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Abstract: This study focused on the extreme heavy rainstorm that occurred in Zhengzhou in July
2021; approximately 380 people were killed or missing as a result of this storm. To investigate the
evolution behaviors of this rainstorm and take corresponding prevention measures, several methods
and models were adopted, including cloud modeling, preliminary hazard analysis (PHA), fault
tree analysis (FTA), bow-tie modeling, and chaos theory. The main reasons for this rainstorm can
be divided into the following three aspects: force majeure, such as terrain and extreme weather
conditions, issues with city construction, and insufficient emergency rescue. The secondary disasters
caused by this rainstorm mainly include urban water logging, river flooding, and mountain torrents
and landslides. The main causes of the subway line-5 accident that occurred can be described as
follows: the location of the stabling yard was low, the relevant rules and regulations of the subway
were not ideal, insufficient attention was given to the early warning information, and the emergency
response mechanism was not ideal. Rainstorms result from the cross-coupling of faults in humans,
objects, the environment, and management subsystems, and the evolution process shows an obvious
butterfly effect. To prevent disasters caused by rainstorms, the following suggestions should be
adopted: vigorously improve the risk awareness and emergency response capabilities of leading
cadres, improve the overall level of urban disaster prevention and mitigation, reinforce the existing
reservoirs in the city, strengthen the construction of sponge cities, and improve the capacity of urban
disaster emergency rescue.

Keywords: rainstorm; cloud model; PHA; FTA; bow-tie model; chaos theory

1. Introduction

From 17–23 July 2021, Henan Province in China suffered a rare heavy rainstorm and
severe flooding. On 20 July 2021, many deaths, missing persons, and property losses
occurred in Zhengzhou city. From 4 p.m. to 5 p.m. on 20 July 2021, the 1 h precipitation
in Zhengzhou reached 201.9 mm according to the China Meteorological Administration
(CMA) [1]. These disasters caused a total of 14.786 million people in 150 counties (cities
and districts) in Henan Province to be affected, and 398 people were killed or missing,
including 380 people in Zhengzhou city, accounting for 95.5% of the total casualties in
the province; the direct economic loss was 120.06 billion yuan, of which 40.9 billion yuan
was in Zhengzhou, accounting for 34.1% of the direct economic loss in the province [2]. A
rainstorm is a weather phenomenon that produces strong rainfall over a short period, and
many countries are plagued by rainstorms worldwide [3–5]. Risk assessment of accidents
caused by rainstorms is of great significance to improve the environment and protect lives.

Within a certain period, the greater the rainfall is, the more serious the consequences
are. Determining the grade of precipitation plays an important role in taking targeted
prevention measures. Geng et al. [6] investigated the flood risk in Quzhou city, China,
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based on fuzzy comprehensive evaluation. Falck et al. [7] adopted a stochastic error
model to generate an ensemble of rainfall fields. The fuzzy comprehensive evaluation
method can solve problems with uncertainty and fuzziness, but it cannot solve randomness
problems. The stochastic model is suitable for problems with uncertainty and randomness,
but it is difficult to deal with the problem of fuzziness. The cloud model can realize the
uncertainty transformation between qualitative concepts and quantitative data, and this
uncertainty transformation has fuzziness and randomness [8,9]. Since rainfall is affected
spatiotemporally and has uncertainty, fuzziness, and randomness, this study adopted the
qualitative and quantitative assessment functions of the cloud model to determine the
grade of the Zhengzhou rainstorm. The cloud model has been widely used in the field of
safety assessment, including in chemical plants [8] and casting workshops [9]. The cloud
model used to evaluate the grade of the Zhengzhou rainstorm has a certain theoretical
basis and can obtain reliable results.

To simplify the forecasting procedures, some scholars have adopted pure mathematical
models to forecast rainfall in recent years. To predict disasters, Pontoh et al. [10] constructed
a model of rainfall forecasting using a nonlinear autoregressive exogenous neural network.
To determine long-term hydrological system trends, Lin et al. [11] proposed a hybrid grey
model for forecasting annual maximum daily rainfall. Zhao et al. [12] proposed an hourly
rainfall forecast model based on a supervised learning algorithm to predict rainfall with
high accuracy and high time resolution. For mathematical prediction models, grey system
theory focuses mainly on issues, such as partial information unknowns [13]. The GM(1,1)
model is one of the most important models in the grey model group. There have been
research reports on the use of grey system theory in the prediction of rainfall, and the
prediction results were consistent with the actual situation [11]. It is an approximate model
and effective if the data series shows a behavior of exponent distribution. Therefore, the
GM(1,1) model was adopted to predict the rainfall in Zhengzhou. However, the formation
of rainstorms requires certain conditions, such as the supply of water vapor, the vertical
upward movement of the air, and the duration of rainfall. The intensity of rainstorms can
be predicted by the numerical simulation of these factors. However, the duration of rainfall
is affected spatiotemporally, and the movement of the air is quite complex and affected by
terrain, underlying surfaces, and human activities. It is difficult to predict rainfall without
knowledge of these basic data. The main purpose of researching rainfall forecasting in
Zhengzhou was to show that the rainstorm is affected by multiple factors, and the reasons
for the rainstorm are analyzed in detail later.

Rainstorms are severe weather phenomena, and a series of accidents can occur because
of a rainstorm. Brazdil et al. [14] reported that rain led to 205 fatalities in the Czech Republic
from 2000 to 2019, and the results showed that nearly half of the fatalities (49.8%) occurred
in the summer months. Tobin et al. [15] estimated the relative risk of crashes during
rain using a matched-pair analysis in Kansas for 1995–2014. Yoon et al. [16] collected
data of traffic accidents during rainy conditions from 2007 to 2017 in Seoul, South Korea.
Rainstorms can lead to a series of secondary disasters, such as flash floods, landslides,
mudslides, house collapses, and traffic and communication interruptions, which can bring
serious harm to the national economy and people’s lives and property. Previous studies
have mainly focused on the accidents caused by rainstorms [14–16], but they have failed
to conduct a deep analysis of the causes, consequences, and prevention measures of these
accidents. Preliminary hazard analysis (PHA) [17,18], fault tree analysis (FTA) [19,20], and
bow-tie models [21,22] are widely used to identify the causes, consequences, and prevention
measures for fatal accidents, and the results have shown that these methods can obtain
accurate accident data and reduce the risk of accidents. Therefore, PHA [17,18], FTA [19,20],
and the bow-tie model [21,22] were adopted to analyze rainstorms and secondary disasters.

The evolution mechanism of rainstorms plays an important role in preventing rain-
storm disasters. Luini [23] investigated the evolution of rain fields based on the spatiotem-
poral dimensions. You et al. [24] analyzed the evolution, energetics, and trend of heavy
rain-producing terrestrial low-pressure systems over the East Asian summer monsoon
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region. Lawal et al. [25] reported the temporal evolution of atmospheric parameter profiling
on rain height over two geo-climatic regions in Nigeria. The evolution of rainstorms is
affected not only by natural factors but also by human factors. With the development of the
social economy and science and technology, the influence of human factors on the evolution
of rainstorms is increasing. In addition, the evolution process of rainstorms is affected
not only by deterministic factors but also by random factors, showing certain randomness.
Previous studies have mainly focused on the influence of natural factors on the evolution of
rainstorms [23–25], but there is a lack of focus on the influence of human and management
factors on the evolution of rainstorms. Fortunately, chaos theory [26,27] has been adapted
to explore the comprehensive influence of humans, objects, the environment, and manage-
ment on the evolution process of accidents. For example, Xu et al. [27] investigated the
cross-coupling function of employee, object, environment, and management subsystems
on hydraulic support failure. In this study, chaos theory [26,27] was adopted to investigate
the influence of humans, objects, environments, and management factors on the evolution
process of rainstorms. Chaos theory has been theoretically and practically researched for
accidents. In this study, chaos theory was used to investigate the evolution process of
rainstorms, with the hope to expand the application scope of chaos theory.

This study proposed a composite risk assessment method for rainstorms. According
to the rainfall data in Zhengzhou and the national standard grade of precipitation (GB/T
28592-2012) [28], the precipitation grade of Zhengzhou on 20 July 2021 was determined
using a cloud model [8,9]. To explore the predictability of extreme weather from the
evaluation results of the cloud model, the GM(1,1) model [13] was adopted to predict the
rainfall in Zhengzhou in July 2021, and the validity and influencing factors of the prediction
results were analyzed. The PHA [17,18] was adopted to analyze the causes of rainstorms in
Zhengzhou, as well as secondary disasters caused by rainstorms. For flood disasters caused
by rainstorms, FTA [19,20] was used to investigate the basic reasons. For the Zhengzhou
subway line-5 accident that occurred due to the flood disaster, the bow-tie model [21,22]
was adopted to analyze the causes in detail. Chaos theory [26,27] was used to investigate
the cross-coupling effect of human, object, environment, and management factors on
rainstorms. Finally, suggestions were given to prevent rainstorms and secondary disasters.

2. Methods
2.1. About the Rainstorm

From 17–23 July 2021, Zhengzhou experienced a rare heavy rainstorm and severe
flooding. On 20 July 2021, Zhengzhou suffered heavy casualties and property losses.
Zhengzhou lost 380 people due to the disaster, accounting for 95.5% of Henan Province; the
direct economic loss was 40.9 billion yuan, accounting for 34.1% of Henan Province [2]. This
round of rainfall is equivalent to nearly 4 billion cubic meters of water, which is the most
extensive and strongest rainstorm process in Zhengzhou since meteorological observation
records have been available [2]. From 4 p.m. to 5 p.m. on 20 July 2021, the 1 h precipitation
in Zhengzhou reached 201.9 mm [1]. Three major rivers, including Jialu River, Shuangji
River, and Ying River in Zhengzhou city, all experienced large floods that exceeded the
guaranteed water level, and the process floods all exceeded the historical maximum. This
rainstorm far exceeded Zhengzhou’s existing drainage capacity and planned drainage
standards. There are 38 drainage zones in the main urban area of Zhengzhou, and only
1 reached the planned drainage standards [2].

On 20 July, the 04502 train of subway line-5 was flooded and forced to stop due to a
power outage while traveling from Haitansi Station to Shakoulu Station. After evacuation
and rescue, 953 passengers were safely evacuated, and 14 passengers died [2]. This event is
one of the most severe urban water logging events caused by an extremely heavy rainstorm.

The factors that led to the extreme heavy rainstorm disaster in Zhengzhou mainly
include the following aspects: the subtropical high was abnormally northerly, and the
summer monsoon was stronger than usual; the typhoons that formed in the same period
converged to transport the water vapor from the sea, which was superimposed with the
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convective system above; the uplift due to Funiu Mountain and Taihang Mountain; and
the terrain of Zhengzhou is high in the southwest and low in the northeast, which is a
transitional zone from hilly mountains to plains.

To prevent disasters caused by rainstorms, the following suggestions should be
adopted: vigorously improve the risk awareness and emergency response capabilities
of leading cadres; improve the overall level of urban disaster prevention and mitigation;
reinforce the existing reservoirs in the city; strengthen the construction of sponge cities; and
improve the capacity of urban disaster emergency rescue. These suggestions are analyzed
in detail later in this paper.

2.2. Framework and Theoretical Models

The framework of the rainstorm risk assessment method proposed in this study is
shown in Figure 1.
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Figure 1 shows the flow of this study, as well as the methods and data adopted. To
obtain the precipitation grade in Zhengzhou on 20 July 2021, it was necessary to first
determine the cloud model of the Zhengzhou rainstorm and the standard cloud model.
The cloud model [8,9] of the Zhengzhou rainstorm could be achieved according to the
information on rainfall and the backward cloud algorithm. The standard cloud model
could be obtained by the national precipitation standard. The qualitative assessment result
of the precipitation grade could be achieved by mapping the cloud model of the Zhengzhou
rainstorm and the standard cloud models into a cloud picture. The quantitative assessment
result of the precipitation grade could be obtained by calculating the similarity between the
cloud model of the Zhengzhou rainstorm and the standard cloud model. The precipitation
grade of Zhengzhou could be achieved according to the qualitative and quantitative
assessment results. The Zhengzhou rainstorm that occurred in July 2021 was an extremely
heavy rainstorm. Although the error test of the GM(1,1) model [13] met the accuracy
requirements, the rainfall in Zhengzhou could not be accurately predicted, indicating that
the rainfall in Zhengzhou in July 2021 was greatly affected by external factors. According
to the FTA [19,20], the external factors of this rainstorm can be divided into the following
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three aspects: force majeure, such as terrain and extreme weather conditions, issues with
city construction, and insufficient emergency rescue. The main causes of the subway line-5
accident can be described as follows based on the bow-tie model [21,22]: the location
of the stabling yard was low, the relevant rules and regulations of the subway were not
ideal, insufficient attention was given to the early warning information, and the emergency
response mechanism was not ideal. Using chaos theory [26,27], we comprehensively
investigated the influence of human, object, environmental, and management factors on
rainstorms and analyzed the sensitivity of the evolution process to initial conditions. Finally,
suggestions were given to prevent rainstorms and secondary disasters, which are analyzed
in detail later in this paper.

2.2.1. Cloud Model

The cloud model describes the features of a concept by three numerical characteristics
(Ex, En, and He) [9]. The expectation Ex is the center value of the qualitative concept,
which is the most representative cloud drop. The entropy En indicates the fuzziness
and randomness of the qualitative concept. The hyper entropy He is the fuzziness and
randomness of the entropy En, which reflects the thickness of the cloud.

En is the uncertainty degree of the qualitative concept, which represents the cloud
drops that are accepted by the qualitative concept in the domain. The larger the En is, the
larger the range covered by the cloud model is [9]. Cloud drops that contribute to the
qualitative concept in the universe domain of discourse mainly fall in the interval [Ex− 3En,
Ex + 3En], and the contribution rate of these cloud drops in this interval is approximately
99.74% [29]. Cloud drops other than [Ex − 3En, Ex + 3En] have a negligible contribution to
the qualitative concept.

(1) Forward cloud algorithm

Random variables are the basic tool for studying random phenomena, and the distribu-
tion function is an important probability characteristic of random variables that can describe
the statistical behaviors of random variables [30]. Normal distribution exists widely in
natural phenomena, social phenomena, scientific research, and production activities, and
many random variables in real life obey or approximately obey a normal distribution. For
example, random measurement errors, temperature or rainfall in a certain area all obey a
normal distribution. According to the central limit theorem [31], if a given random variable
is dominated by a large number of tiny, independent random factors, the individual effects
of each factor are relatively uniform and no one factor has a clear advantage, andthe ran-
dom variable approximately obeys a normal distribution. The normal distribution is the
limiting distribution of many important probability distributions [32]. Therefore, the use of
a normal probability distribution to evaluate rainfall has a certain theoretical basis.

Input. The numerical characteristics (Ex, En, and He) of the qualitative concept and the
number of cloud drops n.

Output. The location in the domain and the membership degree u(x) of each cloud drop.
1© Generate a random number En′ that is normally distributed and has a mean En and

a standard deviation He; that is, X ∼ N
(
Ex, En′2

)
[29]. The normal probability distribution

function of the random number En′ can be described as follows [32]:

fEn′(x) =
1√

2πHe
e−

(x−En)2

2He2 (1)

2© Generate a random number X that is normally distributed and has a mean Ex and
standard deviation En′; that is, X ∼ N

(
Ex, En′2

)
[29]. The normal probability distribution

function of the random number X can be described as follows [32]:

fX(x) =
1√

2πEn′
e−

(x−Ex)2

2En′2 (2)
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3© The membership degree u(X) can be calculated as follows [33]:

µ(x) = e
−(x−Ex)2

2(En′)2 (3)

4© Repeat steps 1–3 until n cloud drops are generated.

(2) Backward cloud algorithm

Input. Cloud drops xi (i = 1,2, . . . n).
Output. Numerical characteristics (Ex, En, and He) of the cloud drops.
The numerical characteristics (Ex, En, and He) can be calculated as follows [33].

Ex =
1
n

n

∑
i=1

xi (4)

En =

√
π

2
× 1

n

n

∑
i=1
|xi − Ex| (5)

He =

√√√√∣∣∣∣∣ 1
n− 1

n

∑
i=1

(xi − Ex)
2

− En2

∣∣∣∣∣ (6)

(3) Standard cloud model

For an indicator with bilateral constraints, the numerical characteristics of the standard
cloud model can be calculated as follows [9].

Ex =
Cmax + Cmin

2
(7)

En =
Cmax − Cmin

6
(8)

He = k× En (9)

where Cmax and Cmin are the upper and lower bounds of an indicator, respectively, and k is
a constant that changes according to the randomness and fuzziness of different indicators.
Usually, k is no more than one-third, and we set k = 0.1 in this study [9].

(4) Similarity

The similarity between the cloud model and the standard cloud model can be charac-
terized as follows [33].

λj = e
−

(Ex−Exj)
2

2(Enj)
2

(10)

where Ex is the expectation of the assessment indicator, Exj is the entropy of the jth standard
cloud model, and Enj is the hyperentropy of the jth standard cloud model.

The level of the standard cloud model corresponding to the maximum similarity λj is
the quantitative evaluation result according to the maximum membership principle.

2.2.2. GM(1,1) Model

Let X(0) = (x(0)(1), x(0)(2), . . . , x(0)(n)) be the original data series and X(1) = (x(1)(1), x(1)(2),
. . . , x(1)(n)) be the first-order accumulating data series, where x(1)(k) can be calculated as
follows based on the first-order accumulating generation operator (1-AGO) [34].

x(1)(k) =
k

∑
i=1

x(0)(i), k = 1, 2, · · · , n (11)

where x(0)(k) indicates the original data, and x(1)(k) indicates the 1-AGO data.



Behav. Sci. 2022, 12, 176 7 of 22

Assume the matrix X(1) accords with the exponential change law, and the whitenization
equation of the GM(1,1) model is shown as follows [34].

dx(1)

dt
+ ax(1) = b (12)

where t indicates the time; a indicates the developing coefficient; and b indicates the
grey input.

Let x̂(1)(1) = x(0)(1) be the initial condition. Solve Equation (12), and the predictive
formula of X(1) can be obtained, as shown in Equation (13) [35].

x̂(1)(k + 1) =
[

x(0)(1)− b
a

]
e−ak +

b
a

, k = 0, 1, 2, · · · (13)

where x̂(1)(k + 1) indicates the predictive value of 1-AGO.
The predictive formula X(0) of the original data series is shown in Equation (14) and is

calculated as x(1)(k + 1)− x(1)(k).

x̂(0)(k + 1) = (1− ea)

[
x(0)(1)− b

a

]
e−ak, k = 1, 2, 3, · · · (14)

where x̂(0)(k + 1) indicates the predictive value of the original data series.
The developing coefficient a and grey input b are based on the least square estimation

of the GM(1,1) model, as shown in Equation (15) [35].

â =
(

BT B
)−1

BTY = (a, b)T (15)

where the matrices B and Y are described as follows.

B =


−Z(1)(2) 1
−Z(1)(3) 1
· · · · · ·

−Z(1)(n) 1

, Y =


x(0)(2)
x(0)(3)
· · ·

x(0)(n)


The background value Z(1) is the mean series of X(1), as calculated by the following

equation [35]:

Z(1)(k + 1) =
1
2

[
X(1)(k + 1) + X(1)(k)

]
, k = 1, 2, · · · , n− 1 (16)

where Z(1)(k + 1) indicates the background value.
As time t increases, the predicted result exhibits an infinite value. To avoid this

situation, we added the following content to the text.
As the prediction time increases, the error of the prediction result of the GM(1,1)

model also increases. The GM(1,1) model has better prediction results for recent data
(such as prediction of the next issue), and the prediction results for long-term data have
a larger error. When the forecast time is very large, the forecast result may appear to be
an infinite value, which is seriously inconsistent with the actual situation because as the
system develops, the role of old data (such as x(0)(1)) in characterizing the evolution of
the system gradually decreases. In this case, we need to add new information (such as
x(0)(n+1)) in time, remove some old information (such as x(0)(1)), and rebuild the model
to reflect the behavioral characteristics of the system; therefore, the prediction results are
consistent with the actual values.
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2.2.3. Bow-Tie Model

The bow-tie model consists of a fault tree on the left and an event tree on the
right [21,22], as shown in Figure 2. In the bow-tie model, both the fault tree and event tree
are simplified. There is no obvious logical relationship among the causes of the fault tree,
and the results of the event tree also show only one state.
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Figure 2 indicates the frame of the bow-tie model. For the causes and consequences
of the accident, the bow-tie model can take corresponding countermeasures to ensure the
safety of the system.

3. Results
3.1. Precipitation Grade of the Zhengzhou Rainstorm

According to the CMA [1], the precipitation grade can be divided based on the 24 h
precipitation, as shown in Table 1.

Table 1. Information about precipitation.

Grade Precipitation (mm) Standard Cloud Model Similarity

Drizzle (0, 0.1) (0.05, 0.017, 0.0017) 0
Light rain [0.1, 9.9] (5, 1.63, 0.16) 0

Moderate rain [10, 24.9] (17.45, 2.48, 0.25) 0
Heavy rain [25, 49.9] (37.45, 4.15, 0.42) 0
Rainstorm [50, 99.9] (74.95, 8.32, 0.83) 0

Heavy rainstorm [100, 249.9] (174.95, 24.98, 2.5) 0
Extremely heavy rainstorm ≥250 (1000, 250, 25) 0.3713

As shown in Table 1, the grade of precipitation can be divided into seven levels in
China. The corresponding standard cloud model can be calculated according to the pre-
cipitation of each grade. However, the precipitation index is required to be a bilateral
constraint; that is, the precipitation grade should include both upper and lower bounds.
For extremely heavy rainstorms, only the lower bound is specified in the standard, and the
upper bound is missed. In reality, the upper bound of an extreme heavy rainstorm is not
infinite. According to the World Meteorological Organization [36], the largest 24 h precipi-
tation record is 1748.5 mm in China. Therefore, the bilateral constraints of 24 h precipitation
in extreme heavy rainstorms are extreme heavy rainstorms (EHRSs) [250, 1750].

According to the bilateral constraints of the precipitation grade, the standard cloud
model corresponding to the precipitation grade could be obtained, as shown in Table 1.
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According to the CMA [1], from 6 a.m. on 20 July to 6 a.m. on 21 July 2021, the 24 h
precipitation in Houzhai, Erqi District, Zhengzhou city, reached 672 mm; from 8 a.m. on
20 July to 8 a.m. on 21 July 2021, the 24 h precipitation in Zhengzhou city reached 624.1 mm.
According to the backward cloud algorithm, the cloud model for the Zhengzhou rainstorm
is (648.05, 30.01, 15.71).

The cloud model of the Zhengzhou rainstorm and the standard cloud models are
shown on a cloud map, and the qualitative assessment of the precipitation grade could be
achieved, as shown in Figure 3.
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Figure 3 shows the cloud map of the precipitation grade. DR is drizzle; LR is light
rain; MR is moderate rain; HR is heavy rain; RS is rainstorm; and HRS is heavy rainstorm.

As shown in Figure 3, the cloud map of the Zhengzhou rainstorm mainly falls between
the HRS and EHRS cloud maps. To accurately determine the precipitation grade of the
Zhengzhou rainstorm, it was also necessary to calculate the similarity between the cloud
model of the Zhengzhou rainstorm and the standard cloud model, as shown in Table 1.
According to the maximal membership principle, the Zhengzhou rainstorm belongs to the
grade of extremely heavy rainstorm.

The qualitative assessment result of the Zhengzhou rainstorm lies between HRS and
EHRS. The quantitative assessment result of the Zhengzhou rainstorm belongs to EHRS.
Therefore, the Zhengzhou rainstorm was an extremely heavy rainstorm.

3.2. Prediction of Rainfall in Zhengzhou

The annual and July rainfall in Zhengzhou could be obtained according to the National
Bureau of Statistics [37], as shown in Figure 4.

Figure 4 shows the rainfall in Zhengzhou from 1998 to 2020. The rainfall in Zhengzhou
varies greatly. The maximum annual rainfall in Zhengzhou was 1010.6 mm in 2003, the
average rainfall is 654.77 mm, and the minimal rainfall was 353.2 mm in 2013. The maximal
rainfall in July was 309.7 mm in 2008, the average rainfall is 147.83 mm, and the minimal
rainfall was 45.1 mm in 2013. July had the largest percentage of rainfall at 47.05% in 2008
and the lowest at 9.12% in 2014.

The original rainfall data in Zhengzhou are X(0). The parameters a = 0.0033 and
b = 675.4202 could be achieved based on grey system theory [38]. Then, the prediction
formula of rainfall could be calculated as follows.

x̂(1)(k + 1) = −203, 890.9879e−0.0033t + 204, 672.7879
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In the case of the GM(1,1) model established using the original rainfall data, the
maximal relative error of the simulation results was 81.6%, and the average relative error
of the simulation results was 15.76%. The error test failed, indicating that the GM(1,1)
model established by the original rainfall data cannot be used for prediction. The main
reason is the large difference between the maximum and minimum rainfall in Zhengzhou.
The maximum rainfall is approximately three times the minimum rainfall. To lessen
this difference, the original rainfall data needed to be processed. The first-order average
weakening buffer operator [39] was introduced in this case, as shown below.

x(k)d =
1

n− k + 1
[x(k) + x(k + 1) + · · ·+ x(n)], k = 1, 2, · · · , n (17)

The new GM(1,1) model was established with x(k)d as the basic data, and the parame-
ters a = −0.0004 and b = 639.2562 could be achieved. The new prediction formula of rainfall
could be calculated as follows.

∗
x
(1)

(k + 1) = 1, 598, 922.3e0.0004t − 1, 598, 140.5

The maximum relative error of the simulation results was 5.06%, and the average
relative error of the simulation results was 2.65%. The error test met the accuracy re-
quirements, indicating that the new GM(1,1) model established based on x(k)d can be
used for prediction. The results showed that the predicted value of Zhengzhou’s rainfall
in 2021 was 645.3 mm. The variation range of rainfall in July in the proportion of the
annual year was [9.12%, 47.05%]. The predicted interval of Zhengzhou’s rainfall in July
2021 was [58.85 mm, 303.61 mm]. During the extremely heavy rainstorm in Zhengzhou on
20 July 2021,the rainfall in one day was basically equal to the annual rainfall, indicating
that the rainfall cannot be predicted by conventional models. The main reason is that this
rainfall was greatly affected by external factors, such as geographical location, atmospheric
circulation, and typhoons, which are analyzed in detail later in this paper.

3.3. Preliminary Hazard Analysis (PHA) of Hazards Caused by Rainstorms

PHA is a qualitative method that analyzes the risk factors in the system [17,18].
Before the activities of the system, the PHA conducts a macroscopic analysis of the hazard
categories, occurrence conditions, and possible accident consequences of the system. PHA
of hazards caused by the rainstorm was carried out, as shown in Table 2.
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Table 2. PHA of hazards caused by rainstorms.

Hazards Causes Results Prevention Measures

Rainstorm Abundant moisture.
Vertical movement of moisture.

Ponding.
Obstructed travel.
Device is soaked in water
and damaged.
Some crop failure or total
crop failure.

Artificial rain reduction [1].
Try not to go out.
Find a safe shelter from disasters.
Close doors and windows.

Flood Rainstorm or continuous rain.
Low terrain.

Dam failure.
Landslide.
Mud-rock flow.

Review the safety conditions of flood
protection structures/infrastructures
to extreme weather events.
Move to a high place nearby.
Turn off the gas valve and
power switch.

House collapse
Flood erosion.
Dilapidated house or low
terrain house.

Casualties.
Property loss.

Improve the quality of
housing construction.
Pay attention to abnormal noise in
the house.

Tunnel ponding
Rainstorm or continuous rain.
Tunnel drainage system is
not smooth.

Casualties.
Vehicle damage.

Improve tunnel drainage capacity.
Drivers or pedestrians should avoid
tunnels during rainy weather.

Indoor electric shock Ponding or leaking house.
Power is not cut off. Casualties.

Cut off the power.
Ground metal shell of
electrical equipment.
Use well-insulated household
electrical equipment.

Outdoor electric shock Ponding or raining.
Leakage of road lighting wires. Casualties.

Use a quality insulated ground wire.
Do not take shelter from the rain
under transformers or overhead lines.
Do not touch trees near power lines.
Do not go near utility poles.

Road collapse Ground seepage.
Soil is collapsible.

Casualties.
Property loss.

Strengthen urban geological survey.
Strengthen the construction
supervision of road projects to ensure
that the road quality meets the
standard requirements.
Strengthen the daily maintenance
of roads.
Strengthen the inspection of
underground pipelines.

Fall into a manhole in
the pavement

Too much water on the road.
Did not choose the correct route. Casualties.

Move ahead to avoid the
manhole area.
Pay attention to surroundings and
walk close to buildings.

Fall down Wet and slippery road.
Did not choose the correct route. Casualties.

Move ahead to avoid wet and
slippery roads.
Walk slowly with the help of a stick.

Plague Drinking water pollution.
Food contamination. Casualties.

All food must be cooked at a high
temperature before eaten.
Do not eat spoiled food.
Pay attention to environmental
hygiene and do not litter.
Avoid soaking hands and feet in
water for a long time.

The disaster in Zhengzhou was a particularly major natural disaster caused by ex-
tremely heavy rainstorms. Secondary disasters mainly included urban water logging, river
floods, mountain torrents, and landslides.
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Artificial rain reduction attempts to change the moisture condition of natural clouds,
thereby reducing the efficiency of precipitation, to make the moisture in the clouds form
precipitation in advance, or to delay the precipitation process and redistribute the precipita-
tion spatially. At present, the influence of artificial rain reduction is relatively limited. Ideal
results can be achieved for small-scale, weak-intensity precipitation weather processes.
However, in the case of heavy precipitation weather processes, artificial rain reduction can
not achieve ideal results.

After heavy rains and floods, the water supply system was destroyed, and the water
source was contaminated by harmful substances from human and animal excrement and
carcasses. People who drink contaminated water may likely experience intestinal infections.
Food soaked in floodwater is prone to mold and spoilage. Eating moldy and spoiled food
can lead to food poisoning and intestinal infections. To prevent the occurrence of the
plague, the public should pay attention to food hygiene and promptly dispose of the food
that becomes soaked in a flood. Do not eat food that has been soaked in floodwater, and
eat well-heated food. Avoid unwashed fruits and vegetables.

The series of accidents caused by the Zhengzhou extremely heavy rainstorm had
causalities. The analysis of the causes and consequences of PHA accidents was relatively
rough. Then, FTA [19,20] was used to deeply analyze the flood disaster caused by EHRSs
and explore the logical relationships among the causes of flood disasters.

3.4. Fault Tree Analysis (FTA) of Flood Disasters

The Zhengzhou extremely heavy rainstorm also caused a flood disaster. The Changzhuang
Reservoir in Zhongyuan District, Zhengzhoucity, was in danger of flooding, and the flood
discharge began at 10:30 a.m. on 20 July 2021. The water line of the Guojiazui Reservoir
in Erqi District, Zhengzhou city, rose rapidly. On 21 July 2021, the downstream dam of
Guojiazui Reservoir collapsed over a large area. After continuous rescue work, the danger
due to the flooding of the Guojiazui Reservoir was relieved.

FTA [19,20] was conducted on the flood disaster caused by the Zhengzhou extremely
heavy rainstorm, and the causes of the flood disaster were discovered, as shown in Figure 5.
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Figure 5 shows the FTA of the flood disaster, as well as the causes of the flood disaster.
In Figure 5, T indicates the top event, that is, flood disaster; M1 indicates the extremely
heavy rainstorm; M2 indicates insufficient countermeasures; M3 indicates abundant mois-
ture; M4 indicates vertical movement of moisture; M5 indicates insufficient urban construc-
tion; M6 indicates insufficient emergency capacity; M7 indicates the terrain of Zhengzhou;
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X1 indicates the subtropical anticyclone; X2 indicates Typhoon In-fa; X3 indicates continen-
tal plateau; X4 indicates Taihang Mountains; X5 indicates Funiu Mountains; X6 indicates
insufficient embankment project for the reservoir; X7 indicates that the tunnel design was
unreasonable; X8 indicates that the drainage system design was unreasonable; X9 indicates
that the precipitation forecast was not accurate; X10 indicates that the early warning infor-
mation did not receive enough focus; X11 indicates the lack of special emergency plans; X12
indicates that the emergency plan for flood control and rescue of the reservoir was not fully
implemented;and X13 indicates that the public did not know what to do.

The structural equation of the flood disaster is shown below.

T = M1 ×M2

According to the Boolean algorithm [40], there were 24 minimal cut sets for flood
disasters, indicating that there were 24 ways to cause flood disasters. The minimal cut sets
can be found in the Supplementary Materials. Through the analysis of the minimal cut set,
we could find the combination of basic events leading to flood disasters.

According to the Boolean algorithm [40], there were four minimal path sets for flood
disasters, indicating that there were four ways to prevent flood disasters. The minimal
path sets can be found in the Supplementary Materials. The optimal plan to prevent flood
disasters could be selected based on the minimal path sets.

Zhengzhou was on the verge of a subtropical anticyclone in July 2021. On 18 July
2021, Typhoon In-fa was generated and approached China. Affected by the periphery of
Typhoon In-fa and the subtropical anticyclone, a large amount of moisture was transported
from the sea to mainland China, providing a continuous and abundant source of moisture
for this rainfall in Zhengzhou. Zhengzhou is also affected by the subtropical anticyclone
in the western Pacific and continental plateau, which leads to low-pressure weather in
Zhengzhou. Low-pressure weather is conducive to the vertical upward movement of the
atmosphere and produces rainfall. In addition, Zhengzhou is located in the pincer area in
Taihang Mountains and Funiu Mountains, which has an uplift and convergence effect on
the transportation of moisture, making the vertical upward movement of moisture more
intense, and as a result, the rainfall increasingly strengthens.

According to the FTA of the flood disaster, the main reasons can be divided into the
following three aspects: force majeure, such as terrain and extreme weather conditions,
issues with city planning, and insufficient emergency rescue. For the first issue, there is
nothing we can do. For the second issue, city construction is difficult to improve over
a short period. To prevent disasters due to rainstorms and floods, we must pay more
attention to the construction of emergency rescues.

3.5. Bow-Tie Analysis of the Zhengzhou Subway Line-5 Accident

The causes, consequences, and prevention measures for the subway line-5 accident
are shown in Figure 6.

Figure 6 shows the causes and consequences of the subway accident, as well as the
corresponding prevention measures.

The Wulongkou stabling yard of the Zhengzhou subway line-5 is on lower terrain
than its surroundings. The Zhengzhou Subway Group moved the Wulongkou stabling
yard eastward by 30 m, and the ground position sank by 1.973 m. This position did
not meet the subway design specifications, but the Zhengzhou Subway Group did not
submit it for approval as needed. In addition, the drainage function of the open ditch
near the Wulongkou stabling yard was seriously damaged. Moreover, the quality of
the water-retaining wall of the stabling yard is poor. The Zhengzhou extremely heavy
rainstorm caused a large amount of rainwater to flood into the Wulongkou stabling yard.
An increasing amount of rainwater gathered in the stabling yard, broke down the water-
retaining wall, and flowed into the mainline of subway line-5. This was the direct reason for
the subway line-5 accident. For this issue, the following measures can be adopted: reselect
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the location of the stabling yard and strengthen the water-retaining wall and increase
its height.
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Another important reason for the subway line-5 accident was the inadequate rules
and regulations of the subway. The water-retaining wall is the last line of defense to
prevent rainwater from flowing into the mainline of the subway. According to the Code for
Design of Metro [41], there is no clear specification of whether monitoring equipment or
special personnel are required for the water-retaining wall. For this issue, take the following
measures: improve relevant standards, set up monitoring equipment for important facilities,
or arrange for special personnel to be on duty.

From 9:59 p.m. on July 19 to 4:01 p.m. on 20 July 2021, the Zhengzhou Meteorological
Service [42] issued five red warnings for rainstorms. According to the CMA [1], the defense
guidelines of the rainstorm red warning should be adopted as follows: the government and
relevant departments need to perform well during emergency rescues and for rainstorm
prevention based on their duties; stop gatherings and classes, and close businesses, except
for special industries; and diligence is needed in the prevention of disasters and in un-
dertaking rescues during disasters, such as mountain torrents, landslides, and mudslides.
Although five red warning signals for rainstorms were issued, the defense guidelines
have not been implemented well. On 20 July 2021, people went to work as usual, and the
government did not take appropriate emergency measures. At 5 p.m. on 20 July 2021, the
extreme heavy rainstorm superimposed on the peak off-work time, which contributed to
the Zhengzhou subway line-5 accident. To prevent similar subway accidents, we must
strictly implement the defense guidelines for rainstorm warning signals.
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Although the meteorological department issued rainstorm red warnings many times,
the Zhengzhou Subway Group failed to strengthen inspections as required by the relevant
plans, and the investigation of flooding hazard factors was not in place. By 6:04 p.m. on
20 July 2021, the Zhengzhou Subway Group issued an order to stop the line network, but
the subway lost power and was forced to stop at this time. The Zhengzhou Subway Group
did not implement a major danger reporting system and did not initiate an emergency
response during the incident.

The Zhengzhou Subway Group failed to command and dispatch. At approximately
5 p.m. on 20 July 2021, the water logging broke down the water-retaining wall and rushed
into the subway tunnel. A failure alarm occurred, and the subway was stopped at Haitansi
Station. However, the command room was released again at 5:46 p.m. on 20 July 2021,
without determining the reason or understanding the danger. After 5:47 p.m. on 20 July
2021, the water flooded over the tracks, and the chief dispatcher instructed the train to
move back. After approximately 30 m, the train lost power and was forced to stop [2]. As a
result, the elevation of the location of the train was approximately 75 cm lower than before
moving backward, which increased the water depth in the train and aggravated the danger
to the trapped passengers.

If the Subway Group can suspend line-5 in the early stage of a danger, this type of
accident will not occur. In fact, on the afternoon of 20 July 2021, rainwater had already
begun to pour into the mainline of the subway. However, in this case, the Subway Group
did not stop the subway. The suspension of the subway needs to be reported to the
appropriate department of transportation, as it can be implemented after approval, and
there is a certain hysteretic time. Therefore, to prevent subway accidents, we must give the
Subway Group the right to suspend operations under special circumstances.

In the case of a subway accident, if the correct mitigation measures can be taken,
the consequences of the accident can be greatly reduced. A major issue exposed by the
Zhengzhou subway line-5 accident is that citizens do not know what to do or how to take
action in the face of sudden disasters. In the future, we should focus on popularizing
emergency escape skills for all kinds of sudden disasters to protect citizens’ lives.

3.6. Chaos Characteristics of an Extremely Heavy Rainstorm

The original meaning of chaos refers to the scene before the universe opened, and the
basic meaning mainly refers to a state of confusion and disorder. In scientific research, chaos
refers to the random behavior that occurs in a deterministic nonlinear system without any
additional random factors, and the deterministic nonlinear system exhibits unpredictable,
random-like motions that are sensitive to initial conditions [43]. Chaos theory mainly
addresses the evolution of the system from order to chaos and how to control chaos [44].
Chaos theory emphasizes the complexity of the natural world and human society that is
not fully understood by humans, and it advocates interdisciplinary research to explore non-
linear objective processes. Chaos theory is a science that investigates system processes and
system evolution. Chaos theory explains the random outcomes that a system can produce,
which can obtain definite aperiodic outcomes using simple models [45]. Rainstorms are
affected by multiple factors, and the influencing factors change dynamically, which makes
the occurrence of rainstorms random. The randomness of the rainstorm evolution process
provides the possibility to use chaos theory to investigate the rainstorm evolution process.
Chaos features mainly include sensitivity, inherent randomness, and fractals [46]. In this
study, chaos theory was introduced into the analysis of the evolution process of rainstorms,
and the sensitivity of the evolution process of rainstorms is discussed.

According to the accident causation model of system theory, the occurrence of ac-
cidents is the result of the comprehensive effects of human, object, environment, and
management subsystems [47]. Similarly, extremely heavy rainstorms are also affected by
the cross-coupling of human, object, environmental, and management subsystems. The
evolution process has an obvious butterfly effect, as shown in Figure 7.
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Figure 7 shows the influence of human, object, environment, and management sub-
systems on the evolution process of extremely heavy rainstorms. Factors located at the
beginning of the arrow have an effect on the end factors. For example, once a volcano
erupts, it changes the composition of the air. The management factors do not directly affect
the rainstorm process. In fact, management factors indirectly affect the evolution of rain-
storms mainly by restricting human behaviors and reducing damage to the environment.
The dust generated by human activities and natural conditions can be used as condensation
nuclei in the process of rainfall, creating favorable conditions for the formation of rainfall
and increasing the possibility of precipitation. The impact of human activities on rainfall
can be summarized as follows: changing the roughness and reflectivity of the underlying
surface; generating dust and change the composition of the atmosphere; and generating
energy and affecting airflow movement.

The direct impact of global warming on rainfall is changing the amount of moisture in
the atmosphere. The rise in temperature means the atmosphere contains more moisture.
The impact of global warming on rainfall is not unidirectional but bidirectional. Global
warming has made humid areas more humid and dry areas drier, showing a phenomenon
of polarization.

The indirect effects of human activities on rainfall mainly include construction activi-
ties, vegetation deterioration, bursts, automobile exhaust, and mechanical processing. In
addition, human activities can also directly generate rainfall, such as artificial rainfall. Arti-
ficial rainfall is based on the principle of natural rainfall, artificially supplementing certain
necessary conditions for the formation of rainfall, causing cloud droplets to condense or
increase raindrops and make raindrops fall to the ground. According to the physical char-
acteristics of different clouds, artificial rainfall involves selecting an appropriate time and
using airplanes or rockets to spread catalysts, such as dry ice, silver iodide, and salt powder,
into clouds to make the clouds produce rain or increase the amount of precipitation already
occurring [1,48]. Artificial rainfall needs to meet the following operating conditions [1]: the
cloud system develops to a certain thickness, such as more than two kilometers; the cloud
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lacks ice crystals and has abundant super-cooled water; and there is sufficient water vapor
outside the cloud body to continuously replenish the cloud body through auxiliary uplift.
Generally, artificial rainfall is relatively small, natural rainfall may be large, and artificial
rainfall can only incite rainfall under certain conditions.

In the evolution of rainstorms, management factors are the basic causes, human factors
are indirect causes, and environmental factors are the direct causes. The object factors can
increase or decrease the grade of a rainstorm.

According to chaos theory, a rainstorm is the result of cross-coupling and infinite
amplification of the faults in human, object, environment, and management subsystems,
and the evolution process shows an obvious butterfly effect (Figure 7). For a nonlinear
system, the small errors of a certain factor are not always small [44]. Under appropriate
conditions, the small errors can evolve and develop infinitely; this can lead to consequences,
such as the system being difficult to estimate. According to chaos theory [45], the small
input error of the system can cause a large drift in output under certain conditions for
the nonlinear system. In the actual production process, since the system is inevitably be
disturbed by external factors, the small error at the initial moment can be amplified over
time and lead to unpredictable consequences, such as rainstorms.

4. Discussion

Rainfall is affected spatiotemporally, and the evolution process has strong uncertainty,
fuzziness, and randomness. Atmospheric motion is a very complicated process and is
affected by the terrain, distribution of land and sea, and conditions of the underlying surface.
Moreover, human activities also have a certain impact on atmospheric motion, resulting
in a certain degree of uncertainty with rainstorms (Figure 7). The fuzzy comprehensive
evaluation method can solve problems with uncertainty and fuzziness [6], but it can do
nothing about randomness problems. The stochastic model is suitable for problems with
uncertainty and randomness [7], but it is difficult to deal with the problem of fuzziness. In
this study, the cloud model [8,9] was introduced to address the uncertainty, fuzziness, and
randomness in the evolution process of the rainstorm, and the assessment result was in
line with the national standard GB/T 28592-2012 [28].

Generally, accurate prediction of the grade and duration of rainfall is the most eco-
nomical way to reduce the losses due to rainstorms. Rainstorm forecasting is mainly based
on observational data and numerical forecasts. Forecasters use their knowledge and experi-
ence to make judgments and corrections of the forecast results. A rainstorm is the result of
the time and spatial scales. Without a comprehensive analysis of various conditions and
data, it is difficult to obtain accurate forecast results within a certain spatiotemporal range.
Although the accuracy of the GM(1,1) model met the requirements, it was still unable to
accurately predict the rainfall in Zhengzhou. The accuracy of rainstorm forecasts is not high
world wide and is approximately 25% in the United States [1]. Rainstorm forecasts cannot
be completely dependent on numerical forecasts, and subjective initiatives of forecasts
must be fully applied.

Previous studies have mainly focused on accidents caused by rainstorms [3–5], but
they have failed to deeply analyze the causes, consequences, and prevention measures
of these accidents. In this study, PHA [17,18], FTA [19,20], and the bow-tie model [21,22]
were adopted to comprehensively analyze rainstorms and secondary disasters. Secondary
disasters mainly include urban water logging, river floods, and mountain torrents and
landslides. The factors that led to the extremely heavy rainstorm disaster in Zhengzhou
mainly include the following aspects: the subtropical high was abnormally northerly, and
the summer monsoon was stronger than usual; a typhoon formed in the same period and
converged to transport the water vapor from the sea, which was superimposed with the
convective system above; the uplift due to Funiu Mountain and Taihang Mountain; and
the terrain of Zhengzhou is high in the southwest and low in the northeast, which is a
transitional zone from mountains to plains.
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If the public paid enough attention to the warning information of EHRSs, the Zhengzhou
subway line-5 accident may not have occurred. During the same period, Shaanxi Province,
Luonan County, was also affected by a rainstorm, and the 24 h rainfall in Lixikou village,
Maping town, was 239.3 mm from 2 p.m. 22 July to 2 p.m. 23 July 2021. A total of
77,961 people in Luonan County were affected by this rainstorm, but no one was injured [1].
The Shangluo city government of Shaanxi Province issued a commendatory report to
the Luonan Meteorological Administration and awarded one hundred thousand yuan.
The report pointed out that the Luonan Meteorological Administration accurately issued
rainstorm warning information five times during the process of preventing and responding
to the heavy rainstorm disaster from 22–23 July 2021. Time was gained for the advanced
deployment of flood prevention and rescue work, rapid evacuation, and proper resettlement
of people in dangerous areas, which effectively guaranteed the safety of people’s lives
and property.

The evolution of rainstorms in different countries and regions has different charac-
teristics. Siswanto et al. [49] conducted a statistical analysis of the maximum 1h rainfall
at the observation station in Jakarta, Indonesia, during 1866–1950 and 1959–2010, and the
results showed that there was no significant difference in the five-year moving average
of the maximum 1h rainfall during these two periods. The 1 h and 24 h rainstorms with
different rainfall reappearance periods during 1956–1980 and 1981–2005 in three districts of
Washington State in the United States showed different degrees of growth [50]. The 10 min
maximum rainfall in Japan from 1951 to 2010 showed a significant upward trend [51]. The
annual maximum rainfall of 1 h in Hong Kong and Shanghai also showed a significant
upward trend [52,53]. Global warming has led to frequent extreme weather. The 1 h
rainfall of the Zhengzhou extreme heavy rainstorm is a new record for China’s maximum
1 h rainfall.

The process of urbanization makes extremely heavy rainstorms increasingly fre-
quent [54–56]. Zhengzhou had a population of 6.659 million and an urbanization rate of
55.1% in 2020. At the end of 2019, the population and urbanization rate were 10.352 million
and 74.6% in Zhengzhou, respectively [57]. The main issues in the process of urbanization
are employment, housing, transportation, and other problems related to human survival.
Due to the large investment, long construction period, and slow construction efficiency,
embankment projects are often ignored by urban decision makers. In the process of urban-
ization, there is a phenomenon in which above ground and underground development do
not match. The impact of urbanization on rainstorms and floods includes the following
aspects: the impervious area of the city increases; the natural vegetation is destroyed; the
space for rivers and lakes is limited; and underground parking lots, flyovers, tunnels, and
subways are subject to the formation of floods.

To simplify the discussion, the parameter k in Equation (3) was set to 0.1. Future studies
should focus on the influence of this parameter on the assessment result of precipitation
grade. Due to the lack of sufficient basic data on EHRSs, this study did not explore the
rainstorm fractal. To fully understand the characteristics of rainstorms, more rainstorm
data should be collected in the future to investigate the fractals of rainstorms.

5. Suggestions

Vigorously improve the risk awareness and emergency response capabilities of leading
cadres. Coordinate the two major issues of development and safety, and enhance risk
awareness and bottom-line thinking. Increase the ability and level of disaster prevention,
mitigation, and relief to effectively respond to various disaster risks and challenges, and
consider the safety of people’s lives first. Establish the major disaster investigation and
evaluation system, investigate all accidents causing major casualties, and summarize the
experience and lessons in a timely manner.

Enhance the overall level of urban disaster prevention and mitigation. Integrate the
extreme weather response and natural disaster prevention into urban development and
construction. Enhance the flood control and water logging drainage standards and disaster-
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resistant fortification standards for hospitals, subways, and other public service facilities so
that urban disaster prevention and mitigation capabilities are compatible with economic
and social development. Carry out in-depth emergency management system reform and
operation evaluation. Conduct a comprehensive evaluation and revision of emergency
plans, and strengthen the integrated management of early warning and response.

The existing reservoirs in the city should be reinforced. The reservoir not only plays
an important role in flood prevention and disaster reduction but also benefits irrigation,
water supply, hydroelectric power, aquaculture, and tourism. All aspects of the impact of
the reservoir must be considered in the reinforcement to achieve comprehensive benefits
from a one-time reinforcement. If the government wanted to build a new reservoir, it
involves terrain, climate, capital investment, and other factors, and may cause damage to
the original ecosystem; it needs to be repeatedly demonstrated. The discussion in this study
did not involve a newly built reservoir. Reinforcement of the reservoir has also indirectly
improved the flood prevention grade of the reservoir.

To optimize the urban drainage system, the concept of a sponge city came into being
in China. The concept of a sponge city can be described as follows: more focus is placed
on the recycling of rainwater, sewage treatment, and the improvement of the ecological
environment in the design of rainwater discharge; the pressure of urban rainstorms on the
drainage system is reduced; the risk of flooding in the city is reduced; and the ability of
the city to respond to environmental changes and resist natural disasters is enhanced [58].
Zhengzhou began construction of a sponge city in 2017. The sponge city construction
in Zhengzhou has required the investment of 19.63 billion yuan, but only 32% of the
investment is related to the construction of the sponge city, and nearly 56% is used for the
landscape and greening. Although the Zhengzhou extreme heavy rainstorm has caused
the construction of the sponge city to be questioned, the role of the sponge city can not
be denied. The Zhengzhou extreme heavy rainstorm broke the rainfall record in China.
The drainage system of any city in the world may be powerless in the face of such a large
amount of rainfall in a short period.

Enhance the capacity of urban disaster emergency rescue. Improve the disaster pre-
diction accuracy, release the disaster warning information through multiple channels, and
evacuate the disaster-affected areas in time. For different types of disasters, formulate
specific emergency rescue plans and implement prompt rescues when dangerous situations
occur. Disseminate the knowledge of disasters to residents, and enhance their awareness of
risk prevention. Residents should familiarize themselves with the disaster risk in the juris-
diction, as well as master escape skills and understand the setting and use of surrounding
shelters and disaster prevention and mitigation facilities. Enhance the broad risk awareness,
self-rescue, and mutual rescue capabilities for the whole society. Finally, carry out publicity
and education on disaster prevention, mitigation, and relief for the whole society, as well
as explanations of typical cases in simple terms and enhancement of the vigilance of the
public to prevent risks.

6. Conclusions

A composite risk assessment model for rainstorms was constructed in this study. The
main conclusions are described below.

The disaster in Zhengzhou was a particularly major natural disaster caused by EHRSs.
Secondary disasters mainly included urban water logging, river floods, and mountain
torrents and landslides. The factors that led to the extremely heavy rainstorm disaster in
Zhengzhou mainly include the following aspects: the subtropical high was abnormally
northerly, and the summer monsoon was stronger than usual; a typhoon formed in the
same periodand converged to transport water vapor from the sea, which was superimposed
with the convective system above; uplift due to Funiu Mountain and Taihang Mountain;
and the terrain of Zhengzhou is high in the southwest and low in the northeast, which is a
transitional zone from mountains to plains. We must pay more attention to the sensitivity
of the evolution process of rainstorms. The process of urbanization makes extremely heavy
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rainstorms increasingly more frequent. Therefore, we must propose countermeasures to
rainstorms and secondary disasters along with urbanization, such as reinforcing the existing
reservoirs, strengthening the construction of the sponge city, and improving the capacity of
urban disaster emergency rescue. Future studies should focus on rainstorm fractals.
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