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Abstract: The use of wild yeasts in fermentation is becoming a viable option for the differentiation of
beers. To achieve good fermentation rates and alcohol yields, however, such yeasts must have the ability
to utilize the wort sugars maltose and maltotriose, a relatively rare trait amongst non-domesticated
yeasts. Zygotorulaspora florentina is a species with the ability to utilize both sugars, and was evaluated
here with respect to its brewing potential. The strain studied (VTT C-201041) was isolated from bark
of an oak tree (Quercus robur) in Espoo, Finland. The fermentation performance of the strain was
compared to that of two ale yeasts as well as the species type strain (VTT C-94199). Both Z. florentina
strains fermented wort efficiently (apparent attenuation levels >77%). While the type strain had the
highest yield, the Finnish strain produced more volatile aroma compounds. The species is capable of
decarboxylating ferulic acid to produce the spice/clove-like compound 4-vinylguaiacol, which was
present in beers at a concentration above the typical flavor threshold. The characteristic flavor of
4-vinylguaiacol was not however perceptible in taste trials, possibly due to the masking effect of
other compounds. The potential of this species for industrial application is discussed, particularly in
relation to its apparent ethanol sensitivity.

Keywords: Zygotorulaspora florentina; wild yeast; non-conventional yeast; fermentation; maltotriose;
beer; oak (Quercus robur)

1. Introduction

The past decade has witnessed significant upheavals in the brewing industry. First, a long trend
of increasing beer production volumes peaked in 2013 at 1.97 billion hL [1], but has been steadily
decreasing ever since [2]. Second, the craft beer boom made small-scale breweries serious players
in beer markets and third, towards the end of the decade, the low and non-alcoholic beer category
started to live up to the expectations set up for years [3]. These trends reflect the changes in the habits
of beer drinkers. Although consumers are still spending more money on beer products [4], there is
greater focus on the overall experience and the health aspects rather than volume. Hence, there is a
general interest in new processes to differentiate beers and a growing appreciation of the potential of
non-conventional yeast species to create novel flavor profiles, or limit alcohol content [3,5,6].

The suitability of novel yeast species for the production of specialty beers is often limited by
their inability to utilize maltose and maltotriose, the two most abundant sugars in wort. Steensels
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and Verstrepen [7] reported that only 12% of the wild yeast they studied were able to ferment 50%
or more of the sugars available in wort. In the work of Methner et al. [8], 110 non-Saccharomyces
yeast strains were studied and only about 30% of the strains were able to utilize maltose and 25%
maltotriose. Strain-dependent variance was notable, as most species included both maltose-positive
and -negative strains, highlighting the importance of strain screening in addition to species screening.
Maltotriose-positive strains (which were also maltose-positive) belonged to six different species
(Debaryomyces hansenii, Kazachstania servazzii, Saccharomycopsis fibuligera, Schizosaccharomyces pombe,
Wickerhamomyces anomalus and Zygosaccharomyces rouxii) [8]. In a study of Nikulin et al. [9], it was
further shown that the ability to ferment maltose may also be revealed only after a long exposure to
the sugar, thereby complicating the categorization of strains with respect to sugar use.

The type strain of the yeast Zygotorulaspora florentina (VTT C-94199; CBS 746) has been isolated
from must. Other strains have been isolated from grapes [10], plant material and soft drinks [11].
The former name of the species was Zygosaccharomyces florentinus, but based on DNA analysis it was
reclassified as a Zygotorulaspora species, joining Zygotorulaspora mrakii, in the genus [12]. A difference
between the type strains of the species can be found in sugar utilization: Z. florentina is able to ferment
maltose and assimilate trehalose, maltose and melezitose, whereas these traits are lacking in the sister
species, Z. mrakii [12]. The sister clade of the genus is Torulaspora [12], making Torulaspora delbrueckii
the closest brewing-related species. Culture collection strains of Z. florentina are also cited to be able to
ferment maltose, but suitability of the species for brewing has only been investigated in a few studies to
date [8,13,14]. Although Holt et al. [14] mentioned the possible suitability of the species for brewing on
its own, due to maltose consumption, more attention has been paid to co- and sequential-fermentations
with Saccharomyces cerevisiae. In cofermentation with a commercial ale yeast, the species was found to
affect positively beer flavor [13]. The species has also been studied for winemaking [10,15,16], and in
those studies, the species has been found to promote the levels of higher alcohols and esters, and to
reduce volatile acidity in cofermentations with a commercial wine strain of S. cerevisiae. The positive
effects on aroma, maltose-fermentation capability and the reported inability to grow at 37 ◦C (culture
collection data, [11]) make the species an interesting candidate for brewing trials.

Here, we present results relating to the brewing potential of a maltose- and maltotriose-positive
Z. florentina strain isolated from oak in Espoo, Finland. A number of brewing-relevant features were
assessed, and these included the fermentation performance under different conditions. Sugar utilization
and the ability to produce aroma compounds were assessed and results were compared to those of
the type strain of the species and to two ale strains. The sensorial quality of the beer produced was
assessed by a professional sensory panel. The suitability of the strain for use in breweries was also
assessed with regard to the ability of the species to tolerate ethanol and a number of preservatives
commonly used in other beverages.

2. Materials and Methods

2.1. Isolation

Three natural stands of oak (Quercus robur) in Otaniemi, Espoo, Finland, were sampled in late
December 2017. Samples were collected using the method by Sniegowski et al. [17], which has been
used previously for the isolation of yeasts from oak bark [9]: a sterile cotton swab was dipped in sterile
glycerol (85%), gently rubbed against the bark and transferred to a sterile 15 mL tube. Enrichment
media (yeast extract 0.3%, malt extract 0.3%, peptone 0.5%, sucrose 1%, ethanol 7.6%, 1 M HCl 0.1%
and chloramphenicol 0.0001% [17]) was added to the tubes under aseptic conditions. Samples were
then incubated for 2 weeks at 12 ◦C prior to plating of the suspension (120 µL) on Sniegowski agar
selection media (methyl-α-d-glucopyranoside 2%, Yeast Nitrogen Base (YNB)/without amino acids
0.67%, 1 M HCl 0.4% and agar 1.5% [17]). Emerging colonies were streaked on a YPD agar plate
(1% yeast extract, 2% peptone, 2% glucose and 2% agar) and single colonies from this plate were grown
up in YPD (2%) and stored at −80 ◦C in 30% glycerol.
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2.2. Identification

The isolated strain VTT C-201041, referred to here as Z. flo OTA, was identified based on
the internal transcribe spacer (ITS) sequence. The DNA was extracted as described by Pham et al.
(2011). Polymerase chain reaction (PCR) of the ITS1-5.8S-ITS2 region of the ribosomal DNA (rDNA)
region was performed using universal primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4
(5′-TCCTCCGCTTATTGATATGC-3′). The DNA was purified with the Qiagen MinElute PCR
Purification Kit (Venio, The Netherlands) and sequenced at SeqLab (Göttingen, Germany). The obtained
ITS sequence was identified using BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi, National
Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda MD, USA) in the
NCBI nucleotide (nt) database.

2.3. Wort Preparation

At the VTT in-house pilot brewery (1 hL) 100%-malt wort of 15 ◦P was prepared using municipal
Espoo City water. An infusion mash was carried out and involved the following profile: 30 min at
48 ◦C, 30 min at 63 ◦C, 30 min at 72 ◦C and 10 min at 78 ◦C. Wort was filtered with a Meura filter
(Meura, Belgium) and boiled 60 min prior to the whirlpool. The wort was collected hot (>90 ◦C) in
sterile kegs and stored at 0 ◦C. When not specified, pilsner malt (Viking Malt, Lahti, Finland) was used
together with magnum hops, with a target of 45 IBU in the wort. For wheat beer, 40% of the malt bill
was wheat malt (Viking Malt). Prior to fermentations, the wort was diluted to the appropriate strength
using sterile, degassed Espoo City water.

2.4. Prefermentations

Screenings were carried out in the form of small-scale fermentations and confirmed in 2 L-scale
fermentations. Single-cell colonies were inoculated from agar plates into Erlenmeyer flasks with 50 mL
of YPD and incubated for 48 h on a shaker (120 rpm) at room temperature. For 2 L-scale fermentation,
an additional propagation step was taken by adding the 50 mL into 200 mL of fresh YPD and incubated
another 48 h on a shaker. The suspensions were centrifuged (4000 rpm; 5 min; 4 ◦C) and 20% slurries
(200 mg fresh yeast/mL supernatant) were prepared. The fermentations were conducted in duplicate
in 100 mL of 9 ◦P wort at a pitching rate of 1 g of fresh yeast/L. The fermentation vessels were 250 mL
Erlenmeyer flasks, capped with airlocks filled with glycerol (85%). The fermentations were conducted
on a shaker with low agitation (40 rpm) until no mass-change was observed in consecutive days.
This was 10 days at 25 ◦C and 17 days at 15 ◦C. The 2 L-scale fermentations were conducted statically
in stainless steel cylindrical fermentation vessels with 8 ◦P wort at 20 ◦C using the same pitching rate.
The latter fermentation was monitored through regular sampling with an Anton Paar DMA 5000 M
Density Meter and Alcolyzer (Anton Paar GmbH, Graz, Austria).

2.5. Ferulic Acid Usage

Ability to form the phenolic flavor compound 4-vinyl guaiacol (4-VG) was assessed as described
by Mertens et al. (2017). The yeasts, Z. flo OTA and reference strains VTT A-81062 (producing 4-VG)
and VTT A-63015 (not producing 4-VG), were inoculated (0.5–2 × 107 cells/mL) from YPD agar plates
into 1.5 mL of YPD (2%) supplemented with ferulic acid (100 mg/L) in Eppendorf tubes and incubated
five days on a shaker (120 rpm) in duplicate. The absorbances of yeast cultures and the blank YPD
media, with and without the supplemented ferulic acid, were measured at ABS320. A decrease in the
absorbance greater than 10% relative to the blank (uninoculated YPD supplemented with ferulic acid)
was considered as an indication of the ability to form phenolic flavor compounds from ferulic acid.
The production of 4-vinylguaiacol was confirmed by smelling the cultures after incubation.

4-vinylphenol and 4-vinylguaiacol in bottled beers were analyzed according to the MEBAK
method 2.21.3.3 Wort, Beer, Beer-based Beverages [18].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.6. Temperature Tolerance

The ability of the yeasts to grow at different temperatures was screened using spot plates.
Yeasts were propagated overnight in 20 mL of liquid YPD, centrifuged and resuspended to OD600 of
0.5 (1–5 × 106 cells per mL) using sterile Milli-Q-filtered H2O, and further-diluted to concentrations of
0.05, 0.005 and 0.0005 prior to pipetting spots (5 µL) of each dilution on YPD agar plates. The plates
were incubated at 10 ◦C, 21 ◦C and 37 ◦C until colonies appeared. A lager yeast strain VTT A-63015
(psychrotolerant) and an ale yeast strain WLP380 (mesophilic) were used as references.

2.7. Dextrin Usage

Agar plate screening was performed using starch agar plates as described by Krogerus et al.
(2019). The yeasts, Z. flo OTA and VTT A-81062, were grown overnight in YPD (2%), washed twice
with sterile saline water (centrifuging 4000 rpm; 5 min; 4 ◦C) and resuspended to OD600 1.0 with sterile
Milli-Q-filtered H2O. The suspension (100 µL) was spread on a starch agar plate (0.67% YNB/wo amino
acids, 1.5% soluble starch (Merck, Darmstadt, Germany) and 40 mg/L of bromophenol blue with pH
adjusted to 5.2 with 0.1 M HCl). The plates were incubated in an anaerobic jar (Anoxomat AN2CTS,
Mart Microbiology, Drachten, The Netherlands) at 20 ◦C for 6 weeks.

2.8. Alcohol Sensitivity

Wort of 15 ◦P was diluted to 9 ◦P using autoclaved Espoo City water with and without
supplemented ethanol (ABV 10%) to attain starting concentrations of 0%, 2% and 4% of ethanol.
Yeasts were propagated in 50 mL of YPD 4% and in 200 mL of 9 ◦P wort on a shaker (120 rpm)
prior to pitching at a rate of 5 g of fresh yeast mass/L into a wort with varying levels of ethanol.
Static fermentations were performed in duplicate and were followed by monitoring the change in mass
due to CO2 loss over time. Sensitivity was determined based on the weight-loss curves. The lager
yeast strain VTT A-63015 was used as a reference.

2.9. Preservative Tolerance

The tolerance of the strain Z. flo OTA towards common food preservatives was assessed in
microplate cultivations using a Bioscreen C MBR incubator and plate reader (Oy Growth Curves Ab,
Helsinki, Finland). The yeast was propagated by taking a loopful of fresh yeast mass from YPD agar and
inoculating into 30 mL of liquid YPD. After two days on a shaker (120 rpm), the culture was centrifuged
(4000 rpm, 5 min, 1 ◦C) and the pellet was washed with 30 mL of sterile 0.9% NaCl. A 20%-slurry was
prepared and cell density measured using the NucleoCounter YC-100. Wells were filled with YPD
(1% glucose w/v) with one of the following preservatives: ethanol 5% (v/v) (AaS, Rajamäki, Finland),
sorbate 250 mg/L (potassium sorbate, Sigma-Aldrich, Darmstadt, Germany), benzoate 150 mg/L
(sodium benzoate, Sigma-Aldrich, Darmstadt, Germany) and sulfite 200 mg/L (potassium metabisulfite,
Brown, Poland). All media were adjusted to a pH of 4 prior to pitching approximately 2000 cells
per well. The final volume was 300 µL per well and the cultivations were carried out at 20 ◦C with
moderate shaking. Cultivations were conducted in triplicate.

2.10. Fermentations

With the isolated Z. florentina strain (Z. flo OTA) 2 L-scale fermentations were conducted, together
with the type strain of Z. florentina VTT C-94199 (Z. flo C199) and an ale yeast VTT A-81062 (A62;
a high-attenuating ale yeast strain). The yeasts were propagated first in 25 mL of YPD and the volume
was increased to 500 mL the following day. Cultures were incubated on a shaker (120 rpm) and after
48 h in 500 mL, 20%-slurries were prepared and cell densities determined with a NucleoCounter
YC-100TM (Chemometec, Denmark). The total pitching rate was 1.2 × 107 cells/mL and normal pilsner
type wort at a strength of 12 ◦P was used. The wort was aerated to 10 ppm prior to pitching and
the progression of fermentation was monitored by regular sampling and determination of alcohol,
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wort gravity, pH and yeast mass. Samples for the HPLC analysis of sugars were collected at each
sampling time.

For 10 L-scale fermentations, yeasts were propagated as follows: a loopful of yeast was inoculated
into YPD and incubated aerobically on a shaker (inoculation into 25 mL, continued in 500 mL on the
following day). The suspension was centrifuged, 20%-slurry prepared and inoculated into 1.5 L of 12 ◦P
wort in a 2 L Schott-bottle capped with an airlock. After five days of static fermentation, the yeast was
removed by centrifugation (4000 rpm; 5 min; 4 ◦C) and a 20% slurry was prepared. Cell number was
determined as above and a pitching rate of 7 × 106 cells/mL was used. Fermentations were carried out
in 12 ◦P wheat wort using the wheat beer yeast strain WLP380 as a reference. The wort was aerated to
10 ppm of oxygen prior to pitching and the fermentations were monitored through regular sampling as
before. The young beers, so-called green beers, were transferred from fermenters to kegs, matured for
four days at 12 ◦C and stabilized seven days at 0 ◦C before depth filtration (Seitz EK, Pall Corporation,
New York, NY, USA). Prior to bottling, the beers were carbonated to 5 g/L. The bottled beers were
stored at 0 ◦C. Samples for further analysis (sugars and aroma volatiles) were collected from both
green beers and the bottled beers.

2.11. Analyses

The samples collected from fermentations were centrifuged and supernatants were used in
analyses after manual degassing. The specific gravity, alcohol level (% v/v) and pH of samples were
determined using an Anton Paar Density Meter DMA 5000 M with Alcolyzer Beer ME and pH ME
modules (Anton Paar GmbH, Graz, Austria).

The yeast mass content of the samples (i.e., yeast in suspension) was determined by washing the
yeast pellets twice with 25 mL of deionized H2O in a centrifuge tube, resuspending in Milli-Q-filtered
H2O and drying overnight in preweighed crucibles at 105 ◦C. Where necessary, the yeasts were
analyzed for cell viability using the Chemometec Nucleocounter.

Sugar content of wort was analyzed by HPLC. A Waters 2695 Separation Module and Waters
System Interphase Module liquid chromatograph coupled with a Waters 2414 differential refractometer
(Waters Co., Milford, MA, USA) was used. An Aminex HPX-87H Organic Acid Analysis Column
(300 mm × 7.8 mm; Bio-Rad, Hercules, CA, USA) was equilibrated with 5 mM H2SO4 (Titrisol, Merck,
Germany) in water at 55 ◦C, and samples were eluted with 5 mM H2SO4 in water at a 0.3 mL/min
flow rate.

Yeast-derived volatile aroma compounds (acetaldehyde, higher alcohols and esters) were
determined by headspace gas chromatography with a flame ionization detector (HS-GC-FID). Samples
of 4 mL were filtered (0.45 µm), incubated at 60 ◦C for 30 min and then 1 mL of the gas phase was
injected (split mode; 225 ◦C; split flow of 30 mL/min) into a gas chromatograph equipped with an
FID detector and headspace autosampler (Agilent 7890 Series; Palo Alto, CA, USA). Analytes were
separated on a HP-5 capillary column (50 m × 320 µm × 1.05 µm column, Agilent, Santa Clara, CA,
USA). The carrier gas was helium (constant flow of 1.4 mL/min). The temperature program was
50 ◦C for 3 min, 10 ◦C/min to 100 ◦C, 5 ◦C/min to 140 ◦C, 15 ◦C/min to 260 ◦C and then isothermal
for 1 min. Compounds were identified by comparison with authentic standards and were quantified
using standard curves. 1-Butanol was used as the internal standard.

Biogenic amine levels in bottled beer were determined by Eurofins Food Testing Belgium NV
(Venecoweg 5, 9810 Nazareth, Belgium) using a liquid chromatograph with a method described by
Smělá et al. [19].

2.12. Sensory Analysis

Bottled beer samples (matured as described in Section 2.10) were tasted and judged by a
trained sensory panel of seven panelists certified by the Deutsche Landwirtschafts-Gesellschaft (DLG,
Frankfurt, Germany). Tasting was performed in a dedicated tasting room (individual tasting chambers,
white-colored room, no distracting influences and brown glasses with three-digit number labels) to
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exclude all external misleading factors. The main flavor impressions were determined at a range
from 1 (almost no perception) to 5 (very high perception). Flavor impressions were chosen according
to Meier-Dörnberg et al. [20] (for a list of descriptors used, please see the Supplementary Material
Figure S1). In addition, a tasting was performed under the same circumstances with the DLG scheme,
in which the beer is judged by its aroma, taste, carbonation, body and bitterness in a range of 1–5,
1 being the lowest value (negative) and 5 being the highest value (positive).

2.13. Statistical Analysis and Graphs

Statistical analysis was performed on the fermentation data with a one-way ANOVA and Tukey’s
test using the “agricolae” package in R (RStudio Inc, Boston MA, U.S.A.; R Core Team, r-project;
http://www.r-project.org/) and t-test in Excel. The significance level analysis was performed for pairwise
sensory testing of single attributes according to MEBAK Sensory 3.1.1 and DIN EN ISO 5495:2007.
The graphs were constructed in Excel.

3. Results

The weather in Espoo in December 2017 was exceptionally mild, being over 3.3 ◦C above the
long-term average of −2 ◦C of the region [21,22] and daily max (Tmax) rose above +0 ◦C in the area in
each day of December [22] supporting the idea that there could still exist viable yeast on the bark of oak
trees. To test the idea, a small sampling survey among oak trees in Otaniemi, Espoo was conducted.
We used the same sampling procedure as in our previous study on oaks [9] to maintain comparability
between the samplings. Indeed, many yeast colonies appeared on the isolation plates, but two of
the plates were heavily contaminated by molds. From the third plate, we identified three colonies,
of which two belonged to Z. florentina (with a query coverage 99%, ITS region identity to type strain
was 100% in a BLAST search of the NCBI Nucleotide database, https://blast.ncbi.nlm.nih.gov/Blast.cgi,
National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD,
USA) and one to Saccharomyces paradoxus (query cover 100%; identity 99.87%). The exceptional time
of the year for sampling yeasts from nature in Finland yielded yeast as we hypothesized, but still no
other species of the genus Saccharomyces were found. The brewing potential of S. paradoxus was already
investigated [9], and thus, we continued with the other species, Z. florentina. As the two isolates of the
species were from the same tree, they were considered as the same strain.

3.1. Screening Brewing Potential

Apparent attenuation levels achieved in preliminary fermentation trials were relatively high
under all conditions tested, being highest (84.6%) at 15 ◦C (Table 1). The attenuation levels decreased
as the temperature was increased, reaching 79.6% at 25 ◦C. However, higher temperature seemed
to favor volatile aroma production (Supplementary Material Figure S2). To confirm these results,
fermentation volume was increased to 2 L, and temperature was adjusted to 20 ◦C as a compromise
between temperatures that support a high attenuation rate and aroma compound productivity. Indeed,
the attenuation rate achieved (82.6%) was the median of the previous fermentations and the aroma
production. Exceptions were 3-methylbutanol, 2-methylbutanol and 2-phenylethanol, which were
actually increased (Supplementary Material Figure S2).

To confirm the ability to generate the characteristic spice/clove aroma of 4-vinylguaiacol (produced
as a result of ferulic acid decarboxylation), the isolated Z. florentina strain was incubated in YPD
supplemented with ferulic acid. The relative absorbance (ABS320) was 77.4% of the blank and at the
same level as the positive control strain A62, indicating reduced concentrations of ferulic acid.

http://www.r-project.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1. Fermentation results for Z. flo OTA strain in 9 ◦P wort in a 100 mL-scale and in 8 ◦P wort in a
2 L-scale. The results are the means of two independent fermentations.

100 mL 15 ◦C 100 mL 25 ◦C 2 L 20 ◦C

ABV% 3.73 ± 0.01 a 3.53 ± 0.04 b 3.5 ± 0.01
◦Plato 1.28 ± 0.05 a 1.69 ± 0.12 a 1.41 ± 0.02

pH 4.41 ± 0.04 a 4.44 ± 0.21 a 4.33 ± 0.11
App. attenuation% 84.6 ± 0.4 a 79.6 ± 1.4 a 82.3 ± 0.3

Superscript letters (a–b): values in the same row with different letter differ significantly (t-test, p < 0.05; 2 L scale
fermentation results were not included in the statistical analysis due to a different initial strength of wort).

3.2. 2 L-Scale Fermentations

The isolated Z. flo OTA strain was further characterized in 2 L-scale fermentations together with
the type strain of Z. florentina VTT C-94199 (referred to as Z. flo C199 in this study) and—as high
attenuation levels were achieved in the previous trials—with an ale yeast strain VTT A-81062 (A62).
This ale strain utilized effectively maltose and maltotriose, giving an indication of the attenuation
limit. In 12 ◦P wort, the highest apparent attenuation level achieved by A62 was 85.2%, followed
by the type strain Z. flo C199 with an attenuation of 82.3% (Figure 1; Table 2). The Finnish isolate
achieved an attenuation level of 77.3% (residual maltotriose was 5.3 g/L, i.e., approximately 60%
of this sugar was consumed; Figure 2). The type strain produced beers with 1.5 g/L of maltotriose
(89% consumed), whereas A62 consumed all maltotriose. With both Z. florentina strains, the maltotriose
was utilized efficiently only after it had become the most abundant sugar in the wort, i.e., when all the
other fermentable sugars—fructose, glucose and maltose—were fully consumed. The lack of diastatic
activity was confirmed on the starch agar plates [23]; no color changes were observed with the Finnish
Z. florentina strain, nor with the ale strain A62. These results indicate that high attenuation levels
were not due to dextrin utilization, and are presumably due only to transmembrane sugar transport
and consumption.
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Figure 1. Progress of 2 L-scale fermentations (in 12 ◦P wort, at 20 ◦C) in relation to apparent attenuation.
Values are the means from two independent fermentations. Error bars—when visible—represent the
range between the duplicates.
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Table 2. Results of 2 L-scale fermentations in 12 ◦P wort at 20 ◦C. Volatile aroma values are all expressed
as mg/L.

Z. flo OTA Z. flo C199 A62 Threshold *

ABV% 5.03 ± 0.07 b 5.38 ± 0.02 a 5.55 ± 0.06 a

◦Plato 2.71 ± 0.15 a 2.12 ± 0.03 b 1.77 ± 0.12 b

pH 4.24 ± 0.01 a 4.27 ± 0.01 a 4.14 ± 0.01 b

App. attenuation% 77.3 ± 0.9 b 82.3 ± 0.23 a 85.2 ± 0.7 a

Viability% 86.1 ± 1.4 a 71.0 ± 0.7 b 92.0 ± 3.3 a

Acetaldehyde 13 ± 1 a 5.6 ± 0.2 b 11.7 ± 1 a 25 mg/L
Propanol 12.6 ± 0.7 b 14 ± 0.1 b 17.9 ± 0.3 a 800 mg/L

2-methylbutanol 9.8 ± 0.4 b 7.3 ± 0 c 14.2 ± 0.2 a 65 mg/L
3-methylbutanol 37.8 ± 0.9 b 37 ± 0.1 b 45.4 ± 0.5 a 70 mg/L

2-methylpropanol 20.3 ± 0.7 a 15.9 ± 0.1 c 18.2 ± 0.1 b

2-phenylethanol 9.9 ± 0.7 a 7.2 ± 0.3 b 8.4 ± 0.5 ab 125 mg/L
3-methylbutyl acetate ND b ND b 0.8 ± 0 a 1.6 mg/L
2-phenylethyl acetate 2.1 ± 0.3 a 0.8 ± 0.1 b 0.2 ± 0 b 3.8 mg/L

Ethyl acetate 22.8 ± 0.5 b 13.8 ± 0.1 c 31.4 ± 0.2 a 33 mg/L
Ethyl hexanoate 0.05 ± 0 b 0.08 ± 0 b 0.58 ± 0.04 a 0.23 mg/L
Ethyl octanoate ND c 0.1 ± 0 b 0.3 ± 0 a 0.9 mg/L
Ethyl decanoate 0.1 ± 0 a 0.1 ± 0 a ND a 1.5 mg/L

* Flavor threshold values according to Meilgaard [24]; ND—not detected; Superscript letters (a–c): values in the
same row with different letter differ significantly (p < 0.05) as determined by a one-way ANOVA and Tukey’s test.
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The Finnish strain Z. flo OTA had higher values compared to the type strain Z. flo C199 for most of
the volatile aroma compounds analyzed (Table 2). Although none of the values exceeded the indicative
flavor threshold values [24], aroma levels were comparable to the levels of the reference ale strain
A62. The Finnish isolate had three aroma values—ethyl acetate (fruity), 3-methylbutanol (banana)
and 2-phenylethyl acetate (floral)—over the lower flavor impact values (i.e., the value that could be
affecting the taste, although the compound itself is not recognized; definition: aroma level divided by
threshold value > 0.5 [24]). The A62 strain had the lower impact values exceeded by four compounds
(including ethyl hexanoate (apple and aniseed), which was over the flavor threshold value of 0.58 mg/L).
In addition, the concentrations of 2-methylpropanol (alcoholic and bitter), 2-phenylethanol (rose and
honey), 2-phenylethyl acetate (rose and perfume) and ethyl decanoate (pear) in beers produced by Z.
flo OTA were above those produced by the reference ale strain. Although the type strain Z. flo C199
had a shorter fermentation time than the Finnish strain (seven days and nine days, respectively) and
reached a higher attenuation level, the Finnish strain maintained higher viability after the fermentations
(71% and 86%, respectively), enabling possible recirculating for subsequent batches, and performed
better with respect to the production of aroma volatiles.

3.3. 10 L-Scale Fermentations

In the next step, we compared the Finnish isolate to commercial wheat beer yeast WLP380 at the
10 L-scale. We chose wheat beer as our target style as the Finnish strain demonstrated the potential to
produce the phenolic compound 4-vinylguaiacol—a flavor that is desirable in wheat beers. Both bottled
beers had concentrations of 4-vinylgauiacol (clove-like, smoky phenolic flavor) and 4-vinylphenol
(spicy, medical, phenolic flavor) above the flavor threshold (Table 3). According to the results of
the chemical analyses, both beers should contain perceptible phenolic aromas. WLP380 performed
strongly, reaching an attenuation level of 69% in less than two days (35 h), whereas it took nine days
for the Z. florentina strain to complete the fermentation (Figure 3). The final attenuation level (74.0%)
of Z. florentina was higher than WLP380 (71.8%; Table 3), but lower than in the previous 2 L-scale
fermentation (77.3%). The deviation between maltotriose levels in the final beer of Z. florentina and
WLP380 (7.4 g/L and 10.8 g/L, respectively) is in line with the deviation in final gravity (3.33 and 3.09 ◦P,
respectively). The maltotriose left in the Z. florentina beer corresponded to 42.6% consumption, which
is less than the previously observed consumption of 60% at the 2 L-scale.
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Table 3. 10 L-scale fermentation results. Green beer, (i.e., the beer after the primary fermentation,
but prior to the maturation step) values are the means of duplicate-fermentations; prior to bottling,
duplicates were combined and the results are means of technical replicates.

WLP380 Green
Beer

Zf OTA Green
Beer

WLP380
Bottled

Zf OTA
Bottled Threshold *

ABV% 4.62 ± 0.04 a 4.77 ± 0.04 a

◦Plato 3.30 ± 0.07 a 3.09 ± 0.1 a

pH 4.62 ± 0.00 a 4.25 ± 0.00 b

Attenuation% 71.8 ± 0.6 a 74.1 ± 0.8 a

Residual maltotriose g/L 10.8 ± 0.6 a 7.4 ± 0.5 b

Acetaldehyde 1.36 ± 0.23 b 8.02 ± 0.26 a 4.11 1.06 25 mg/L
Propanol 15.29 ± 1.11 a 12.43 ± 0.15 a 15.43 9.10 800 mg/L

2-methylbutanol 17.43 ± 1.11 a 7.9 ± 0.06 a 17.70 6.28 65 mg/L
3-methylbutanol 48.71 ± 3.24 a 35.65 ± 0.29 a 49.51 27.98 70 mg/L

2-methylpropanol 41.07 ± 3.07 a 17.58 ± 0.08 a 41.51 13.31
2-phenylethanol 15.36 ± 0.9 a 6.17 ± 0.19 b 16.40 5.10 125 mg/L

3-methylbutyl acetate 5 ± 0.3 a 0.02 ± 0 b 4.40 0.02 1.6 mg/L
2-phenylethyl acetate 1.1 ± 0.02 a 1.16 ± 0.06 a 1.27 1.15 3.8 mg/L

Ethyl acetate 45.84 ± 3.44 a 17.76 ± 0.51 a 44.25 13.40 33 mg/L
Ethyl hexanoate 0.14 ± 0 a 0.08 ± 0 b 0.15 0.06 0.23 mg/L
Ethyl octanoate 0.46 ± 0 a 0.05 ± 0 b 0.60 0.05 0.9 mg/L
Ethyl decanoate 0.13 ± 0.01 a 0.03 ± 0 b 0.23 0.09 1.5 mg/L
4-vinylguaicol 1.4 1.3 0.25 mg/L
4-vinylphenol 1.2 1.2 0.25 mg/L

* Flavor threshold values according to Meilgaard [24]; Superscript letters (a,b): values in the same row with different
letter differ significantly (p < 0.05) as determined by a one-way ANOVA and Tukey’s test.Beverages 2020, 6, x FOR PEER REVIEW 11 of 20 
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As expected, the classic wheat beer strain WLP380 produced high levels of fruity esters of ethyl
acetate (fruity and solvent) and 3-methylbutyl acetate (i.e., isoamyl acetate; banana) having levels
(45.8 mg/L and 5 mg/L, respectively) over the threshold values (33 mg/L and 1.6 mg/L, respectively)
(Table 3). Additionally, the 3-methylbutanol level (48.7 mg/L; banana) was over the minor flavor
impact value. In green beers, the only aroma compound at similar levels between WLP380 beer and
Z. florentina beer was 2-phenylethyl acetate (1.1 mg/L and 1.2 mg/L, respectively); otherwise, the aroma
levels of Z. florentina were clearly lower, having only one volatile compound at a concentration over
the minor flavor impact value (3-methylbutanol, 35.7 mg/L). The levels of most aroma compounds
were slightly below the results obtained in the previous 2 L-scale fermentation as well. Although
the Z. florentina strain lacked the distinct peak in dry mass values (Figure 4) that is characteristic of
a flocculent strain, after the maturation step the beer was easier to filter than the reference ale yeast,
indicating a good flocculation after the main fermentation (data not shown).Beverages 2020, 6, x FOR PEER REVIEW 12 of 20 
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aroma attribute for beer produced with the yeast strains S. cerevisiae WLP 380 (left) and Z. florentina
Z. flo OTA (right).

3.4. Sensory

Beer “WLP380 bottled” was described as pure, pleasant top-fermented with clove and ripe banana
in smell and as pure, pleasant top-fermented with clove and ripe banana, full-bodied, delicate and
harmonic finish in taste with good carbonation. Beer “Zf OTA” was described as emphatically fruity,
wine-like in smell and as emphatically fruity, wine-like, slightly acidic, thin/dry and slightly astringent
bitterness in taste, with good carbonation. Both beers were evaluated with grades above 4 according
to the DLG tasting scheme (Table 4). Values below 4 indicate off-flavors. Hence, no off-flavors were
recognized or described. Beer “WLP380 bottled” was evaluated with very high grades. Beers above
4.5 are above the average. All grades of “WLP380 bottled” were above 4.5. Beer “Zf OTA” was rated
with 4.7 and 4.6 in body and carbonation. Purity of taste and aroma (smell) were rated as 4.3 and 4.1,
indicating acceptable beer taste. Bitterness of beer “Zf OTA” had 4.0 and indicated that bitterness is still
acceptable but not harmonic. This is also indicated in the descriptive tasting result “slightly astringent
bitterness”. In summary beer “WLP380 bottled” was rated better than beer “Zf OTA”, whereas beer
“WLP380 bottled” was more wheat beer-like with phenolic aromas and “Zf OTA” was fruitier and
wine-like without any descriptions of phenolic aromas.
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Table 4. Results according to the Deutsche Landwirtschafts-Gesellschaft (DLG) scheme, in which the
beer is judged by its aroma, taste, carbonation, body and bitterness in a range of 1–5, 1 being the lowest
value (negative) and 5 being the highest value (positive); arithmetic mean of results of 10 tasters.

WLP380 Bottled Z. flo OTA Bottled

Aroma (smell) * 5.0 4.3
Purity of taste * 4.6 4.1

Body 5.0 4.7
Carbonation 4.9 4.6

Quality of bitterness 5.0 4.0

* no off-flavors were recognized.

Results of a sensory scheme with a focus on yeast-derived aromas according to
Meier-Dörnberg et al. [20] are shown in Figure 4. The two beers produced with S. cerevisiae WLP
380 (left) and Z. florentina Z. flo OTA (right) have different aroma profiles. Spicy, clove-like aroma
was recognized for beer WLP 380, whereas spicy/phenolic was not recognized by the tasting panel
for beer Z. flo OTA. The significance level of important the following main aroma attributes was of
α = 0.05 according to the method pairwise test of MEBAK sensory 3.1.1 and DIN EN ISO 5495:2007:
ripe banana, tropical fruity, clove for beer WLP 380 and tropical fruity for beer Z flo. OTA. An absence
of the spicy attributes juniper, pepper and cinnamon and the attribute smoky was also tasted for
beer Z. flo OTA with a significance level 0.05. The result for the spicy/phenolic attributes was not
expected given that chemical results for 4-vinylgauaicol and 4-vinylphenol concentrations were above
the aroma threshold (Table 3). The beer Z. florentina OTA had fruity (main attribute red currant),
tropical fruity (main attribute pineapple) and other flavors (main attribute vinous) with grades of
3 and higher. The authors hypothesize that the fruity and vinous aroma covers or integrates the
spicy, phenolic, clove-like flavor so that it is not perceived as the wheat-beer typical clove-like spicy
flavor. The beer WLP 380 had a strong tropical fruity flavor (main attribute ripe banana), fruity flavor
with grade 2 (main attribute green apple) strong sweet flavors (main attributes wort-like and toffee).
Sweet flavors were not recognized in beer Z flo OTA. This beer had a higher fermentation degree and a
lower maltotriose concentration, which may explain this difference in the aroma profile. In summary,
aroma profiles of the beers were completely different, whereupon spicy, clove-like phenolic aroma,
vinous aroma and different fruity characteristics can be identified as key differences together with the
differing bitterness (Table 4, descriptive tasting, Figure 4).

3.5. Ethanol Concentration and Fermentation Performance

Good results (i.e., no clear off-flavors) from the sensory analysis urged us to analyze the strain
further. The apparent attenuation levels at the 10 L-scale were evidently down from the 80%-values at
the beginning. There was a clear drop from the 2 L-scale to a 10 L-scale (77% and 74%, respectively),
but the drop was even greater from 8 ◦P wort to 12 ◦P wort at the 2 L-scale. It was also observed that
high attenuation levels achieved in pretrials were maintained when the volume was increased from
the 100 mL to 2 L-scale, but decreased when the wort OG was increased in the following fermentations.
These findings suggested that elevated ethanol levels could play a crucial role here. To assess the
relative ethanol sensitivity of the strain, we set up a small-scale (100 mL) fermentation in 9 ◦P wort
supplemented with ethanol levels of 0%, 2% and 4%. Indeed, as can be seen from the weight-loss
curves (Figure 5), the elevated ethanol levels impeded the Z. florentina fermentation, while they had
no effect on the reference lager strain A15. With 4% ethanol supplementation, the progress of the
fermentation at the beginning was comparable to other Z. florentina fermentations, but decreased
already after 0.36 g of weight-loss suggesting that ABV levels slightly above 4% were already limiting
fermentation performance.
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between duplicates.

3.6. Suitability of the Strain for Commercial Breweries

In the final step, we wanted to explore the suitability of the strain for commercial use in breweries.
A precondition for any product is safety. To assess the safety of the Z. flo OTA beer, biogenic amine
levels were measured in bottled beers. Only low levels of cadaverine (1.55 ± 0.22 mg/kg) and putrescine
(5.48 ± 1.42 mg/kg) were found. These levels are comparable to levels found in commercial beers [25]
suggesting minimal risk from biogenic amines.

The other aspect is the usability of the strain in general. Strains of Z. florentina were isolated from
soft drinks. As soft drinks and other alcoholic and non-alcoholic beverages are often prepared in the
same facilities where beers are produced, an essential part of the coherent evaluation of the strain is
to assess the usability in regards to other beverages, i.e., the ability of the strain to tolerate different
preservatives. Although all the studied preservatives delayed the growth of Z. florentina, only sorbate
(250 ppm) was able to completely inhibit growth throughout (Figure 6). Even the high level of sulfite
(200 ppm) was not sufficient to prevent the eventual growth of the strain and, once adapted to sulfite,
the growth rate was similar to that of the control.
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4. Discussion

The most notable feature of Z. florentina strains was their ability to utilize the main wort sugars
and, as a consequence, to reach good apparent attenuation levels. In 12 ◦P wort, the alcohol by volume
(ABV) levels produced were comparable to a commercial ale yeast due, in particular, to their ability
to utilize maltotriose. Maltose was fully depleted in all fermentation conditions and, although the
consumption of maltotriose was reduced in stronger wort, the apparent attenuation levels of 74% are
still comparable to those of many commercial brewing yeast strains. This is a relatively rare trait among
wild yeasts [7], as many of the reported wild yeasts shown to have beer brewing potential still lack the
ability to ferment maltotriose [26–28]. This applies to wild S. cerevisiae strains as well [29]. Contrary
to wild strains, most domesticated brewing strains of S. cerevisiae have an AGT1 gene, which codes
transporters for the uptake of common sugars in wort, including maltotriose [29,30]. The other
important genes for maltotriose utilization can be found in the MAL gene family [30]. This gene family
is also found from wild Saccharomyces, but without recombination, these genes have not been found
to code transporters for maltotriose utilization [31,32], emphasizing the role of domestication in the
evolution of maltotriose utilization. Less is known about the genes behind maltotriose consumption
within the non-Saccharomyces species. With the diastatic strains, the consumption of maltotriose can be
explained by α-glucosidase secreted outside the cell to break down the longer-chain sugars. However,
as the strain of Z. florentina studied here was not able to grow on starch-agar, indicating no diastatic
power, it is more likely that the sugar was taken up into the cell through transmembrane transporters.
Considering that maltotriose-positive species in nature are rare, as is maltotriose itself, a possibility
is that these transporters were originally designed for uptake of some other sugars. For the genetic
studies of yeast metabolism, all maltotriose-positive wild yeasts offer valuable material.

A further requirement for a brewing strain is the ability to tolerate the levels of ethanol found in
standard beers. Results suggest that the Finnish Z. florentina strain is most effective when the wort’s
starting gravity is below 10 ◦P. At higher gravities, the relative ABV yields decreased and this can be,
at least partly, attributed to ethanol levels reaching 5% ABV. Although growth was observed eventually
during microplate screening experiments at ethanol levels of 5%, the lag-phase was clearly extended.
Fermentation trials with worts supplemented with different levels of ethanol confirmed the inhibitory
effect. Interestingly, however, once fermentation was initiated, the fermentation rates were relatively
similar, with or without ethanol exposure, suggesting that ethanol tolerance may be achieved through
physiological adaptation. In the study of Methner et al. [8], only one of the further-selected yeast strains
(belonging to species S. pombe) reached ABV-values over 5% within 14 days. Maltotriose-negative,
but maltose-positive wild Saccharomyces spp. have been reported to reach ABV values of around
6% of ethanol [9,26]. High ethanol levels require high sugar levels, limiting the occurrence of such
environments in nature, and the ability to take advantage of such occasions is often attributed to the
Saccharomyces spp., especially to S. cerevisiae [33]. The sensitivity of Z. florentina to ethanol may limit its
potential application in brewing. Ethanol tolerance is, however, a malleable trait and evolutionary
engineering has been applied successfully to brewing strains to improve their ability to withstand
the conditions associated with high gravity wort [34]. Similar strategies could feasibly be applied to
Z. florentina.

The fermentation efficiency of Z. florentina was reduced also at greater fermentation volumes.
Increasing from the 2 L-scale to the 10 L-scale cut down the attenuation rates. In higher volumes,
especially in cylindroconical vessels, the hydrostatic pressure and carbon dioxide pressure in suspension
increase, affecting the conditions of cells in suspension [35]. Thus, a slightly weakened performance
with the Z. florentina strain could be expected. Scaling-up often necessitates the optimization of
conditions—like pitching rate, wort aeration and fermentation temperature—and this may be the case
here. However, as the strain of Z. florentina used in this study has had no history of domestication,
and had only one fermentation step prior to the main fermentation, the preferred option would be
adaptive steps to increase tolerance against higher volumes and ethanol levels. The simplest option
would be repeated repitching. While investigating the suitability of the Lachancea thremotolerans strain
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for repitching, Domizio et al. [28] observed an increase in ethanol yields after several generations,
which the authors suspected to be related to improved tolerance against ethanol. Similarly, one could
expect the improved tolerance also against higher hydrostatic pressure.

The advantageous traits possessed by Z. florentina can only be considered relevant if they are
accompanied by the production of metabolites that contribute positively to beer quality. In this respect,
the generation of volatile aroma compounds (higher alcohols and esters) is particularly important.
Relative to flavor threshold values, the highest aroma compound productivities were observed with
3-methylbutanol, ethyl acetate and 2-phenylethyl acetate. These compounds are frequently mentioned
in wild yeast studies and produce banana, fruity and honey-like flavor notes [8,36]. As the levels of
these compounds, however, remained under the flavor threshold values, none of the individual aromas
dominated. Overall, the production of aroma compounds was decreased as the fermentation volume
was increased. In regards to aroma volatile productivity, the most optimal conditions in this study were
at the 2 L-scale at 20 ◦C. To what extent this outcome was due to suitable circumstances (volume and
temperature) and how much to other conditions (pitching rate, wort strength, etc.) remains a subject
for further studies.

The beer produced with Z. florentina was of an acceptable quality and, importantly, had distinct
flavor notes, distinguishing it from the reference beer produced by the commercial ale strain WLP 380.
In particular, there was a specific fruity (main attribute red currant), tropical fruity (main attribute
pineapple) and wine-like aroma profile according to the tasting scheme of Meier-Dörnberg et al. [20].
Distinctive beer aroma profiles have similarly been described for other non-Saccharoymces species
used for beer production [14,27,37–41]. Both yeast strains included in the sensory trials are POF+

and produced 4-vinylgauaicol and 4-vinylphenol in concentrations above the aroma threshold.
Interestingly though, in Z. florentina beer, no phenolic/spicy/clove-like flavor notes were recognized
by the tasting panel. Therefore, the authors hypothesize that the fruity and vinous aroma covers, or
integrates, the phenolic flavor, so that the beers did not have the expected wheat-beer flavor profile.
This phenomenon has not been reported previously, but comparable observations have been made for
other flavor compounds. The corn-like flavor of dimethylsulfide, for example, may be masked by the
presence of phenylethanol [42], and the worty flavor notes of various aldehydes can be covered by
esters [43] or ethanol [44]. A positive outcome of the sensory analysis was the absence of any notable
off-flavor, further strengthening the case for Z. florentina as a potentially valuable brewing strain.

Irrespective of functional properties, any species considered for application in the food industry
must be completely safe to handle, produce a safe product and not pose a contamination risk in the
production facility. In this regard, Z. florentina can be found on the inventory list of microorganisms
with technological beneficial use [45] with a recorded history in food production. In addition, there are
no reported pathogenicity cases related to the species, which is line with the strains’ reported inability
to grow at 37 ◦C (culture collection data, [11]). To assess the safety of the product, biogenic amine levels
in the beers were measured also, but only trace levels were found and these were comparable to levels
found in beers produced by commercial yeasts [25]. Although there are no known health concerns
related to the species, in order for the strain to be considered suitable for commercial production,
its genome should be sequenced and potential for pathogenicity determined at the gene level to
prevent possible health implications if the strain acquired a higher temperature tolerance. Additionally,
the ability of the species to tolerate antifungal compounds could be assessed to ensure that any
emergent pathogenicity was treatable. With regard to the risk of cross-contamination within brewing
facilities, there are several strains of the species available from culture collections that were originally
isolated from soft drinks [11], suggesting that the species may have contamination capability. Indeed,
our strain was able to tolerate a range of common preservatives including benzoate, ethanol and sulfite.
Sorbate was the only preservative effective against the strain. Thus, in order to deploy the strain,
a brewer should pay attention to hygiene and be careful not to introduce the yeast into other products
produced in or near the same bottling lines.
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A trait relevant to the potential application is temperature tolerance, as this has an impact on
permissible process conditions, microbiological control and potential pathogenicity. Although the
studied strain was not extremely cold tolerant, it clearly preferred cooler temperatures. This trait appears
to be consistent amongst culture collection strains of the species [11], as none of them were reported to
be able to grow at human body temperature. Thus, optimizing fermentation conditions could involve
lowering the fermentation temperatures, and ethanol tolerance could be further assessed at these
lower temperatures. Temperature preference has also been shown to be crucial for successful isolation
from the nature of different species [46]. Multiple species often coexist and those that prefer ambient
temperatures can have a competitive advantage relative to those with lower temperature optima
for growth. Although, Z. florentina is not cryophilic, preference for cooler temperatures was evident
based on isolation time and the enrichment temperature of 12 ◦C. Lower enrichment temperature
may also have helped the strain to tolerate the relatively high concentrations of ethanol (7.8% ABV)
used in the isolation protocol. As the strain did not prefer the higher ethanol levels, streaking the
enrichment media, even those without any signs of growth (haze, pressure), was a prerequisite for
successful isolation.

While temperature preference may have played a role in the isolation of the species,
the environmental niche (oak bark) is likely to have been just as important. A strong connection between
oaks and Saccharomyces spp. is well-established [17,46,47], but oak trees host a diverse range of yeasts,
many of which have been found to have traits suitable for brewing. While isolating Saccharomyces spp.
from oak in a previous study [9], among the few identified non-Saccharomyces isolates were species
such as T. delbrueckii and L. thermotolerans, which have also shown promise as alternative brewing
strains [28,48,49]. Though less well characterized with respect to brewing performance, Z. florentina
also appears to show considerable potential in this regard. Why Saccharomyces spp. and other yeast
species appear to prefer oak is not yet understood. It may be that oaks are simply a safe harbor for the
otherwise nomadic yeasts, as suggested by Goddard and Greig [33]. Sampaio et al. [46] demonstrated
a positive correlation between the sugar content of bark (tree-species specific) and incidence of certain
species, suggesting that species composition could be, at least partly, related to the availability of
fermentable sugar. However, to validate this assumption, more data about the sugary exudates of
the bark of different tree-species should be determined, and comprehensive sampling of tree species
should be carried out. Current knowledge may be biased towards oaks as these are often the preferred
choice to sample, as in the current study.

Overall, the isolated strain illustrated many interesting characteristics in regards to potential
brewing application. The ability to utilize maltose and maltotriose in particular is an interesting feature
from a brewing perspective. Additionally, the distinctive flavor profile of the beer suggests that the
species may be suitable for product differentiation. Promising results obtained also with the type strain
demonstrated that there is a significant potential in screening further strains of the species for their
brewing potential. Future research could focus on adaptive evolution of the strain/species to tolerate
higher ethanol levels and larger fermentation volumes. Additionally, tracking the sugar transporters
responsible for maltose and maltotriose utilization could help to better understand the occurrence of
these traits in nature.
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