NH3, CH4,
SiO2/Si substrate 580~620 • Band gap of about 2.3 eV, p-type

conducting property
• Can produce high quality BCN

films
• High cost; complicated operation

[30]

h-BxCyNz films N-tri-methyl borazine 1000 • Bandgap decreased to 2.15 eV [41]

Template-assisted
methods

3D BCN ceramic
aerogels (55.5:10.7:30) H3BO3, urea, starch, NaCl 1250 • 880 m2 g−1 • Replicate the porous structure of

template
• Insufficient filling of precursors;

sophisticated and harmful template
removal steps

[48]

BCNNs (16.09:58.77:10.72) g-C3N4, H3BO3 900 • 330 m2 g−1 [50]
Hierarchical BxCN

(26.9:60.4:12.7)
Ethylenediamine,

dimethylaminoborane, 600 • 620 m2 g−1 [55]

Precursor pyrolysis

BCN thin films
(9.4:34:56.6) Melamine, H3BO3 550 • Bandgap decreased to 2.71 eV • Feasible, cost-effective, stable, and

scalable
• Long-time synthesis at high

temperature is sometimes adverse
for the preparation of BCN

nanomaterials

[58]

BCNNs (42.5:8:39.5) B2O3, glucose, urea 1250 • Bandgap of 2.72 eV, 520 m2 g−1 [61]

BCNNs (11.48:76.02:12.5) PVA, H3BO3, guanidine
carbonate salt 900 • 817 m2 g−1 [62]

BCNNT (16.16:66.2:15.06) H3BO3, urea, PEG-2000 900 • 890 m2 g−1 [63]

Molten salt synthesis

BCNNS EDAB, KCl-NaCl 1000 • Bandgap decreased to 1.90 eV • Time-saving, green, and beneficial
to prepare nanostructured BCN

materials
• Small crystals, corrosion to

furnace tubes

[33]

BCNO nanosheets Tripolycyanamide,
H3BO3, PEG, KCl-NaCl 750 • Lamellar structure with a

thickness of ~5.8 nm [73]

BCNNS B2O3, melamine, glucose,
KCl-NaCl 1250 • Bandgap of 2.56–2.95 eV [74]

Solvothermal method h-BCN phases (14.43:36.63:20.78) CH3CN·BCl3,Li3N,
benzene 300

• Hexagonal structures containing
very small single crystals and

polycrystalline
• Low temperature; can maintain

complete lattice structure
• High cost and may have toxic

chemical effects

[76]

Ultrasonic ball milling BCNNS Bulk BCN, Al2O3 30 • A lateral size of 1–20 µm and a
thickness of 1–3 nm [77]
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4. Application of Boron Carbon Nitride in Supercapacitors

Carbon-based nanomaterials such as activated carbon, CNT, and graphene are ex-
tensively applied in energy conversion and storage while h-BN is rarely employed in
electrochemical energy systems because of the wide bandgap and insulating nature of BN.
However, h-BN can actually be used to alleviate the thermal deformation of conventional
organic separators, weak solid electrolyte interface layers of metal anodes, and electrocata-
lyst poisoning in electrochemical systems due to its chemical and thermal stability, and high
mechanical strength [9,79]. In recent years, BCN has come to be regarded as a promising
electrode material for next generation SCs since it combines the excellent physicochemical
properties of h-BN and graphene. A summary of the latest research on the application of
BxCyNz materials for supercapacitors is presented in this section.

4.1. BN-Graphene Composite-Based Supercapacitor

Theoretical calculations and experimental studies have demonstrated that the compos-
ite of h-BN and graphene can be applied in SCs [15,16,80–84]. In recent years, h-BN has
come to be regarded as an ideal candidate for fabricating van der Waals heterostructures
when combining it with graphene due to its remarkable mechanical, thermal, and electronic
properties [15,16,82–84]. This class of h-BN/graphene heterostructures can be tuned for excep-
tional properties such as regulating the intrinsic electronic structure of h-BN and enhancing
the carrier mobility of graphene, or used for SCs [85]. Byun and co-workers utilized the
assembly of h-BN and reduced graphite oxide (rGO) to construct h-BN/graphene-based van
der Waals heterostructure nanocomposites through electrostatic interaction [86]. The ideal
hybrid BN/rGO film structure is schematically illustrated in Figure 7a. Figure 7b,c present
the macroscopic morphology and microstructure of the film, respectively. Through mixing
and vacuum-filtering amine-modified rGO and a hydroxyl-functionalized h-BN dispersion, a
BN/rGO film was acquired with a uniform multilayer architecture. It was further demon-
strated that the BN/rGO film could be used as electrodes for flexible SCs with excellent
structural flexibility. As shown in Figure 7d, the device displayed 100% capacitance retention
even after 1000 bending tests, which evidences that BN in a heterostructure composite can
enhance the mechanical strength of the film as a nanofiller.
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from [86]. Copyright 2016, American Chemical Society. (e) Illustration of the possible atomic structure,
electronic band structure, and charge transfer for graphene and F-doped/undoped h-BN/rGO.
Reprinted with permission from [87]. Copyright 2018, Elsevier.
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Zheng et al. reported a well-constructed h-BN/graphene heterostructure material
which showed a maximum capacitance of 134 F g−1 and excellent cycling stability (~96%
retention @ 10,000 cycles at 10 A g−1) based on the liquid-phase exfoliation method [88].
Pati et al. fabricated a 2D/3D heterostructure material of h-BN/rGO with the maximum
capacitance of 304 F g−1 (at 1 A g−1) in alkaline conditions and a good rate capability (98%
of the initial capacitance after 10,000 cycles) via a hydrothermal assembly strategy [89].
Saha et al. elaborately investigated the effect of different concentrations of rGO within
the hBN/graphene composite on the electrical and electrochemical properties of an h-
BN/rGO heterostructure via a simple pyrolysis method [90]. It was found that increasing
the rGO amount caused the transition from pseudocapacitance to EDLC and the sheet-like
h-BN/rGO superlattice exhibited its highest specific capacitance of ~960 F g−1 at a scan
rate of 10 mV s−1. Saha and co-workers subsequently found that a fluorine (F)-doped
h-BN/rGO superlattice exhibited a decreased bandgap (~1.79 eV) compared to the h-
BN/rGO superlattice (∼2.1 eV) [87]. As shown in Figure 7e, the electrochemical activity of
electrode materials changes from n-type semiconductor to p-type when element doping
happens. The h-BN/rGO superlattice exhibits an enhanced specific capacitance (942 F g−1,
10 mV s−1) compared to graphene/rGO because charge transfer occurs not only on the
surface of the electrode material, but also in the interior of h-BN/rGO superlattice at specific
redox potentials. Conversely, F doping triggers the shift of Fermi level towards the valance
band of the electrode, that is, to a lower energy level compared with the redox potential of
the electrolyte. The charge transfer of the F-doped h-BN/rGO superlattice occurs from the
electrolyte to the electrode at the interface, leading to an increased capacitance (1250 F g−1,
10 mV s−1) in comparison to the EDLC capacitance.

Owing to the similar lattice constant with graphene, high mechanical strength, as well
as the pseudocapacitive nature of h-BN, h-BN can serve as a 2D substrate and electrolyte
channel in h-BN/graphene heterostructure nanocomposites, thus effectively enhancing
the electrochemical performance and flexibility of supercapacitors [16]. However, the
synthesis of these h-BN/graphene heterostructures always suffers from problems such
as a high cost and low efficiency. The traditional micromechanical cleavage of bulk h-BN
and graphite crystals can maintain the complete lattice of the parent materials while the
low yield limits its practical application. The CVD method can realize the direct growth
of h-BN on graphene, but the complex transfer procedure and expensive catalysts also
hinder the large-scale preparation. Liquid exfoliation combined with vacuum filtering is an
alternative low-cost method to fabricate such h-BN/graphene heterostructures, whereas
the limitations, such as poor dispersity and the small lateral sizes of the products, still
need to be solved [86]. To conquer these shortcomings, a potential effective solution is
to functionalize h-BN or graphene in advance. For example, ball milling allows large-
scale production of aminated or hydroxylated h-BN/graphene. Then, h-BN/graphene
heterostructures can be scaled up through filtering or printing.

4.2. BCN-Based Supercapacitor

Ternary BCN materials also show improved supercapacitor behavior compared to
carbon-based materials [91]. Heteroatom doping not only modifies the surface polarity, but
also affects the pseudocapacitive effect of carbon materials. The specific capacitance of BCN
material is 247 F g−1 at 2 mV s−1, which is more than twice that of dopant-free carbon ma-
terials (111 F g−1 at 2 mV s−1) [91]. As compared to h-BN/graphene heterostructures, the
synthesis of BCN nanomaterials is more productive and easier to modify. In the past decade,
various BCN nanomaterials have been successfully used in supercapacitor applications. For
example, Iyyamperumal et al. synthesized vertically aligned BCN nanotubes (VA-BCNs)
with high specific capacitance (321.0 F g−1) from a single melamine diborate precursor
using the CVD method [92]. Owing to the synergetic effects arising from the heteroatom
doping and the well-aligned nanotube structure, VA-BCNs display a higher specific capaci-
tance than nonaligned BCNs (167.3 F g−1) and undoped multiwalled carbon nanotubes
(117.3 F g−1). Subsequently, Zhou et al. fabricated a high-performance electrochemical
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capacitor based on vertically aligned BC2N nanotube arrays (VA-BC2NNTAs) via a one-step
solvothermal method using NaBH4, NaN3, and hexadecyl trimethyl ammonium bromide
(CTAB) as starting materials at low temperature [93]. The well-aligned nonbuckled tubular
structure of VA-BC2NNTAs means it possesses an extremely high specific capacitance
(547 F g−1) and maintains an excellent rate capability and durability. Dou et al. reported
a BCN graphene electrode material which is prepared through the thermal annealing of
graphene oxide and melamine diborate mixtures at 600–1000 ◦C [94]. The specific capaci-
tance of BCN (130.7 F g−1 at 0.2 A g−1) is nearly 1.7 times that of an undoped graphene
electrode (77.4 F g−1). Wu et al. prepared 3D B and N co-doped graphene aerogels (BN-
GAs) in the presence of GO and ammonia boron trifluoride using a hydrothermal method,
showing larger specific capacitance (62 F g−1) and higher energy density (≈8.65 W h kg −1)
and power density (≈1600 W kg −1) with respect to undoped GAs in all-solid-state super-
capacitors (ASSSs) [95]. Element doping on the honeycomb structure will introduce a large
number of defects in BCN materials and increase the number of active sites for electron
transfer [96,97]. Wang and co-workers successfully prepared bandgap-tunable porous
BCNNs using boric acid, urea, and glucose precursors by annealing and exfoliating [98].
Figure 8a schematically illustrates that the bandgap of BCNNs ranges from 5.5 to 1.0 eV as
the carbon content increased. The as-prepared BCNNs possess a sheet-like morphology
with a thickness of approximately 1.71 nm, as shown in Figure 8b. The as-prepared BCNNS
also have massive active sites as an electrode material, resulting in an enhancement in
capacitance through faradaic contributions. A possible pseudocapacitive mechanism is
depicted in Figure 8c. The great binding energy between pyridinic sites with H+ promotes
positively the increase in pseudocapacitance. Due to the large SSA (600.9 m2 g−1) and good
conductivity (10.8 S m−1), BCNNS samples exhibit great specific capacitance (464.5 F g−1),
excellent cycle stability (98.5% of the initial capacitance after 10,000 cycles), and ultrahigh
energy density (50.4 W h kg−1, in 1 M Et4NBF4 electrolyte, displayed in Figure 8d). Karbhal
and co-workers recently manufactured a BCN-based flexible micro-supercapacitor (MSC)
by using CO2 laser scribing [99]. The optical image, top view, and cross-section SEM
images of the MSC device are displayed in Figure 8e–h, respectively. The as-fabricated
BCN-based MSC device displays high specific capacitance (72 mF cm−2, at a current density
of 0.15 mA cm−2), excellent electrochemical stability (without any sign of further decay in
capacity/efficiency after 80,000 cycles), and remarkable flexibility.
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Figure 8. (a) Schematic illustration of the relationship between bandgap and C content of BCN;
(b) AFM image of BCNNS; (c) proposed pseudocapacitive mechanism of BCN-based electrodes;
(d) Ragone plots. Reprinted with permission from [98]. Copyright 2018, American Chemical Society.
(e) Optical image of the device; (f,g) top view and (h) cross-sectional SEM images of the device.
Reprinted with permission from [99]. Copyright 2021, Elsevier.
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In spite of the remarkable achievements of BCN materials applied in SCs, challenges
still exist to develop facile and effective approaches for the preparation of nanostructured
BCN materials. Similar to the synthesis of h-BN/graphene heterostructure nanocompos-
ites, the disadvantages such as being expensive and requiring toxic starting materials,
sophisticated instruments, and laborious operations hinders the practical application of
BCN materials. From the point of view of large-scale production and green synthesis, new
techniques should select nontoxic, low-cost, and easily accessible raw materials. Further-
more, pre/post-processing steps should be avoided to simplify the synthesis procedure.
In addition, the compositions of BCNs should be easily adjustable to determine the op-
timum B, C, and N source ratio. The defect sites in BCN skeletons can act as active sites
for charge transfer reactions, which is beneficial for electrode materials to improve the
electrochemical performance. It is important for the new synthesis techniques to prepare
BCN nanomaterials with large SSA and abundant active and conductive sites.

4.3. Strategies to Boost the Electrochemical Performance of BCN-Based Supercapacitors

In recent years, many strategies such as designing and fabricating porous and de-
fective BCN nanomaterials with diverse structures and constructing heterostructures or
nanocomposites have been applied to boost the electrochemical performance of BCN-based
supercapacitors [100–104]. For example, Shi et al. fabricated a BCN-polyaniline (PANI)-
based electrochemical capacitor which possesses a high voltage window of 3.0 V (1 M
Et4N BF4 as the electrolyte) and ultrahigh energy density of 67.1 W h kg−1 [105]. PANI
modification changed the EDLC behavior and stacked-layer structure of BCNNs, providing
a promising strategy to configure BCN-based composite electrodes for other energy storage
devices. In this subsection, supercapacitors with three types of BCN-based nanomaterial
electrodes and various building principles are briefly summarized.

4.3.1. 1D BCN-Based Electrode Materials

Owing to the structural merits, 1D BCN nanotubes/nanofibers exhibit tremendous
performance for energy storage materials because the unique hollow tubular structure can
effectively improve the ion diffusion channel properties of BCNNT-based SCs [106,107].
For instance, Li+ ions can diffuse into sites either on the outer or the inner surface of
hollow BCNNTs and can be inserted within the BCN layers of BCNNTs [108]. Xu et al.
successfully synthesized a Na0.76V6O15@BCNNT cathode with excellent capacity, good
cyclic stability, and an energy density of 238.7 Wh kg−1 (at 200 W kg−1) for lithium-ion
capacitors (LICs) [109]. Liang et al. reported a strategy for the in situ growth of BCNNTs
on carbon fibers and assembled a symmetric supercapacitor with a BCNNT electrode in
a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM·BF4) electrolyte [110]. The 1D
physical structure of BCNNTs is advantageous in maintaining the structural integrity and
resisting the damage caused by the swift adsorption/desorption of the electrolyte during
long-period charge/discharge cycles at high temperatures, leading to an enhancement
in the high-temperature cycle stability. Benefitting from the synergy between the high
conductivity of BCNNTs and the lamellar structure of MoS2, Tu and co-workers manu-
factured a highly dense BCN nanofiber core with a MoS2 shell for a high-performance
supercapacitor (446.3 A g−1 at current density of 0.25 A g−1) [111]. In short, 1D BCN
materials possess large SSA, high structural stability, and excellent mechanical strength,
leading to an enhanced capacitance and electrical conductivity. New advancements such
as combining metal oxides, carbon fibers, and other 2D materials are regarded as efficient
strategies to fabricate 1D BCN-based hybrid electrode materials for high-performance SCs.
Hybridization with pseudocapacitive materials is conducive for BCN-based SC devices to
enlarge their energy density values. However, it should be noted that the weak interaction
between 1D BCN materials and other materials tends to cause the uneven distribution or
untight contact on the BCN surface. Therefore, finding a new strategy to combine 1D BCNs
with functional materials still remains a challenge.
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4.3.2. 2D BCN-Based Electrode Materials

Focusing on SCs, 2D BCNNs and their nanocomposites as advanced materials have
been widely used due to their large energy storage capabilities, astonishing electronic
conductivity, and concomitant mechanical properties [112]. However, the inherent restack-
ing and stability of 2D honeycomb structures hamper the further increase in capacitance.
Pore/defect engineering and introducing a complementary high-performance 2D coun-
terpart material can improve the surface area and alleviate the stability issue of both 2D
materials, respectively, providing enhanced synergistic interplayed energy storage oppor-
tunities [113]. Panda et al. obtained hierarchal porous BCNNs (p-BCN) with extremely
high SSA (3310.4 m2 g−1) by KOH activation at high temperatures [114]. It was found
that the assembled symmetric p-BCN device possessed high energy and power densities
(17 W h Kg−1 and 4000 W kg−1) with high cycling stability. Zhang and co-workers de-
veloped a high-performance MSC using a 2D BCN nanomesh as the electrode material
with pseudocapacitive charge storage capacity [115]. Figure 9a schematically illustrates
the in-plane MSC configuration in which parallel integrated BCN micro-electrodes are
designed and PVA/H3PO4 gel serves as electrolyte for on-chip energy storage applications.
Figure 9b–f are the electrochemical characterizations of BCN-MSCs, which reveal that
BCNN900- MSCs have the highest areal capacitance (80.1 mF cm–2) and good cyclability
(capacitance retention of 92% after 10,000 cycles). Shi et al. designed a BCN-assisted built-in
electric field in a heterostructure and successfully broadened the voltage window of aque-
ous supercapacitors (1.2 V to 2 V in MnO/MnS@BCN-based symmetrical supercapacitors)
by utilizing the synergistic effect [116]. Nasrin and co-workers constructed an MXene/BCN
heterostructure electrode which shows a high specific capacitance of 1173 F g−1 (at 2 A g−1)
and an energy density of 45 Wh kg−1 [117]. Notably, the as-assembled solid-state de-
vice exhibits an ultra-high cyclability without any degradation after 100,000 cycles (100%
capacitive retention).
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Figure 9. (a) Illustration of the planar structure of MSC; (b) CV curves obtained at a scan rate of
5 mV s−1 and (c) at scan rates ranging from 10 to 100 mV s−1; (d) GCD plots; (e) areal capacitances;
(f) cycling stability curves of BCN. Reprinted with permission from [115]. Copyright 2021, Elsevier.

BCNNs are well suited for SC applications owing to their extraordinary thermal and
electrical conductivities, high SSA, excellent tensile strength and good flexibility. Unfortu-
nately, single BCN layers tend to restack because of the interaction between adjacent BCN
layers. Serious agglomeration issues will reduce the SSA and may prevent the diffusion of
electrolyte ions between BCN layers. However, defects will accelerate the charge transfer
reaction and an appropriate porosity may improve the electrical conductivity. Hence, it
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is still a challenge and desirable to design new routes to prepare porous and defective
BCN nanomaterials. In addition, coupling with other pseudocapacitive materials can also
alleviate the restacking issue of BCNNs and enhance the electrochemical performance of
2D BCN-based SCs.

4.3.3. 3D BCN-Based Electrode Materials

Another alternative type of electrode material platform for the assembly of BCN-based
SCs is 3D nanostructured materials. Compared with 1D and 2D nanomaterials, the infinite
growth from 3D features in their spatial structure make 3D BCN-based nanomaterials
possess abundant active sites and porous-and-loose characteristics, which is beneficial for
supercapacitors with high capacitance performance [118,119]. Tabassum et.al reported a
BCNNT architecture entangled on a 3D melamine-foam-derived carbon skeleton with high
surface area and hierarchical porosity which displayed a large capacitance of 344 F g−1 at
a current density of 1 A g−1 [120]. In addition, the as-prepared 3D BCN could be used as
electrodes in a symmetric supercapacitor (presenting a high energy density of 19.8 W h kg−1

and elevated power density of 5074 W kg−1) and the negative electrode in an asymmetric
hybrid supercapacitor (energy density of 72 W h kg−1 and elevated power density of
22,732 W kg−1). Zou and co-workers fabricated B, N co-doped holey graphene aerogels
(BN-HGA) with an SSA of 249 m2 g−1 and rich B-N motifs for flexible SCs [121]. The
electrochemical characterization results of the as-assembled BCN-based SCs are shown in
Figure 10a–g. The rich B-N motifs in the BN-HGA electrode cause the high surface polarity
and abundant redox sites for the enhanced pseudocapacitance (a capacitance of 456 F g−1

at 1 A g−1 in three-electrode systems using sulfuric acid as electrolyte). Meanwhile, the
integrated carbon matrix and the hierarchical 3D network facilitate the fast ion diffusion
in the electrode and adsorption in the high-viscosity gel electrolyte, resulting in a high
specific capacitance (345 mF cm−2 at 1 mA cm−2) and outstanding rate performance (80%
retention at 20 mA cm−2) for all-solid-state flexible supercapacitors based on the symmetric
BN-HGA electrodes. Liu et al. subsequently constructed a self-supported fluorine-doped
BCN (F-BCN) aerogel material for a symmetric supercapacitor with a maximum energy
density of 11.75 Wh kg−1 and 83% retention after 5000 charge and discharge cycles [122].
Fluorine doping leads to an increase in the defect density, expanding of the interlayer
spacing, massive electrochemical active sites, and faster diffusion of ions in the electrode,
thereby promoting the specific capacitance of 524.9 F g−1 at a specific current of 1 A g−1

for F-BCN. In addition, people have tried to change conventional 2D BCNNs into 3D
architectures using other 2D materials. Tu and co-workers have successively achieved
the assembly of 3D MXene/BCN microflowers and BCN/rGO broccoli for all-solid-state
flexible MSCs with remarkable mechanical flexibility [123,124].

3D BCN materials possess a highly porous structure, eminent SSA, as well as excellent
mechanical and electrical properties. The unique 3D structure of BCNs not only provides
extra electron moving channels, but also offers high electrochemical performance such as
large capacitance and excellent cycling stability. The template-assisted method, hydrother-
mal synthesis, CVD, and pyrolysis have been adopted to prepare active 3D BCN electrode
materials. However, the electrical conductivity will decrease with the existence of macro-
pores in 3D BCN, resulting in a reduction in the energy and power density values. In order
to solve this problem, constructing 3D BCN-based composites with other 2D materials is an
alternative to increase the accessible area for electrolyte diffusion and improve the charge
transfer reaction, thus enhancing the capacitance and energy density.

The recent development of BCN-based electrodes, fabrication approaches, and their
electrochemical performance as SCs are summed up in Table 2. Table 2 reveals that BCN-
based electrode materials exhibit an excellent electrochemical performance through large
specific capacitance, outstanding energy density, and power density in a high potential
window compared to the electrolyte. Moreover, BCN-based electrodes also present good ca-
pacity retention over a long cycle, demonstrating that BCN is a promising high-performance
electrode material for flexible device storage systems.
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Table 2. Performance of BCN-based electrodes in supercapacitors.

Electrode
Material Synthesis Method Surface Area (m2 g−1) Electrolyte Electrochemical

Performance Capacity Retention (%) Ref.

Asymmetric supercapacitors

h-BN/rGO
heterostructure

Liquid-phase
exfoliation method 371.2 2 M KOH 2.05 Wh kg−1,

1998.5 W kg−1
96% after 10,000 cycles at

10 A g−1 [88]

h-BN/rGO
superlattice Pyrolysis / 1 M Na2SO4

960 F g−1 @ 13 mA g−1,
73 Wh kg−1, 14,000 W kg−1 80% after 10,000 cycles [90]

BCN/PANI
nanocomposite

In situ
polymerization 146 1 M H2SO4

951 F g−1 @ 2 mVs−1,
14 Wh kg−1, 465 W kg−1 79% after 4000 cycles [104]

3D BCN Template assisted
pyrolysis 649 2M KOH

344 F g−1 @ 1 A g−1,
72 W h kg−1,

22,732 W kg−1
80.7% after 10,000 cycles [120]

Symmetric supercapacitors

BCN-PANI Ultrasonic ball
milling 166.5 1 M Et4N BF4

3 V, 672.0 F g−1@1 A g−1,
67.1 W h kg−1 89.6% after 10,000 cycles [105]

BCNNT CVD / 1 M aqueous H2SO4
68.125 F g−1 @ 0.5 A g−1,

1.51 Wh Kg−1, 100 W kg−1 73.6% after 1000 cycles [107]

BCNNT Template-assisted
method 581.6 1 M EMIM·BF4

177.1 mF cm−2

@ 5 mA cm−2,
112.5 Wh kg−1,
1253.8 W kg−1

86.1% after 5000 cycles [110]

BCN/MoS2
nanofiber CVD / 1 M aqueous KOH 446.3 F g−1 @ 0.25 A g−1,

33.3 Wh kg−1 91% after 5000 cycles [111]

Porous BCNNs Solvothermal 3310.4 1 M H2SO4
406 F g−1 under 1 A g−1,

17 W h kg−1, 4000 W kg−1 75% after 10,000 cycles [114]

MnO/MnS@BCN Hydrothermal and
annealing / 1 M aqueous Li2SO4

2 V, 698.9 F g−1 @ 0.5 A g−1,
75 W h kg−1

75% after 10,000 cycles at
10 A g−1 [116]
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Table 2. Cont.

Electrode
Material Synthesis Method Surface Area (m2 g−1) Electrolyte Electrochemical

Performance Capacity Retention (%) Ref.

BCN/MXene
heterostructure Pyrolysis 44.0 PVA/H2SO4 gel 1173 F g−1 @ 2 A g−1,

45 Wh kg−1 100% after 100,000 cycles [117]

F-BCN aerogel Hydrothermal and
annealing 496.7 6 M KOH 524.9 F g−1 @ 1 A g−1,

11.75 Wh kg−1
91.4% after 10,000 cycles at

20 A g−1 [122]

Micro-supercapacitors

BCN CO2 laser scribing / PVA/H2SO4 gel 72 mF cm cm−2

@ 0.25 mA cm−2 100% after 80,000 cycles [99]

BCN nanomesh Carbonizng gel
precursor 415 PVA/H2SO4 gel

3.2 V, 80.1 mF cm−2

@ 0.25 mA cm−2,
67.6 mWh cm−3

@ 0.8 Wh cm−3 (using
EMIMBF4/PVDF-HFP

electrolyte)

92% after 10,000 cycles [115]

BCN/MXene
microflowers

Hydrothermal and
sonicating / PVA/H2SO4 gel

89 mF cm−2

@ 0.5 mA cm−2,
0.0124 mW h cm−2,

3.1 mW cm−2

90.1% after 10,000 cycles [123]

3D BCN/rGO
broccoli Pyrolysis 607 PVA/H2SO4 gel

72.2 mF cm−2

@ 0.1 mA cm−2,
1175 mW cm−2

@ 2.5 mA cm−2,
11 mWh cm−2

@ 0.1 mA cm−2

95% after 10,000 cycles [124]

5. Conclusions and Future Outlook

This review mainly summarizes the synthesis, properties, and application of BxCyNz
materials for supercapacitors. The excellent mechanical, thermal, optical, and electrical
properties of h-BN and graphene can be combined and tuned in BCN nanostructures. The
energy storage mechanisms, fabrication approaches, and electrochemical performances
of 1D/2D/3D BCN-based SCs aimed at their structural types and parameters are also
reviewed. Through taking some breakthrough work as an example, the electrochemical
properties of BCN-based electrode materials have been greatly improved by optimizing
their structure and composition. However, most reported studies have adopted multiple
steps and complex process synthesis routes. From an energy and a manufacturing perspec-
tive, it is necessary to develop a simple, environmentally friendly, cost-effective, single-step
preparation method with high yield. In addition, designing and fabricating nanostructured
BCN-based materials with higher redox reactions and better pseudocapacitive behavior
is an essential step for the next-generation energy storage system with further improved
electrochemical performance. Herein, there are various directions for research work to carry
out, i.e., morphological modification such as the formation of nanotubes/nanosheets/3D
architecture and porosity development (introducing more electrochemical active sites
and enlarging the SSA), heteroatom doping (n-type or p-type to enhance conductivity),
construction of nanocomposite (using Faraday/Faraday materials).

Although considerable research progress on BCN-based electrode materials has been
significantly promoted by scientific and rational material design, there are still several
obstacles that should be addressed for the future advanced energy storage devices.

(1) It is still a challenge to synthesize semiconducting BCNs with both high electric
conductivity and pseudocapacitive performance. The most advanced technique for
synthesizing BCN nanomaterials is still lacking. To tune the electrochemical properties
of BCN materials, advanced synthesis techniques, i.e., constructing unique structures
such as vertically aligned BCN nanotube arrays, 2D porous nanosheets, and 3D
hierarchical 3D networks, and controlling the BCN compositions by varying the
combinations of starting materials, and designing novel synthesis routes, are required.

(2) The electron and ion transport properties of BCNs should be further increased during
the electrochemical processes. The restacking and irreversible agglomeration issues
may damage the porous structure of BCNs, influencing the charge transportation
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and electrolyte access to the BCN surface. Functionalized BCN materials are efficient
in inhibiting restacking of BCN layers and introducing more defect sites in BCN
skeletons. The methods of functionalization include doping and coupling with other
functional materials. Diverse functional materials such as metal oxides, conductive
polymers, carbon materials, and other 2D materials can be used to improve the
capacitance, energy, and power density of BCNs. Doping with heteroatoms such as F
and S can also change the electrical properties of BCNs.

(3) Constructing BCN-based heterostructures is an alternative while the weak interaction
forces in the hybrid structure are adverse for the interface stability during charging
and discharging. Heterostructures can alleviate the restacking of BCN and enhance the
electrical conductivity of nanocomposites. To make these materials viable, graphene,
Mxenem and other 2D materials can be incorporated via strong π-π stacking or weak
van der Waals interactions. A stronger bonding heterostructure should be considered
for follow-up research work.

(4) Additionally, the feasibility of BCN preparation on an industrial scale, the longer
time/cycles to maintain high performance and flexibility, and electrolyte selection
will all affect the electrochemical properties and the commercialization of BCN
electrode materials.

In summary, despite the abovementioned challenges, the porous structure, enhanced
surface area, abundant electrochemical active sites, and unique electrical properties of
BCN nanomaterials make them very promising for supercapacitor applications. Explicitly,
creating new ideas, adopting new nanoscience technology to create innovative materials,
and studying their structural composition for ingredient optimization with substantial
efforts are essential for high-performance BCN-based electrode materials.
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