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Abstract: This work describes the development of an embedded standalone measurement
system that monitors the aging of batteries using impedance spectroscopy. The system
generates a multisine stimulus that contains the frequency components at which the battery
impedance is measured. Coherent generation and sampling is assured, and Goertzel filters,
one for each measurement frequency, are updated with each new sample. This architecture
reduces memory requirements because the current and voltage of the measured samples
are discarded after processing. Aging is monitored, as the system is able to automatically
perform complete or partial charge/discharge cycles as well as measurement cycles without
requiring user interaction.

Keywords: impedance spectroscopy; battery aging; embedded measurement system;
multisine stimulus; coherent sampling

1. Introduction
Since their first commercialization by Sony Corporation in 1991 [1], Lithium-Ion

Batteries (LIBs) have become an indispensable part of modern technology. Their widespread
use has been driven by their characteristics, including their high energy density, low self-
discharge rate, reduced memory effect, and excellent cycling performance [2,3]. LIBs play
an important role in a vast range of applications, from consumer electronics (such as
smartphones, tablets, and wearable devices) to industrial power tools, medical equipment,
and electric vehicles (EVs). Additionally, they serve as crucial energy storage solutions in
renewable energy systems, helping to manage the intrinsic fluctuations in solar and wind
power generation [4–6].

The increasing demand for LIBs is reflected in market trends, with battery production
reaching 780 GWh in 2023, marking a 25 % increase from the previous year, and projections
indicating a rise to 9 TWh by 2030 [7]. The shift toward electric vehicles (EVs), driven
by strict emission standards and governmental incentives, highlights the critical role of
battery performance, energy density, and cycle life in ensuring the sustainability and
efficiency of these vehicles. As EV sales increases, with 14 million new EVs sold in 2023,
comprising 18 % of total car sales [7], efficient Battery Management Systems (BMSs) are
becoming essential for optimizing battery lifespan, safety, and performance [8,9]. A BMS
consists of hardware and software designed for the real-time monitoring of battery voltage,
current, and temperature, ensuring operation within safe limits. Without a BMS, batteries
could suffer from overcharging, deep discharging, or thermal runaway, which could
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lead to reduced lifespan and, in extreme situations, severe failures. However, due to the
nonlinear and complex electrochemical behavior of batteries, especially under varying
environmental and operational conditions, sophisticated estimation algorithms are required
for the accurate estimation of State-of-Charge (SoC) and State-of-Health (SoH), which are
critical battery parameters for energy management and performance optimization [10–12].

The SoC represents the remaining battery capacity, providing users and control sys-
tems with an indication of how much energy is left before the battery needs to be recharged.
The SoH indicates the battery’s overall condition and degradation over time, reflecting how
much of the battery’s original capacity remains after prolonged use. In some systems, when
the SoH drops below a certain threshold, typically around 80 % of the original capacity,
the battery is considered to have reached the end of its useful life [12,13]. Adequate estima-
tion of these parameters allows for better maintenance strategies, extended battery lifespan,
and optimized energy usage, particularly in large-scale applications such as electric vehicles
and grid storage [14].

Since direct measurement of a battery’s stored chemical energy is not feasible [3], SoC
and SoH estimation relies on indirect methods using battery voltage, current, and tem-
perature data processed through mathematical models [15,16]. Common estimation
techniques include Coulomb counting [17], open-circuit voltage (OCV) [18], Kalman
filtering [19,20], machine learning-based approaches [21], and curve fitting on the voltage
relaxation time [22]. However, these methods have inherent specific limitations, such as
reliance on accurate initial conditions, computational complexity, and sensitivity to aging
effects [23]. Additionally, uncertainty in these estimation methods can lead to inefficient
battery usage, premature charging cycles, and reduced overall lifespan of battery packs,
which increase costs and environmental impact.

Electrochemical Impedance Spectroscopy (EIS) is a promising alternative for battery
monitoring, allowing for the characterization of battery health and behavior [24–26]. EIS
measures the frequency-dependent battery impedance, offering detailed insights into
charge transfer resistance, electrolyte diffusion, and other electrochemical phenomena,
making it a versatile non-invasive tool for the characterization of overall battery condition.
By analyzing these impedance characteristics, EIS can provide accurate estimations of
SoC and SoH [27]. Despite its potential, the practical implementation of EIS in real-time
applications remains challenging due to the need for specialized measurement hardware,
substantial computational resources, and the difficulty of performing accurate measure-
ments under normal operating conditions [28,29]. In [30], a battery characterization system
is proposed, to be used in satellites, using curve fitting of the different ECM component
parameters, thus resulting in a large number of estimated parameters. A comprehensive
review of different estimation methods for electrochemical models can also be found in [31].

This paper presents the development of a proof-of-concept battery impedance mea-
surement system, capable of measuring impedance across a wide range of SoC and SoH
conditions. The system uses a Pulse Width Modulation (PWM)-generated multisine cur-
rent signal composed of 15 frequencies spanning from 50 mHz to 1 kHz to capture key
electrochemical phenomena. With coherent signal generation and Goertzel-based filtering,
there is no spectral leakage, therefore providing accurate estimation of voltage and cur-
rent frequency components. The architecture is designed to minimize memory usage by
discarding data samples immediately after they are processed. In addition, the system is
capable of performing full or partial charge/discharge measurement cycles, enabling the
continuous monitoring of battery aging without the need for user intervention. Finally,
the developed system offers a practical solution that can be integrated into a wide range
of applications. This includes everything from small consumer electronics to large-scale
renewable energy storage and electric mobility, helping to improve efficiency, sustainability,
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and the overall reliability of battery-powered systems. Although different commercial EIS
solutions are available on the market, recent research has also focused on microcontroller-
based EIS systems as cost-effective and customizable alternatives for battery monitoring
applications [32–34]. A comparison between these systems is shown in Table 1 to highlight
the differences relative to the proposed system. The system presented here offers the
flexibility for further studies and the optimization of frequency and amplitude choices,
as well as for the analysis of different estimation algorithms.

Table 1. Comparison between proposed system and other microcontroller-based EIS measurement systems.

Frequency
Range

Measured
Frequencies Stimulus Impedance

Estimation Algorithm
Battery

Charge/Discharge

Proposed
system 0.05–1000 Hz 15 Multisine PWM-generated Goertzel filters Included

[32] 0.5–5000 Hz 39
Sum of two PWM-generated

multisine signals FFT External

[33] 0.1–500 Hz 16 Sine-Sweep
Digital lock-in

amplifier based on
cross-correlation

Not Specified

[34] 0.1–100 Hz 24
Sweep of a square signal using

3 frequency components for each
input frequency

FFT External

The aim of this paper is to present a proof-of-concept embedded battery impedance
measurement system that enables accurate and automated impedance analysis across a
wide range of battery conditions. Accurate measurements are ensured by avoiding spectral
leakage through the use of multisine excitation and Goertzel-based filtering. The main
advantages of the system are low memory usage, autonomous operation, and flexibility for
further optimization, making it a valuable tool for the development of battery monitoring
systems in both small- and large-scale applications.

2. Electrochemical Impedance Spectroscopy
Electrochemical Impedance Spectroscopy (EIS) [35] is a useful technique for charac-

terizing the behavior of interfaces such as electrodes and electrolytes in batteries. The
technique provides insight into processes such as charge transfer reactions, diffusion,
and other electrochemical phenomena, making it a versatile and non-invasive tool for the
characterization of LIBs. EIS data may be used to analyze and estimate several crucial
parameters that describe battery condition, including the SoC and the SoH, potentially
solving the problems that conventional estimation methods face. In general, SoC(t) is
defined as the ratio between the present cell charge, Q(t), and the maximum cell capacity
at a given state of aging, Qmax(t), and is typically represented as a percentage

SoC(t) =
Q(t)

Qmax(t)
× 100 [%]. (1)

This definition ensures a 100 % SoC after each complete charge. An alternate definition
relates the present cell charge Q(t) with the nominal capacity of the battery Qn, defined by
the battery manufacturer. The SoH has been defined in the literature [12] as

SoH(t) =
Qmax(t)

Qn
× 100 [%]. (2)

The estimation of both SoC and SoH often relies on voltage measurements, Coulomb
counting, or model-based estimations. However, Electrochemical Impedance Spectroscopy
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(EIS) provides an alternative, physics-based approach to estimating SoC and SoH by con-
sidering the internal electrochemical processes of the battery [36,37]. The EIS method works
by applying a small-amplitude periodic perturbation, which can be either the current
(Galvanostatic Electrochemical Impedance Spectroscopy—GEIS) or voltage (Potentiostatic
Electrochemical Impedance Spectroscopy—PEIS), to the system under analysis. The reac-
tion of the battery is measured, through the acquisition of its voltage and current, which
are then processed to obtain its impedance frequency response. In this paper GEIS will
be used with a multisine current signal to capture relevant electrochemical characteristics
across a broad relevant frequency range—50 mHz to 1 kHz.

Excitation Signal Design

Broadband multisine signals as a source of excitation for EIS systems provide simulta-
neous measurement results at all frequencies of interest. This method considerably reduces
the testing time needed to obtain an EIS frequency response [38]. The system generates a
voltage multisine signal which is then converted to a current injected into the battery. The
designed voltage consists on the sum of sinusoidal components with a quasi-logarithmic
spacing, as in most EIS systems [32,38–40]. In this work 15 frequency components are used,
and their values fk are 0.05, 0.1, 0.2, 0.4, 1, 2, 4, 10, 20, 40, 80, 160, 320, 640, and 1000 Hz.
The voltage is

VIN(t) =
15

∑
k=1

Ak cos(2π fkt + ϕk) (3)

where ϕk is the phase of each sinewave and their amplitude Ak is the same for all components.
The phase of each sinewave plays a pivotal role in the design of the voltage waveform

and needs to be selected to minimize the voltage’s crest factor (CF), defined as

CF =
|Vpk|
VRMS

(4)

where Vpk is the voltage peak value and VRMS is its RMS value. Minimizing the CF ensures
that the signal-to-noise ratio (SNR) of the excitation voltage is optimized. Phases can be
randomly assigned, but generally this approach produces high peak values of the waveform
and poor CF values [41]. This is extremely relevant because a lower CF leads to a higher
SNR of the excitation voltage, which provides higher accuracy for EIS measurements.
The purpose of using 15 frequency components is therefore to achieve a balance between
the number of impedance frequency measurements that can be obtained from a single
acquisition process and the computational cost required to process these components. In
addition, if more components are added, another difficulty arises from the obtainable
signal-to-noise ratio (SNR)—more components will reduce the SNR and cause an increase
in the standard deviations of the estimated impedance component values.

The combination of phases that minimize the CF for a multisine signal is an open
research optimization problem [41–43], and in this work, the clipping algorithm is used for
minimization of the voltage’s CF. It is an iterative process starting with randomly assigned
phase values for each frequency bin, and is processed offline to design the voltage to be
used in the measurement system. After obtaining the initial time-domain voltage from the
first set of phases, the following steps are executed:
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1. Clip the time-domain voltage such that its amplitude is limited to a specified percent-
age of the current absolute peak value—the percentage starts at 75 % and is gradually
increased to 99 % during the iterations, thus reducing the clipping.

2. Determine the Discrete Fourier Transform (DFT) of the clipped voltage.
3. Restore the amplitudes to the initial desired values Ak while keeping the phases from

the DFT result.
4. Compute a new time-domain voltage using the Inverse DFT.
5. Determine the new CF.
6. If the CF reaches a desirable value, or there is no significant improvement, or the

maximum number of iterations is reached, the algorithm is stopped. Otherwise,
the algorithm returns to step 1.

The clipping algorithm is performed beforehand on a computer to optimize the
multisine signal. After the optimized signal is obtained, the signal sequential amplitudes
are programmed in the embedded measurement system. During the measurements, these
amplitude values are used to generate the voltage VIN(t).

Figure 1 illustrates the resulting excitation voltage after optimization. The multisine
voltage period is 20 s, which corresponds to the period of the lowest frequency component,
50 mHz. It has a CF of 2.96 which is within reasonable limits for a multisine broadband
signal with 15 quasi-logarithm frequency bins. The measured spectrum of the optimized
voltage is shown in Figure 2.

Figure 1. One period of the crest factor-optimized multisine voltage.

Figure 2. The measured spectrum of the crest factor-optimized voltage in Figure 1.

To comply with the sampling theorem, the sampling frequency should be at least twice
the highest frequency component, i.e., fsmin = 2 kHz. A sampling rate of 10 kHz allows for
10 samples per period for the highest frequency component while keeping the memory
requirements to store the excitation voltage reasonable.

The signal stimulus generation and acquisition sampling rate are obtained from the
same clock source, ensuring that, when a full period of the voltage and current are acquired,
there is no spectral leakage in the computation of the DFT [39]—which, in turn, enables
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the use of Goertzel filters to accurately estimate individual frequency components of the
measured battery current and voltage.

Since a higher amplitude of the excitation signal improves the SNR, and following the
conclusions derived in [38], a current amplitude of 50 mA is used in this work.

3. Embedded System Overview
The developed embedded system includes three key features: (i) EIS measurements

tailored for LIB technology; (ii) the capability to characterize an LIB using EIS across differ-
ent temperatures, charge levels, and life cycles to develop accurate SoC and SoH estimation
methods; and (iii) a possible platform for the future implementation of different methods
for on-line estimations of SoC and SoH when connected to any LIB. The architecture of
the developed system is shown in Figure 3. A four-wire connection is used to connect the
system to the battery being tested.

Figure 3. The architecture of the developed system. The three switches are controlled by
the MCU to select the system operating mode: charging; discharging; or performing EIS
impedance measurements.

In Figure 4 the flowchart of the implemented algorithm for EIS measurement is shown.
It illustrates the generation of the multisine stimulus, configuration of the ADC for the
measurement of voltage and current, calculation of the Goertzel filters, estimation of the
impedance, and application of the calibration coefficients to estimate the battery impedance.

A custom PCB, shown in Figure 5, was designed for compactness and increased
flexibility and includes the following: (i) a shunt current measurement resistor; (ii) a
stimulus conditioning module which converts voltage to current; (iii) separate charge-
and-discharge circuits for a 3 A maximum current (corresponding to a 1 C-rate for 3 A·h
batteries); and (iv) connection to an external temperature sensor.
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Figure 4. A flowchart of the main algorithm for stimulus generation, the acquisition of voltage and
current samples, the calculation of the Goertzel filters, and impedance estimation.

Figure 5. Custom PCB of the developed analog front end to measure the battery impedance, and per-
form automated charge/discharge cycles.

3.1. Microcontroller Unit

The STMicroelectronics STM32F407G-DISC1 development board is used for compu-
tational power. It includes a high-performance ARM Cortex-M4 processor with a clock
speed of up to 168 MHz. Its set of peripherals and interfaces includes a 16-channel 12-bit
ADC module, two 12-bit DACs with DMA, 1 MB of flash memory, and a USB interface.
Microcontrollers from the same family have been used in several experimental setups for
battery state estimation and EIS instrumentation [32,44–46].

3.2. Excitation Current Source

The EIS excitation current is sourced by an Improved Howland Current Pump (IHCP)
circuit, as shown in Figure 6. The selected amplifier is an Analog Devices LT1217 with a
maximum output current of 100 mA. This IHCP is a voltage-controlled current source with
R1 = R2 = R3 = 1 kΩ, R4 = 100 Ω and R5 = 898 Ω, resulting in a battery current range
of IBAT = ±50 mA obtained from a control voltage range of ±5 V connected at VIN. This
±5 V input voltage range is obtained from the STM32 DAC output ([0, 3.3] V range) with a
differential amplifier after subtracting a 1.65 V constant voltage.
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Figure 6. Improved Howland Current Pump (IHCP) circuit.

3.3. Current Measurement Circuit

There are two different current measurement ranges. When an EIS measurement is
being performed, the current range is ±50 mA, and when the cell is being discharged
or charged, the current range is ±3 A. As shown in Figure 7, the current is sampled
using a 0.1 Ω resistor (Rs) and then amplified by an Analog Devices instrumentation
amplifier (AD620) with G = 39, leading to ±195 mV and ±11.7 V ranges for each mode,
respectively. The two ranges have different measurement circuits with different gains,
leading to two different ADC channels. Since the rated inputs of the ADC of the STM32
are in the [0, 3.3] V range, an offset voltage of 1.65 V is added to adapt these voltages into
unipolar voltages. To protect the ADC inputs, two anti-parallel Schottky diodes are used to
limit the output to normal voltage levels for both measurement circuits.

Figure 7. Current measurement circuit.

3.4. Voltage Measurement Circuit

During charge-and-discharge cycles VBAT(t) is measured with a simple voltage divider
whose output is connected to VADC4. When performing EIS measurements, the battery
voltage contains a DC component and an AC response to the applied current perturbation,
VBAT(t) = VDC + VAC(t). To measure the EIS response, VAC(t), it is necessary to remove
the VDC component. This is achieved by sampling VBAT(t) with VADC4 and averaging the
results to estimate VDC. The value to be subtracted is dynamically generated through the
sum of two filtered Pulse Width Modulation (PWM) outputs, as shown in Figure 8. The
PWM2 signal provides most of the required amplitude, with a 45.79 mV resolution, while
the other (PWM1) provides increased resolution, 457.9 µV, for fine-tuning.
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Figure 8. The circuit for generating the DC component of the measured battery voltage.

A differential amplifier circuit is used to subtract the PWM generated VDC from VBAT(t)
(Stage 1), and its output is amplified 200 times and converted to a unipolar voltage by
adding 1.65 V (Stage 2), as shown in Figure 9.

Figure 9. Battery EIS voltage response, VAC(t) = VBAT(t)− VDC, of measurement circuit.

3.5. Impedance Estimation

To estimate the impedance at the different target frequencies fk, the voltage and current
components at those frequencies need to be estimated. Since only 15 frequency compo-
nents are required, it is memorywise more efficient to compute them using the Goertzel
algorithm [47] instead of computing the full DFT of the voltage and current signal. The
Goertzel algorithm is a second-order IIR filter used to efficiently estimate an individual
Discrete Fourier Transform (DFT) component. When only a small set of frequencies of
the DFT is required, a set of Goertzel filters are more efficient in both computation and
memory usage when compared with the complete FFT (Fast-Fourier Transform) [48,49].
The coherence between the generated and measured signals eliminates spectral leakage, en-
suring that the Goertzel algorithm provides accurate estimations of the desired voltage and
current frequency components. The impedance, at each frequency, is obtained through the
amplitude and phase of the voltage and current Goertzel-estimated frequency components.
The proposed system impedance measurement system was calibrated using a commercial
instrument with basic accuracy of 0.08 % across the measurement frequency range and the
relevant impedance magnitude.

4. Measurement Results
The battery used for the EIS measurements was a CELLEVIA BATTERIES L502248

450 mA·h Lithium-Polymer (LiPo) cell, which was placed in a temperature-controlled
chamber with a setpoint of 25 °C. Voltage and current measurement circuits were calibrated
with an Hewlett Packard HP34401A multimeter.

The test process sequence that was used in this work is as follows:

1. Fully charge and discharge the battery 5 times, ending with it fully discharged (includ-
ing rest periods after each charge and discharge).
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2. Perform EIS measurements with 12 repetitions to obtain the average impedance
parameters for each of the 15 frequencies.

3. If the battery was already fully charged, discharge it and go back to Step 1; otherwise,
go to Step 4.

4. Charge the battery up to 10 % of Qmax or until it is fully charged, wait for the battery
to rest, and go to Step 2.

4.1. Charge/Discharge Cycling Procedure

The cell is fully charged and discharged five times (5 cycles) between EIS measure-
ments so that an SoH study can be conducted. During the charging procedure, the maxi-
mum current is set to 500 mA (1.1 C-rate), while discharge is performed through a 10 Ω
resistor, resulting in a current between 250 mA and 420 mA [0.55 C-rate, 0.93 C-rate]. It is
considered that charging ends when the current is lower than 20 mA, and that discharging
is concluded when the battery voltage drops below 2.5 V. A full cycle takes approximately
4 h, including the rest periods, as shown in Figure 10. Due to the aging degradation of the
battery, the capacity corresponding to 100 % SoC, Qmax, obtained by calculating the final
Coulomb counting result, is updated after each complete discharge/charge cycle.

Figure 10. Overview of the different stages during a full discharge/charge cycle. The battery voltage
and current are shown for the discharge (a) and charge (c) processes. After each discharge or charge,
there are rest periods, where the battery voltage is monitored, shown in (b,d), respectively.

4.2. Measurements and Equivalent Circuit Model Fitting

The measurement process begins with the battery fully discharged, and with the
Coulomb counter reset to 0 A·h. The battery is then charged until the cumulative charge,
measured by Coulomb counting, reaches each successive 10 % of Qmax. After each in-
crement, the battery rests to achieve a steady state, after which an EIS measurement is
performed. Since the final Qmax may be lower than its original value, the SoC values are
recalculated using the new estimated maximum capacity. A single batch of measurements
takes around 6 h.

The EIS measurements, at each SoC, are performed 12 times (i.e., acquisition time is
240 s), therefore providing multiple voltage and current measurements at each frequency.
Although choosing a higher number of repetitions would improve the quality of the
measurements, the number of repetitions (12) was chosen as a balance between the time
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required to perform the acquisition and the accuracy of the measured impedance. From
these measurements, the battery impedance response is obtained. As an example, Figure 11
shows the average and standard deviation of the impedance magnitude and phase of the
battery at SoC ≈ 40 %. The standard deviations of the impedance magnitude and phase
for different SoC and SoH values are of the same order of magnitude as the ones shown in
Figure 11. The resulting standard deviations are higher at lower frequencies, suggesting
that the system could be improved by using higher amplitudes Ak at lower frequencies,
which can be gradually lowered as the frequency increases.

To extract useful information from the measurements, the Equivalent Circuit Model
(ECM) shown in Figure 12 was adopted. Rohmic models the electrolyte, electrodes and
separator resistances, while L represents the residual inductive behavior due to wires.
The Warburg impedance models the diffusion processes within the cell and is given by
Zwarburg = θw

/√
jω, where θw is the Warburg coefficient. The Solid Electrolyte Interfaces

(SEIs) are modeled by RSEI in parallel with the first Constant Phase Element (CPE), CPESEI,
with the parameters QSEI and αSEI. The CPE impedance is ZCPE = 1/(Q(jω)α). Similarly,
the double-layer capacitance of the cathode is modeled by RCT and the second CPE, CPECT,
with the parameters QCT and αCT. This results in a model with nine parameters: Rohmic, L,
θw, RSEI, QSEI, αSEI, RCT, QCT, and αCT. While the Warburg impedance can be considered an
inseparable part of the interfacial impedance [50], modeling it as an independent element in
series with the interfacial components is a common practice and will be used in this paper.

Figure 11. Average and standard deviation of the impedance magnitude (a) and phase (b) at
SoC ≈ 40 %.

Figure 12. ECM used for EIS data fitting.

Given the potentially broad search space associated with the nine ECM parameters
and the likelihood of local minima in the curve-fitting cost function, conventional optimiza-
tion methods may fail to yield reliable results. To overcome these limitations, a genetic
algorithm-based least squares fitting approach is adopted [51], with boundary conditions
set to ensure that the parameters remain within physically meaningful ranges. The pa-
rameters αSEI and αCT are bounded between 0 and 1, while the remaining parameters are
required to be non-negative.

Figure 13 shows the measured impedance of the battery, as a function of SoC, at the
different frequencies being studied, after the battery was cycled 55 times. The results
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presented include the magnitude, the phase, and a Nyquist plot showing the variation at
each SoC level.

The feature extraction from the measurements resulted in the ECM parameters pre-
sented in Figure 14. It shows the parameter evolution with SoC, along with the aging of the
cell as the number of discharge/charge cycles increases. Although parameter RCT shows
an increase when SoC lowers, this does not occur at SoC values close to 100 %. However,
at higher SoC values, the Warburg coefficient, θw, also increases. On the other hand, as the
number of cycles increases (i.e., the cell ages) resistances Rohmic and RSEI increase for all
SoC, while QSEI decreases.

These findings suggest that, in particular, the evolution of Rohmic, RSEI, and QSEI may
serve as a robust indicator of SoH evolution, while RCT together with θw can serve as
markers for SoC variations. Additionally, as parameter αSEI is always unitary, CPESEI is a
capacitor, and thus, future work will consider this change to the ECM.

Figure 13. A batch of EIS measurements after 55 charge/discharge cycles. The blue dots represent
the impedance measurements, while the black lines show the ECM-fitted response: (a) impedance
magnitude; (b) impedance phase; (c) Nyquist plot.
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Figure 14. A comparison of ECM parameters for different SoC values as the battery ages through
charge/discharge cycles. (a) Rohmic, (b) L, (c) θw, (d) RSEI, (e) QSEI, (f) αSEI, (g) RCT, (h) QCT, (i) αCT.

5. Conclusions
An impedance measurement system, specifically designed for LIBs, which has the

ability to measure impedance under a range of SoC and SoH conditions has been developed.
The system allows for battery characterization over variable charge/discharge C-rates, up to
a 3 A maximum current.

The system generates a multisine current signal with 15 frequencies, spanning 50 mHz
to 1 kHz, designed to capture electrochemical phenomena of the battery. Coherent gen-
eration/sampling is used to eliminate spectral leakage. Goertzel filters are thus used to
efficiently estimate voltage and current frequency components with a 10 kHz sampling rate.

The design is compact but can be further optimized by integrating the microcontroller
into the PCB and removing the charge/discharge circuits. This compact system, which
measures battery impedance and has the potential to estimate SoC and SoH, may be
seamlessly integrated into various battery applications.

The measurements performed showed that different SoC and SoH levels influence the
impedance of the selected equivalent circuit. In particular, SoC can possibly be inferred
from RCT and θw, while SoH predominantly influences the components associated with
the Solid Electrolyte Interfaces (SEIs) and the value of Rohmic. Since the use of a single
parameter may prove insufficient for SoH and SoC estimation, machine learning (ML)
methods could be explored to automatically detect relevant characteristics from measured
impedance and temperature data.

Although this study did not focus on the influence of the charge/discharge C-rate on
battery impedance, this system can serve as a versatile framework for expanding battery
analysis by considering the effects of different charging rates.
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